Jump to content

Hot-potato routing

From Wikipedia, the free encyclopedia
(Redirected from Cold-potato routing)

In Internet routing between autonomous systems which are interconnected in multiple locations, hot-potato routing is the practice of passing traffic off to another autonomous system as quickly as possible, thus using their network for wide-area transit. Cold-potato routing is the opposite, where the originating autonomous system internally forwards the packet until it is as near to the destination as possible.[1][2][3]

Behaviors

[edit]

Hot-potato routing (or "closest exit routing")[2] is the normal behavior generally employed by most ISPs.[1] Like a hot potato in the hand,[2] the source of the packet tries to hand it off as quickly as possible in order to minimize the burden on its network.[1]

Cold-potato routing (or "best exit routing")[2] on the other hand, requires more work from the source network, but keeps traffic under its control for longer, allowing it to offer a higher end-to-end quality of service to its users.[1] It is prone to misconfiguration as well as poor coordination between two networks, which can result in unnecessarily circuitous paths.[1] NSFNET used cold-potato routing in the 90s.[2]

When a transit network with a hot-potato policy peers with a transit network employing cold-potato routing, traffic ratios between the two networks tend to be symmetric.[2]

Implementation

[edit]

Routing behavior can be influenced using two BGP "knobs": multi-exit discriminator (MED) and local preference.[1] In hot-potato routing, the MED attached to incoming EBGP-learned routes is discarded,[2] and the IGP cost is used instead.[3] In cold-potato routing, MED[2] or BGP communities are used to signal the cost of the route, which influences IBGP local preference.[3]

References

[edit]
  1. ^ a b c d e f Subramanian, Lakshminarayanan; Padmanabhan, Venkata N.; Katz, Randy H. (2002-06-10). Geographic Properties of Internet Routing (PDF). USENIX 2002 Annual Technical Conference.
  2. ^ a b c d e f g h McPherson, D.; Patel, K. (January 2006). "MEDs and Potatoes". Experience with the BGP-4 Protocol. IETF. p. 5. sec. 7.1.1. doi:10.17487/RFC4277. RFC 4277. Retrieved 2023-12-11.
  3. ^ a b c Decraene, B.; Francois, P.; Pelsser, C.; Ahmad, Z.; Armengol, A.J. Elizondo; Takeda, T. (April 2011). "Routing Decisions". Requirements for the Graceful Shutdown of BGP Sessions. IETF. p. 18. sec. A.3. doi:10.17487/RFC6198. RFC 6198. Retrieved 2023-12-12.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy