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Abstract. We present a new definition of computationally binding commitment
schemes in the quantum setting, which we call “collapse-binding”. The definition
applies to string commitments, composes in parallel, and works well with rewinding-
based proofs. We give simple constructions of collapse-binding commitments in the
random oracle model, giving evidence that they can be realized from hash functions
like SHA-3. We evidence the usefulness of our definition by constructing three-round
statistical zero-knowledge quantum arguments of knowledge for all NP languages.
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1 Introduction

We study the definition and construction of computationally binding string commitment
schemes in the quantum setting. A commitment scheme is a two-party protocol consisting
of two phases, the commit and the open phase. The goal of the commitment is to allow
the sender to transmit information related to a message m during the commit phase in
such a way that the recipient learns nothing about the message (hiding property). But
at the same time, the sender cannot change its mind later about the message (binding
property). Later, in the open phase, the sender reveals the message m and proves that
this was indeed the message that it had in mind earlier. We will focus on non-interactive
classical commitments, that is, the commit and open phase consists of a single classical
message. However, the adversary who tries to break the binding or hiding property
will be a quantum-polynomial-time algorithm. At the first glance, it seems that the
definition of the binding property in this setting is straightforward; we just take the
classical definition but consider quantum adversaries instead of classical ones:

Definition 1 (Classical-style binding – informal) No quantum-polynomial-time algorithm
A can output, except with negligible probability, a commitment c (i.e., the message sent
during the commit phase) as well as two openings u, u′ that open c to two different
messages m,m′.

(Formal definition in Section 2.) Unfortunately, this definition turns out to be inadequate
in the quantum setting. Ambainis, Rosmanis, and Unruh [ARU14] show the existence
of a commitment scheme (relative to a special oracle) such that: The commitment is
classical-style binding. Yet there exists a quantum-polynomial-time adversary A that
outputs a commitment c, then expects a message m as input, and then provides valid
opening information for c and m. That is, the adversary can open the commitment c to
any message of its choosing, even if it learns that message only after committing. This
is in clear contradiction to the intuition of the binding property. How is this possible,
as Definition 1 says that the adversary cannot produce two different openings for the
same commitment? In the construction from [ARU14], the adversary has a quantum
state |Ψ⟩ that allows it to compute one opening for a message of its choosing, however,
this computation will destroy the state |Ψ⟩. Thus, the adversary cannot compute two
openings simultaneously, hence the commitment is classically-binding. But it can open
the commitment to an arbitrary message once, which shows that the commitment scheme
is basically useless despite being classically-binding.1

1.1 Prior definitions

We now discuss various definitions that appeared in the literature and that circumvent the
above limitation of the classical-binding property. (We do not discuss the hiding property
here, because that one does not have any comparable problems. See Definition 9 below

1Note that for classical adversaries, the classical-binding property gives useful guarantees: If an
adversary can produce an opening for any message m using some classical algorithm, it can also produce
two openings for different messages m,m′ by running that algorithm twice.
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for the definition of hiding.) In each case, we discuss some limitations of the definitions
to motivate the need for a new definition for computationally binding commitments. The
reader only interested in our results can safely skip this section.

Sum-binding. The most obvious solution is to simply require that the adversary cannot
open successfully to each of two messages: That is:

Definition 2 (Sum-binding – informal) Consider a bit commitment scheme. (I.e., one
can only commit to m = 0 or m = 1.)

Given an adversary A, let pb be the probability that the recipient accepts in the following
execution: A commits, then A is given b, and then A provides opening information for
message b.

A commitment is sum-binding iff for any quantum-polynomial-time adversary A,
p0 + p1 ≤ 1 + negligible.

Note that even with an ideal commitment, p0+p1 = 1 is possible (the adversary just picks
b := 0 in the commit phase with probability p0, and b := 1 else). So p0+p1 ≤ 1+negligible
is the best we can expect if we allow for a negligible probability of an attack. The sum-
binding definition has occurred implicitly and explicitly in different variants in [Bra+93;
May97; DMS00; Cré+04; Cré+11]. We use the name sum-binding here to distinguish it
from the other definitions of binding discussed here since it does not have an established
name.

Although it avoids the attack described above, the sum-binding definition has a
number of disadvantages:

• It is specific to the bit commitment case. There is no straightforward generalization
to the the string commitment case (i.e., where the message m does not have to be
a single bit). See [Cré+04] for discussion why obvious approaches fail.2

• It is unclear how the definition behaves when we use the commitment several times.
(I.e., it is not clear how it behaves under composition.) For example, given bits
m1, . . . ,mn, what are the security guarantees if we commit to each of the mi? (Be
it in parallel, or sequentially.) Basically, we would expect that all commitments
together form a binding commitment on the string m = m1 . . .mn, but this is
something we cannot even express using the sum-binding definition.

• It is not clear how useful sum-binding commitments are as subprotocols in larger
protocols. That is, is the sum-binding property strong enough to allow to prove the
security of complex protocols using commitments? While there are constructions of
sum-binding in the literature (e.g., [DMS00]), we are not aware of research where
(computational) sum-binding commitments are used as subprotocols.

2One obvious attempt would be: Let pm be the probability that A opens the commitment as m when
given m after the commit phase. Then for all m0,m1, we have pm0 + pm1 ≤ 1 + negligible.

However, this leaves the possibility that the adversary A achieves the following: In the commit phase,
A outputs c,m0,m1 where m0,m1 are uniformly distributed. Then A gets a bit b. Then A opens c with
message mb. This should not be possible if c is binding, yet for this A, pm is negligible for any fixed m.
(Since Pr[m ∈ {m0,m1}] is negligible.)
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CDMS-binding. Crépeau, Dumais, Mayers, and Salvail [Cré+04] suggest a generalization
of the sum-binding property to string commitments. The basic idea is: Instead of
bounding p0+p1 ≤ 1+negligible where pm is the probability that the adversary opens its
commitment as m ∈ {0, 1}, we could bound

∑
m pm ≤ 1+ negligible where m ranges over

all bitstrings. However, as discussed in [Cré+04], this would be too strong a requirement.
(Basically, this is because the sum

∑
m pm has exponentially many summands, so even

negligible attack probabilities can add up to large probabilities.) Instead, they proposed
the following definition:

Definition 3 (CDMS-binding – informal) Let F be a family of functions. Fix a string

commitment scheme. For f ∈ F , let p̃fy be the probability that the recipient accepts in the
following execution: A commits. A gets y. A tries to open the commitment to some m
with f(m) = y.

We call the commitment scheme F -CDMS-binding iff for all adversaries A and all
f ∈ F , we have

∑
y p̃

f
y ≤ 1 + negligible.

Now if all f ∈ F have a polynomial-size range, the sum
∑

y p̃
f
y will have polynomially

many summands. The intuition behind this definition is that every function f ∈ F
represents some property of the committed message m (e.g., f(m) is the parity of m).
Then, if a commitment scheme is F -CDMS-binding, this intuitively means that the
although the adversary might be able to change its mind about the message m, it cannot
change its mind about f(m). (E.g., if the parity function is in F , this means that the
adversary will be committed to the parity of the message m.) [Cré+04] successfully used
this definition (for a specific class F ) to show that using quantum communication and a
commitment, we can construct an oblivious transfer protocol. (Note however that their
protocol is different and more complex than the original OT protocol from [Ben+91].)

Although the CDMS-binding definition generalizes the sum-binding definition to the
case of string commitments, it comes with its own challenges:

• The definition is parametrized by a specific family F of functions that specifies
in which way the commitment should be binding. This function family has to
be chosen dependent on the particular use case. This makes the definition less
universal and canonical.

• To the best of our knowledge, no construction of CDMS-binding commitments is
known. Crépeau et al. [Cré+04] conjecture that the protocol from [CLS01] can be
extended to a CDMS-binding one for functions F with small range, but no proof or
construction is given.

• It is not known whether the definition is composable. If we commit to messages
m1, . . . ,mn individually using F -CDMS-binding commitments, does this constitute
an F ′-CDMS-binding commitment on m := m1∥ . . . ∥mn? If so, for which F ′?

• While CDMS-binding commitments have successfully been used in a larger protocol
(namely, the OT protocol from [Cré+04]), we believe that in many contexts, the
definition is still not very easy to use. At least in classical cryptography, one often
uses the fact that it is possible to extract the committed message by rewinding
(basically, one runs the open phase, saves the opened message, and rewinds to before
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the opening phase). It is not clear how to do that with CDMS-binding commitments.
For example, it is not clear how one could use CDMS-binding commitments in the
construction of sigma-protocols that are quantum arguments of knowledge (as done
in Section 7 below using our definition of binding commitments).

Perfectly-binding commitments. One possibility to solve all the problems mentioned so
far is simply to use perfectly-binding commitments.

Definition 4 (Perfectly-binding – informal) A commitment scheme is perfectly-binding if
there exists no tuple (c,m, u,m′, u′) with m ̸= m′ such that u is a valid opening for c with
message m, and u′ is a valid opening for c with message m′.

However, if we restrict ourselves to perfectly-binding commitments, we get the following
disadvantages:

• A perfectly-binding commitment cannot be statistically hiding [May97]. That is, the
hiding property cannot hold against computationally unlimited adversaries. That
means that we give up on information-theoretical security for one party just because
we do not have a suitable definition for the computationally-binding property. For
example, the constructions in [Unr12] are only computational zero-knowledge (not
statistical zero-knowledge) because perfectly-binding commitments are used.

• Perfectly-binding commitments cannot be short. That is, the length of the commit-
ment must be as long as the length of the committed message. So by using only
perfectly-binding commitments, we may lose efficiency.

UC commitments. One further possibility is to use commitments that are UC-
secure [Unr10]. Since the security of a protocol using a UC-secure commitment can be
reduced to the security of the same protocol using an ideal (in particular perfectly-binding)
commitment, UC-secure commitments are easy to use. Yet, this solution again comes
with disadvantages:

• UC-commitments do not exist without the use of additional setup such as, e.g.,
a common reference strings (CRS). It is possible to chose the CRS in a pre-
computation phase using a coin-toss protocol [DL09]. But that increases the round
complexity of the resulting protocol (and, incidentally, loses the UC security and
possibly even the concurrent composability of the resulting protocol).

• In the construction of UC-secure commitment schemes, trapdoors are used that allow
the simulator to extract the committed message. This implies that constructions of
UC-secure commitment are usually more complex, less efficient, and use stronger
computational assumptions.

• At least when using a CRS, UC commitments cannot be short.
Damg̊ard, Fehr, Lunemann, Salvail, and Schaffner [Dam+09] use so-called dual-mode
commitments, these are somewhat weaker than UC commitments. Yet, they also use
extraction using a trapdoor in the CRS. Hence the disadvantages of UC commitments
apply to dual-mode commitments as well.
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Q-binding. Damg̊ard, Fehr, and Salvail [DFS04] give another definition for computa-
tionally binding string commitments. Intuitively, the definition says that an adversary
who uses the commitment has negligible advantage in a “betting game” over an adversary
that has to use perfect commitments. Here, a betting game is represented as an arbitrary
predicate on the opened values in the commitments, and on some random input that the
adversary learns only after committing. (E.g., a bet could be: the sum of all opened values
equals the random value u that the adversary learns just before opening.) Somewhat
more formally:

Definition 5 (Q-binding – informal) For an adversary A and a predicate Q, consider the
following game: A outputs commitments C1, . . . , CN . Then A gets a random bitstring u.
Then A opens a subset A of the commitments, let (si)i∈A be the contents. A wins if
Q(A, (si)i∈A, u) = 1.

A commitment scheme is Q-binding iff for any quantum-polynomial-time A and any
predicate Q, the adversary A wins with probability at most pIDEAL + negl , where pIDEAL is
the maximum winning probability when using a perfectly binding commitment.

The definition overcomes some of the problems of the CDMS-binding definition. In
particular, there is no need to parametrize the definition with a class F of functions,
specifically chosen to fit the use case at hand. Also, the Q-binding definition composes in
parallel: if a commitment scheme is Q-binding, then the commitment scheme resulting
from committing to each of m1, . . . ,mn individually is Q-binding, too. (This should
come as no surprise, since the Q-binding definition itself explicitly refers to a polynomial
number of parallel copies of the commitment scheme.) The definition seems particularly
well-suited for commit-and-choose constructions (i.e., where one party commits to a set of
values, and the other party selects which of them should be opened), since security when
opening a specific subset is built into the definition. [DFS04] give a generic construction
for unconditionally hiding Q-binding equivocal trapdoor commitments from a certain
class of sigma-protocols. They show that using such commitments, sigma-protocols can
be converted into statistical quantum zero-knowledge arguments in the CRS model.

However, their definition also comes with a number of challenges:
• The only construction of unconditionally hiding Q-binding commitments known
is actually an equivocal trapdoor commitment. Trapdoor commitments usually
need stronger assumptions. Note also that no protocols using non-equivocal Q-
binding commitments are known (the zero-knowledge protocols in [DFS04] need
the trapdoor because they are constructed following the “no quantum rewinding
paradigm”). And, due to the absence of rewinding, the zero-knowledge protocols
only work in the CRS model.

• The possibility for parallel composition might be limited: It follows directly from the
definition that Q-binding commitments on m1, . . . ,mn are a Q-binding commitment
onm = m1 . . .mn. However, it is not clear what happens if we commit tom1, . . . ,mn

using different Q-binding commitments. (Or the same Q-binding commitment, but
using different public keys.)

• The definition is specialized for the commit-and-choose paradigm. It is unclear how
it can be used in rewinding-based proofs. (On the other hand, in commit-and-choose
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situations, Q-binding commitments might be more suitable than those we propose;
whether this is the case constitutes future work.)

Summarizing, Q-binding commitments seem to be well suited for commit-and-choose
constructions, but for proofs involving rewinding, we need another definition.

DFRSS-binding. Damg̊ard, Fehr, Renner, Salvail, and Schaffner [Dam+07] presented
a definition for the unconditional binding property, targeted mainly for the bounded
quantum storage model; the following is a direct adaptation of their definition to the
computational setting:

Definition 6 (DFRSS-binding – adapted) In a commitment, let V denote the recipient’s
classical state, and Z the sender’s classical state.

A bit commitment is DFRSS-binding iff for any quantum-polynomial-time sender C̃,
there exists a randomized function B′ such that the following holds:

Let C̃ and the honest recipient execute the commit phase. Compute b′ := B′(V,Z).
Let C̃(b′) and the honest recipient execute the open phase. Let b denote the opened bit
(or ⊥ if the recipient does not accept). Then Pr[b′ ̸= b] is negligible.

In other words, given the classical part of the state of the recipient and the sender, it
is possible to extract what bit the sender will open to. (The extraction does not have to
be efficiently feasible.)

The definition can be extended to string commitments by letting B′ range over
bitstrings.

We have changed the original definition from [Dam+07] to refer to quantum-
polynomial-time adversaries. (We also reformulated it for easier readability, changing a
number of technical details in the process. However, the current definition is in the spirit
of the original. And our discussion also applies to the original formulation.)

The definition was originally intended for protocols in the bounded quantum storage
model. What happens if we use it in the standard model, i.e., with no limit on the
quantum memory of the sender? In this case, it is always possible for the malicious
sender to perform all its operations in superposition, and only the recipient will perform
measurements. Then, in Definition 6, the register Z will be empty. Hence the definition
requires that the committed bit b′ can be computed from the recipient’s state V alone.
This immediately implies that the scheme cannot be statistically hiding, and that the
commitments cannot be shorter than the message.

Hence the DFRSS-binding definition shares the drawbacks of the perfectly binding
definition, unless we are in the bounded quantum storage model. (We stress that
[Dam+07] never claimed that the definition should be used outside the bounded quantum
storage model.)

1.2 Our contribution

We give a new definition for the computational-binding property for commitment schemes,
called “collapse-binding” (Section 2). This definition is composable (several collapse-
binding commitments are also collapse-binding together), works well with quantum
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rewinding (see below), does not conflict with statistical hiding (as perfectly-binding
commitments would), allows for short commitments (i.e., the commitment can be shorter
than the committed message, in contrast to perfectly-binding commitments, and to
extractable commitments in the CRS model). Basically, collapse-binding commitments
seem to be in the quantum setting what computationally-binding commitments are in
the classical setting.

We show that collision-resistant hash functions are not sufficient for getting collapse-
binding or even just sum-binding commitments (Section 3), at least when using standard
constructions, and relative to an oracle. We present a strengthening of collision-resistant
hash functions, “collapsing hash functions” that can serve as a drop-in replacement for
collision-resistant hash functions (Section 4). Using collapsing hash functions, we show
several standard constructions of commitments to be collapse-binding (Section 5).

We conjecture that standard cryptographic hash functions such as SHA-3 [NIS14] are
collapsing (and thus lead to collapse-binding commitments). We give evidence for this
conjecture by proving that the random oracle is a collapsing hash function.

We show that the definition of collapse-binding commitments is usable by extending
the construction of quantum proofs of knowledge from [Unr12] (Section 7). Their
construction uses perfectly-binding commitments (actually, strict-binding, which is slightly
stronger) to get proofs of knowledge. We show that when replacing the perfectly-binding
commitments with collapse-binding ones, we get statistical zero-knowledge quantum
arguments of knowledge. In particular, this shows that collapse-binding commitments
work well together with rewinding.

1.3 Our techniques

(a)

A B

A Vc B

A Vc B

A B
Vc

c ok

b/
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/
S

/
U

(b)

A B

A Vc B

A Vc Mok B
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Vc
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b/
M

/
S

/
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Figure 1: Games from the definition of
collapse-binding commitments.

Collapse-binding commitments. To explain the
definition of collapse-binding commitments, first
consider a perfectly-binding commitment. That
is, when an adversary A outputs a commitment c,
there is only one possible message mc that A can
open c to. Hence, if the adversary A outputs a su-
perposition of messages that it can open c to, that
superposition will necessarily be in the state |mc⟩.
Hence, we can characterize perfectly-binding com-
mitments by requiring: when an adversary outputs
a superposition of messages that it can open the
commitment c to, that superposition will necessar-
ily be a single computational basis vector (i.e., no
non-trivial superposition).

To express this more formally, consider the
circuit in Figure 1 (a). Here the adversary A outputs a commitment c (classical message).
Furthermore, it outputs three quantum registers S, U ,M . S contains the adversary’s state.
M is supposed to contain a superposition of messages, U a superposition of corresponding
opening informations. Then we apply the measurement Vc. This measurement measures
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whether U,M contain matching opening information/message. More formally, Vc measures
whether U,M is a superposition of states |u,m⟩ such that u is valid opening information
for message m and commitment c. Let ok = 1 if the measurement succeeds. Then we feed
the registers S,U,M back to the second part B of the adversary. B outputs a classical
bit b. As discussed before, a commitment is perfectly-binding iff for all adversaries A,
the state of M after measuring ok = 1 is a computational basis vector.

The state of a register is a computational basis vector (or, synonymously: is in a
collapsed state) iff measuring that register in the computational basis does not change
that state. Consider the circuit in Figure 1 (b). Here we added a measurement Mok on
M after Vc. Mok is a complete measurement in the computational basis, but is executed
only if ok = 1. Since Mok disturbs the state of M iff that state is not a computational
basis vector, we can rephrase the definition of perfectly-binding commitments:

A commitment is perfectly-binding iff, for all computationally unlimited adversaries
A,B, Pr[b = 1] is equal in Figures 1 (a) and 1 (b) where b is the output (i.e., guess) of B.3

Now we are ready to weaken this characterization to get a computational bind-
ing property. Basically, we require that the same holds for quantum-polynomial-time
adversaries:

Definition 7 (Collapse-binding – informal) A commitment is collapse-binding iff, for all
quantum-polynomial-time adversaries A,B, Pr[b = 1] in Figure 1 (a) is negligibly close to
Pr[b = 1] in Figure 1 (b).

In other words, with a perfectly-binding commitment, the adversary cannot produce a
superposition of different messages that are contained in the commitment. But with a
collapse-binding commitment, the adversary is forced to produce a state that looks like it
is not a superposition of different messages. For the purpose of computational security,
this will often be as good.

We quickly explain why collapse-binding commitments work well with quantum
rewinding. In the case of quantum rewinding (e.g., in the analysis of proofs of knowl-
edge [Unr12]), one problem is that we might need to run an adversary until it opens a
commitment c, then to measure the opened message, and then to go back to an earlier
state by applying the inverse of the adversary. The problem is that measuring the opened
message will disturb the state of the adversary, and thus make rewinding impossible.
Except: if the opened message cannot be distinguished from being already in a collapsed
state (as guaranteed by collapse-binding), then measuring the opened message does not
disturb the state in a noticeable way and we can rewind. (See the discussion on arguments
of knowledge below.)

Constructing collapse-binding commitments. Collapse-binding commitments are useful
only if they exist. Perfectly-binding commitments are easily seen to be collapse-binding,
but then we cannot have statistically hiding or short commitments. In the classical setting,
we get practical computationally-binding commitments from a collision-resistant hash
function H. The most obvious construction is to send c := H(m∥u) for uniformly random

3Our exposition above was not very rigorous, but it is easy to see that this is indeed an “if and only if”.
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u of suitable length. We call this the“canonical commitment”. The canonical commitment
is easily seen to be classical-style binding if H is collision-resistant, and it is statistically
hiding if H is a random oracle. To get rid of the random-oracle requirement, we can use
a somewhat more complex constructions by Halevi and Micali [HM96] instead (which are
almost identical to the independently and earlier discovered commitment by Damg̊ard,
Pedersen, and Pfitzmann [DPP97]). Unfortunately, both the canonical commitment and
the Halevi-Micali commitments are not collapse-binding if H is merely collision-resistant.
In fact, relative to a specific oracle and using a specific collision-resistant hash function,
there is a total break where the adversary can unveil the commitment to any message of its
chosing. To show this, we tweak the technique from [ARU14] to construct a hash function
H such that the adversary can sample an image c of H together with a quantum state
|Ψ⟩ such that: Given the state |Ψ⟩, for any m, the adversary can find a random u with
H(m∥u) = c. But this process destroys |Ψ⟩, so the adversary cannot find two preimages
of c; the hash function is collision-resistant. But the canonical commitment, based on
this H, is trivially broken. Similar constructions break the Halevi-Micali commitments.

Since collision-resistance seems too weak a property in the quantum setting (at
least for our purposes), we give a strengthening of collision-resistance: collapsing hash
functions:

Definition 8 (Collapsing hash function – informal) An adversary is valid if it outputs
a classical value c, and a register M containing a superposition of messages m with
H(m) = c. We call H collapsing iff no quantum-polynomial-time adversary can distinguish
whether we measure M in the computational basis or not, before giving the register M
back to the adversary. (This is formalized with games similar to those in Figure 1.)

We can show that collapsing hash functions are collision-resistant, and they share a
number of structural properties with collision-resistant functions. E.g., injective functions
are collapsing, and the composition H ◦H ′ of collapsing functions is collapsing.

Due to the similarity between the definition of collapsing hash functions and collapse-
binding commitments, we can show that the canonical commitment and the Halevi-Micali
commitments are collapse-binding if H is collapsing.

However, this leaves the question: do collapsing functions exist in the first place?
We conjecture that common industrial hash function like SHA-3 [NIS14] are actually
collapsing (not only collision-resistant). In fact, we argue that the collapsing property
should be a requirement for the design of future hash functions (in the sense that a hash
function where the collapsing property is in doubt should not be selected for industry
standards), since collision-resistance is not sufficient if we wish to achieve post-quantum
secure cryptography. We support our conjecture that sufficiently unstructured functions
are collapsing by proving that the random oracle is collapsing:

Random oracles are collapsing. We now sketch on a high level our proof that random
oracles are collapsing, or, equivalently, that a random function is collapsing with high
probability. In our analysis, we assume that the adversary can query the random oracle
on the superposition of different inputs; this is necessary for having a realistic modeling
of hash functions [Bon+11].
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The case where the domain is smaller than the range is relatively simple: In that case
a random function H : X → Y is indistinguishable from a random injection (by [Zha15]),
and injections are trivially collapsing.

If the domain X is larger than the range Y , we need a different approach: The
first step is to note that a random function H : X → Y is indistinguishable from a

composition of three random functions X
G1−−→ Y

G2−−→ X
G3−−→ Y (by [Zha12]). (We use

this arrow notation here instead of writing G3 ◦G2 ◦G1 to make the domains and ranges

explicit.) Furthermore, the composition of the first two functions (i.e., X
G1−−→ Y

G2−−→ X) is
indistinguishable from a random permutation X → X (by [Zha12; Zha15]). Since random

permutations are trivially collapsing, this implies that X
G1−−→ Y

G2−−→ X is collapsing.
How about G3? G3 is not necessarily collapsing. (We cannot assume that a random

function X → Y is collapsing since that is what we are proving at the moment!) However,

all we need is that G3 is collapsing when restricted to the image of X
G1−−→ Y

G2−−→ X. And

this is the case because the image of X
G1−−→ Y

G2−−→ X is smaller than Y (the bottleneck
in the middle). So the restricted G3 is a function with domain smaller than range, hence
collapsing. (We covered this case above.)

So G3 (restricted) and X
G1−−→ Y

G2−−→ X are collapsing, hence their composition

X
G1−−→ Y

G2−−→ X
G3−−→ Y is collapsing as well. And since the latter is indistinguishable

from the random function H, we have that H : X → Y is collapsing.

Quantum arguments of knowledge. We illustrate the use of collapse-binding commit-
ments by revisiting the construction of proofs of knowledge from Unruh [Unr12]. Unruh
showed that a sigma-protocol (i.e., a particular kind of three round proof system) is
a quantum proof of knowledge if it has two properties: special soundness (from two
interactions with the same first and different second messages one can efficiently compute
a witness) and strict soundness (the first and second message of a valid interaction
determine the third). In the classical setting, only special soundness is needed. In the
quantum setting, strict soundness is additionally required to allow for quantum rewinding:
In the proof from [Unr12], we run the malicious prover to get its response (the third
message). Then we measure the response. Then we rewind the prover (by applying
the inverse of the unitary transformation representing the prover). Then we run the
prover again to get a second answer. Special soundness then implies that from the
two responses, we get a witness. However, we need to make sure that measuring the
prover’s response before rewinding does not disturb the state (too much). In [Unr12], this
follows from strict soundness: strict soundness guarantees that the response is uniquely
determined, and thus measuring the response does not disturb the state. To achieve
strict soundness, [Unr12] lets the prover commit to all possible responses in the first
message using perfectly-binding commitments.4 The drawback of this solution is that the
commitments cannot be statistically hiding, so we cannot get statistical zero-knowledge
proofs using the method from [Unr12].

4Actually, “strict-binding commitments” but this distinction is not relevant for this exposition.
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What happens if we replace the perfectly-binding commitments by collapse-binding
commitments containing the response? In that case, the response will not necessarily
be information-theoretically determined by the first two messages. However, the defi-
nition of collapse-binding commitments guarantees that measuring that response will
be indistinguishable from not measuring it. Thus, if we measure the response, the state
might be disturbed, but it will be computationally indistinguishable from not being
disturbed. This is enough for the proof technique from [Unr12] to go through when using
collapse-binding commitments, assuming the prover is computationally limited. The
resulting protocol will not be a quantum proof of knowledge, but a quantum argument of
knowledge (i.e., secure only against computationally limited provers). But in contrast to
[Unr12], the proof system will be statistical zero-knowledge.

To summarize: from collapse-binding commitments (or from collapsing hash functions),
we get three-round statistical zero-knowledge quantum arguments of knowledge for all
languages in NP (with inverse polynomial knowledge error). To the best of our knowledge,
not even three-round statistical zero-knowledge quantum arguments were known before.

1.4 Related work.

Commitments. Brassard, Crépeau, Jozsa, and Langlois [Bra+93] presented an
information-theoretically hiding and binding commitment scheme using quantum com-
munication. However, the protocol was flawed, Mayers [May97] showed that information-
theoretically hiding and binding commitments are impossible. (This is no contradiction to
our results, because our commitments are not information-theoretically binding.) Dumais,
Mayers, and Salvail [DMS00] and Crépeau, Légaré, and Salvail [CLS01] constructed
statistically hiding commitments from quantum one-way permutations/functions, respec-
tively. Their protocols use quantum communication, and are sum-binding. Crépeau,
Dumais, Mayers, and Salvail [Cré+04] generalized the sum-binding definition to string
commitments and constructed an OT protocol based on that definition. (However, it is
not known whether the protocol composes even sequentially.) Damg̊ard, Fehr, Lunemann,
Salvail, and Schaffner [Dam+09] and Unruh [Unr10] showed a much simpler OT protocol
to be secure, assuming much stronger commitment definitions in the CRS model, but
achieving stronger security notions (sequential composability/UC). Ambainis, Rosmanis,
and Unruh [ARU14] show that classical-style binding commitments are not necessarily
even sum-binding.

Quantum random oracles. Random oracles were first explicitly considered in a quantum
cryptographic context by Boneh, Dagdelen, Fischlin, Lehmann, Schaffner, and Zhandry
[Bon+11] who stressed that the adversary should have superposition access to the random
oracle. Zhandry [Zha15] showed that the random oracle is collision-resistant. In contrast,
we show (based on their result) that the random oracle is collapsing (a stronger property).

Quantum rewinding and proof systems. Watrous [Wat09] showed how quantum rewind-
ing can be used to prove the security of quantum zero-knowledge protocols. Unruh [Unr12]
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showed how a different flavor of quantum rewinding can be used for proving the security
of quantum proofs of knowledge; we extend their technique to quantum arguments of
knowledge. Unruh [Unr15a] constructs non-interactive computational zero-knowledge
quantum arguments of knowledge in the random oracle model.

Follow-up work. Since the publication of the conference version of this work [Unr16b],
there have been numerous follow-up results. We mention some of the most important
results:

Unruh [Unr16a] showed that collapse-binding commitments and collapsing (keyed)
hash functions exist in the standard model (i.e., without using random-oracles); they gave
a construction based on LWE (or more generally based on lossy trapdoor functions). Liu
and Zhandry [LZ19] show that the hash function based on the SIS-problem is collapsing.
Zhandy [Zha22] shows constructions of collapsing hash functions from collision-resistant
hash functions with some extra assumptions. Namely “semi-regularity” (different possible
outputs do not have too widely varying probabilities) or near optimal hardness. As a
consequence, they get constructions of collapsing hash functions from LPN and from
expander graphs.

Unruh [Unr16a] shows that the Merkle-Damg̊ard construction is collapsing. That
is, if the compression function is collapsing, so is the hash function resulting from the
Merkle-Damg̊ard construction. And Czajkowski, Groot Bruinderink, Hülsing, Schaffner,
and Unruh [Cza+18] show that the Sponge construction [Ber+07] gives a collapsing
hash function. (This only applies if the round function is not an invertible permutation.)
Gunsing and Mennink [GM20] and Chiesa, Ma, Spooner, and Zhandry [Chi+22] both
show (with somewhat different security definitions) that Merkle trees are collapsing.

Liu and Zhandry [LZ19] and Don, Fehr, Majenz, and Schaffner [Don+19] both
generalize the notion of collapsing commitments to sigma-protocols. (They call it
collapsing protocols and protocols with quantum-computationally unique responses,
respectively). Roughly speaking, a collapsing sigma-protocol is one where the prover’s
first message commits in a collapse-binding way to its second message. This is a natural
generalization of the ideas presented in Section 7.5 Collapsing sigma-protocols with
special soundness can then be shown to be proofs of knowledge, similar to Section 7
(Theorem 38). From this, they derive the security of the signature scheme from [Lyu12]
and ZKBoo [GMO16] in the QROM.

Unruh [Unr16a] showed that a collapse-binding bit commitment is also sum-binding,
and more generally that a collapse-binding commitment is CDMS-binding. (To the
best of our knowledge, it is not known how collapse-binding relates to Q-binding.) And

5Strictly speaking, it is actually not a generalization but an incomparable notion. The notions from
[LZ19] and [Don+19] consider the case where the whole response message in the sigma-protocol is
measured; they require that such a measurement is not detected. In contrast, we only require that a
measurement of the opened message will not be detected; we do not require that a measurement of the
opening information of the commitment is not detected. Since the opening information is part of the
response in the sigma-protocol, our requirement is weaker. On the other hand, [LZ19] and [Don+19]
cover cases that do not have the specific structure of Definition 37 below which makes their approach
more generic in that sense.
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Dall’Agnol and Spooner [DS22] show the converse. That is, retrospectively, collapse-
binding turns out to be equivalent to existing notions of quantum binding. However, this
does not mean that the notion of collapsing-binding is obsolete. First, the reduction from
[DS22] has a quadratic security loss, so by using collapse-binding directly, one may get
better security bounds. Second, collapse-binding is more natural and easy to use in many
contexts, e.g., in combination with rewinding.

The collapse-binding propery is also useful in a negative sense. Zhandry [Zha19]
shows that a commitment scheme that is classical-style binding but not collapse-binding
gives give to very strong cryptographic constructions such as “quantum lightning” and
quantum money. The same holds for collision-resistant but not collapsing hash functions.

2 Definitions and basic properties

(We hightlight definitions of symbols with gray background to make them easier to find
in the text. See also the symbol index at the end of this paper.)

Preliminaries. For the necessary background in quantum computing, see, e.g., [NC10].
By |i⟩ with i ∈ I we denote the vectors of the computational basis of the Hilbert space
with dimension |I|. We also use the symbol |·⟩ to refer to other (non-basis) vectors (e.g.,
|Ψ⟩). And ⟨Ψ| is the conjugate transpose of |Ψ⟩. ∥x∥ refers to the Euclidean or ℓ2-norm.

We only consider finite dimensional Hilbert spaces. We denote |+⟩ := 1√
2
|0⟩+ 1√

2
|1⟩ and

|−⟩ := 1√
2
|0⟩ − 1√

2
|1⟩. For a linear operator A on a Hilbert space, we denote by A† its

conjugate transpose. We denote by I the identity. We call an operator A on a Hilbert
space a projector iff it is an orthogonal projector, i.e., a linear map with P 2 = P and
P = P †.

Given an algorithm A, let x←A(y) denote the result of running A with inputs y, and

assigning the output to x. Let x
$←M denote assigning a uniformly random element of

M to x. We will use η to denote the security parameter , that is a positive integer that
will be passed to all algorithms and adversaries and that indicates the required security
level. By a ∥ b we denote the concatenation of bitstrings a and b.

We call an algorithm quantum-polynomial-time if it is a quantum algorithm and its
runtime is bounded by a polynomial in its input length with probability 1. We call
an algorithm classical-polynomial-time if it performs only classical operations and its
runtime is bounded by a polynomial in its input length with probability 1. We write
1η for a bitstring (of 1’s) of length η. (The latter is useful for making algorithms
run in polynomial-time in the length of the security parameter, e.g., A(1η) will run
polynomial-time in η.)

Commitments. A commitment scheme ( com , verify ) consists of a quantum-polynomial-
time algorithm com and a deterministic quantum-polynomial-time algorithm verify .6

6To be practical, those algorithms should of course be classical. We allow quantum-polynomial-time
algorithms here to state our results in greater generality.
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(c, u) ← com(1η,m) returns a commitment c and the opening information u for the
message m and security parameter η. c alone is supposed not to reveal anything about m
(hiding). To open, we send (m,u) to the recipient who checks whether verify(1η, c,m, u) =
1. Both com and verify have classical input and output. com has a well-defined
message space MSPη that also depends on the security parameter η (e.g., {0, 1}η).
Furthermore, for technical reasons, we assume that it is possible to find triples (c,m, u)
with verify(1η, c,m, u) = 1 with probability 1 in quantum-polynomial-time in η.7

We first state some standard properties of commitments.

Definition 9 Let (com, verify) be a commitment scheme. We define:
• Perfect completeness: (com, verify) has perfect completeness iff for all m ∈
MSPη, Pr[verify(1

η, c,m, u) = 1 : (c, u)← com(1η,m)] = 1.
• Computational hiding: (com, verify) is computationally hiding iff for any
quantum-polynomial-time A and any polynomial ℓ, there is a negligible µ such that
for any η, any m0,m1 ∈ MSPη with |m0|, |m1| ≤ ℓ(η), and any |Ψ⟩,8

∣∣P0−P1

∣∣ ≤ µ(η)
where Pi := Pr[b = 1 : (c, u)← com(1η,mi), b← A(1η, |Ψ⟩, c)].

• Statistical hiding: Like computational hiding, except that we quantify over all A
(not just quantum-polynomial-time A).

Definition 10 (Classical-style binding) A commitment scheme is classical-style binding
iff for any quantum-polynomial-time algorithm A, the following is negligible in η:

Pr[verify(1η, c,m, u) = 1 ∧ verify(1η, c,m′, u′) = 1 ∧m ̸= m′ : (c,m, u,m′, u′)← A(1η)]

Definition 11 (Collapse-binding) For algorithms A, B, consider the following games:

Game1 : (S,M,U, c)← A(1η), ok ← Vc(M,U), m←Mok (M), b← B(1η, S,M,U)

Game2 : (S,M,U, c)← A(1η), ok ← Vc(M,U), b← B(1η, S,M,U)

Here S,M,U are quantum registers. Vc is a measurement whether M,U contains a valid
opening, formally Vc is defined through the projector

∑
m,u

verify(1η ,c,m,u)=1
|m⟩⟨m| ⊗ |u⟩⟨u|.

Mok is a measurement of M in the computational basis if ok = 1, and does nothing if
ok = 0 (i.e., it sets m := ⊥ and does not touch the register M).

A commitment scheme is collapse-binding iff for any quantum-polynomial-time algo-
rithms A,B, the difference

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ is negligible.

Instead of measuring using Vc whether the adversary outputs a correct opening informa-
tion, we can quantify only over adversaries that always output correct opening information.
This leads to the following equivalent definition of collapse-binding commitments. This
definition is often easier to handle when proving that a given scheme is collapse-binding.

7This technical condition is necessary, e.g., for Definition 12 below. Without this condition, it is not
clear that “valid” adversaries exist at all. Note that a commitment scheme with quantum-polynomial-time
com and perfect completeness will always satisfies this technical condition: to find c,m, u, simply set
m := 0 and compute (m,u)← com(1η,m).

8|Ψ⟩ is the auxiliary input of A that represents knowledge of A acquired, e.g., in prior protocol runs.
One could use a mixed state instead, this would lead to an equivalent definition.
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Definition 12 (Collapse-binding – variant) For algorithms A, B, consider the following
games:

Game1 : (S,M,U, c)← A(1η), m←Mcomp(M), b← B(1η, S,M,U)

Game2 : (S,M,U, c)← A(1η), b← B(1η, S,M,U)

Here S,M,U are quantum registers. Mcomp(M) is a measurement of M in the computa-
tional basis.

We call an adversary (A,B) valid if Pr[verify(c,m, u) = 1] = 1 when running
(S,M,U, c)← A(1η) and measuring M,U in the computational basis to obtain m,u.

A commitment scheme is collapse-binding iff for any quantum-polynomial-time valid
adversary (A,B), the difference

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ is negligible.

Lemma 13 A commitment scheme (com, verify) is collapse-binding with respect to Defi-
nition 11 iff it is collapse-binding with respect to Definition 12.

Proof. To avoid confusion, we call the games from Definition 11 Game1,Game2, while we
call those from Definition 12 Game′1,Game′2. And the adversary in Definition 12 (that is
used in Game′1,Game′2) we call (A′, B′).

First, assume that there is an adversary (A′, B′) breaking Definition 12, i.e., µ :=
|Pr[b = 1 : Game′1] − Pr[b = 1 : Game′2]| is non-negligible. Let (A,B) := (A′, B′).
By definition of validity, the measurement Vc from Definition 11 will succeed with
probability 1 in Game1 and Game2. Hence that measurement has no effect, and thus
Pr[b = 1 : Game1] = Pr[b = 1 : Game′1] and Pr[b = 1 : Game2] = Pr[b = 1 : Game′2]. Thus
|Pr[b = 1 : Game′1]− Pr[b = 1 : Game′2]| = µ is non-negligible. Thus (A,B) also breaks
Definition 11.

Now, consider an adversary (A,B) breaking Definition 11, i.e., ν := |Pr[b = 1 :
Game1]− Pr[b = 1 : Game2]| is non-negligible. Construct (A′, B′) as follows: A′(1η) runs
(S,M,U, c)← A(1η). Then it applies ok ← Vc(M,U). If ok = 1, A′ returns (S,M,U, c).
Otherwise, A′ picks (c,m, u) with verify(1η, c,m, u) = 1,9 initializes M,U with |m⟩|u⟩,
and S with |⊥⟩, and outputs c. (We assume that |⊥⟩ is orthogonal to any state that A
would produce.) And B′ does the following: If ok = 0, then B′ outputs 0. If ok = 1, B′

executes B.
A′ is valid by construction: If ok = 1, verify(1η, c,m, u) = 1 with probability 1

when measuring M,U as m,u, because M,U is in the image of Vc. And if ok = 0,
verify(1η, c,m, u) = 1 by choice of c,m, u.

9This is efficiently possible with probability 1 by assumption, see page 15.
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We easily see that

0 = Pr[b = 1 : Game′1|ok = 0] = Pr[b = 1 : Game′2|ok = 0] = 0

α := Pr[b = 1 : Game1|ok = 0] = Pr[b = 1 : Game2|ok = 0]

β := Pr[b = 1 : Game1|ok = 1] = Pr[b = 1 : Game′1|ok = 1]

γ := Pr[b = 1 : Game2|ok = 1] = Pr[b = 1 : Game′2|ok = 1]

δ := Pr[ok = 1 : Game1] = Pr[ok = 1 : Game′1]

= Pr[ok = 1 : Game2] = Pr[ok = 1 : Game′2]

and from this we calculate∣∣Pr[b = 1 : Game′1]− Pr[b = 1 : Game′2]
∣∣

=
∣∣∣(0(1− δ) + βδ

)
−
(
0(1− δ) + γδ

)∣∣∣ = ∣∣∣(α(1− δ) + βδ
)
−
(
α(1− δ) + γδ

)∣∣∣
=

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ = ν

which is non-negligible. Thus (A′, B′) breaks Definition 12. □

Definition 11 guarantees that the adversary cannot distinguish whether the register
M is measured or not. However, it is not immediately obvious what happens when
we measure M partially (e.g., we measure just one qubit). Could it be that such a
partial measurement will be noticed? We expect that this is not the case, since a partial
measurement lies half-way between no measurement and a complete measurement. The
following lemma confirms that intuition: If a commitment scheme is collapse-binding,
then Definition 11 also holds for partial measurements. (Assuming that the partial
measurement is performed in the computational basis and can be implemented by a
polynomial-time circuit.)

Lemma 14 (Collapse-binding w.r.t. partial measurements) For a commitment scheme
(com, verify), and for algorithms A, B, consider the following games:

Game1 : (S,M,U, c, f)← A(1η), ok ← Vc(M,U), x←Mf
ok (M), b← B(1η, S,M,U)

Game2 : (S,M,U, c, f)← A(1η), ok ← Vc(M,U), b← B(1η, S,M,U)

Here f is a Boolean circuit (with multiple-bit output). Vc is as in Definition 11. Mf
ok is

a measurement of M that returns f(m) where m is the content of M if ok = 1, and does
nothing if ok = 0 (i.e., it sets m := ⊥ and does not touch the register M). More formally,
if ok = 1, Mf is the measurement defined by the projectors Px :=

∑
m:f(m)=x|m⟩⟨m| for

all x in the range of f , and if ok = 0, Mf is defined by the single projector P⊥ := I.

If (com, verify) is collapse-binding, then for any quantum-polynomial-time adversary
(A,B), the difference

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ is negligible.
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Proof. We start with Game1. It is easy to see that Vc and Mf
ok commute, and that Vc is

idempotent. Thus Pr[b = 1 : Game1] = Pr[b = 1 : Game3] with:

Game3 : (S,M,U, c, f)← A, ok ′ ← Vc, x←Mf
ok ′ , ok ← Vc, b← B

(We omit the inputs of the various algorithms and measurements since they are unchanged

throughout the proof.) If we consider the first three operations (A,Vc,M
f
ok ′) as a

single adversary, we can apply the collapse-binding property of com. Thus |Pr[b = 1 :
Game3]− Pr[b = 1 : Game4]| = ε1 for some negligible ε1 with:

Game4 : (S,M,U, c, f)← A, ok ′ ← Vc, x←Mf
ok ′ , ok ← Vc, m←Mok , b← B

We can see that Vc,M
f
ok ′ ,Mok all commute. Furthermore Vc is idempotent, so we get

Pr[b = 1 : Game4] = Pr[b = 1 : Game5] with:

Game5 : (S,M,U, c, f)← A, ok ← Vc, m←Mok , x←Mf
ok , b← B

(Note that we replace Mf
ok ′ by M

f
ok .) The outcome of Mf

ok is determined by the outcome
of Mok , we have Pr[b = 1 : Game5] = Pr[b = 1 : Game6] with:

Game6 : (S,M,U, c, f)← A, ok ← Vc, m←Mok , b← B

Since (com, verify) is collapse-binding, we get |Pr[b = 1 : Game6]−Pr[b = 1 : Game2]| = ε2
for negligible ε2.

Thus, summarizing, |Pr[b = 1 : Game1]− Pr[b = 1 : Game2]| ≤ ε1 + ε2 is negligible. □

Another question that naturally arises is whether collapse-binding commitments
parallel compose. That is, if we commit to values m1, . . . ,mn with n commitments,
does this give a collapse-binding commitment on m := (m1, . . . ,mn)? Note that such a
property is not obvious. For example, to the best of our knowledge, no prior definition
of a quantum computational binding property in the literature is known to have this
property. For collapse-binding commitments, however, the next lemma shows that the
parallel composition of several commitments is still collapse-binding.

Lemma 15 (Parallel composition) Let (com, verify) be a collapse-binding commitment
with message space M . Let n = n(η) be polynomially-bounded and quantum-polynomial-
time computable integer.

Let ( comn , verifyn ) be the n-fold parallel composition of (com, verify). That is,
its message space is Mn. And comn(m1, . . . ,mn) computes (ci, ui) ← com(mi) for
i = 1, . . . , n, and returns (c, u) with c := (c1, . . . , cn) and u := (u1, . . . , un). And
verifyn((c1, . . . , cn), (m1, . . . ,mn), (u1, . . . , un)) = 1 iff ∀i. verify(ci,mi, ui) = 1.

Then (comn, verifyn) is collapse-binding.
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Proof. By Lemma 13, to show that (comn, verifyn) is collapse-binding, we need to show
that for any valid adversary A against (comn, verifyn),

∣∣Pr[b = 1 : Game1]− Pr[b = 1 :
Game2]

∣∣ is negligible, with Game1,Game2 as follows:

Game1 : (S,M,U, c)← A(1η), m←Mcomp(M), b← B(1η, S,M,U)

Game2 : (S,M,U, c)← A(1η), b← B(1η, S,M,U)

Using the definition of (comn, verifyn), this is equivalent to:

Game1 : (S,M1, . . . ,Mn, U1, . . . , Un, c1, . . . , cn)← A(1η),

mi ←Mcomp(Mi) for i = 1, . . . , n,

b← B(1η, S,M1, . . . ,Mn, U1, . . . , Un)

Game2 : (S,M1, . . . ,Mn, U1, . . . , Un, c1, . . . , cn)← A(1η),

b← B(1η, S,M1, . . . ,Mn, U1, . . . , Un)

And the validity of A implies for all i that measuring Mi, Ui will always return mi, ui
with verify(ci,mi, ui) = 1.

We define hybrid games for i = 0, . . . , n:

Hybj : (S,M1, . . . ,Mn, U1, . . . , Un, c1, . . . , cn)← A(1η),

mi ←Mcomp(Mi) for i = 1, . . . , j,

b← B(1η, S,M1, . . . ,Mn, U1, . . . , Un)

Note that in Hybj , only M1, . . . ,Mj are measured. Mj+1, . . . ,Mn are untouched. We
immediately have

Pr[b = 1 : Game1] = Pr[b = 1 : Hybn], Pr[b = 1 : Game2] = Pr[b = 1 : Hyb0]. (1)

We define a new adversary (A′, B′) for (com, verify) as follows: A′(1η) picks j
$← {1, . . . , n}.

Then it executes (S,M1, . . . ,Mn, U1, . . . , Un, c1, . . . , cn) ← A(1η). It measures mi ←
Mcomp(Mi) for i = 1, . . . , j − 1, and then sets

S′ := (j, S,M1, . . . ,Mj−1,Mj+1, . . . ,Mn, U1, . . . , Uj−1, Uj+1, . . . , Un)

and M :=Mj and U := Uj and c := cj and returns (S′,M,U, c). And B′(1η, S′,M,U)
splits S′ again into (j, S,M1, . . . ,Mj−1,Mj+1, . . . ,Mn, U1, . . . , Uj−1, Uj+1, . . . , Un) and
lets Mj :=M and Uj := U and runs B(1η, S,M1, . . . ,Mn, U1, . . . , Un).

As mentioned above, since A is valid for each i, measuring Mi, Ui returns mi, ui
with verify(1η, ci,mi, ui) = 1. Hence measuring M,U as output by A′ returns m,u with
verify(1η, c,m, u) = 1. Thus A′ is valid for (com, verify).

Thus
∣∣Pr[b = 1 : Game′1]−Pr[b = 1 : Game′2]

∣∣ is negligible where Game′1,Game′2 are as
follows:

Game′1 : (S′,M,U, c)← A′(1η), m←Mcomp(M), b← B′(1η, S′,M,U)

Game′2 : (S′,M,U, c)← A′(1η), b← B′(1η, S′,M,U)
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For any fixed choice of j, Game′1 is the same as Hybj , and Game′2 is the same as Hybj−1.
Thus

Pr[b = 1 : Game′1] =
n∑

j=1

1
n Pr[b = 1 : Hybj ],

Pr[b = 1 : Game′2] =
n∑

j=1

1
n Pr[b = 1 : Hybj−1].

(2)

Hence ∣∣Pr[b = 1 : Game′1]− Pr[b = 1 : Game′2]
∣∣

(2)
= 1

n

∣∣Pr[b = 1 : Hybn]− Pr[b = 1 : Hyb0]
∣∣

(1)
= 1

n

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ (3)

We showed above that the lhs of (3) is negligible. Thus the rhs of (3) is negligible, too.
Since n is polynomially-bounded in η, this implies that

∣∣Pr[b = 1 : Game1]− Pr[b = 1 :
Game2]

∣∣ is negligible as well. As stated in the beginning of this proof, this implies that
(comn, verifyn) is collapse-binding. □

3 Commitments from collision-resistant hash functions

In the following, we will often refer to hash functions. We will always assume that a
hash function depends implicitly on the security parameter (in particular, the size of the
range can depend on the security parameter). We also assume that the hash function is
quantum-polynomial-time computable (in η and the input length).10 Besides that, we do
not assume any further properties such as collision-resistance unless explicitly mentioned.

Definition 16 (Canonical commitment scheme) Given a hash function H and a parame-
ter ℓu = ℓu(η), the canonical commitment scheme for H is:

• Message space MSPη := {0, 1}∗.
• comcan (m): Pick u

$← {0, 1}ℓu. Compute c := H(m∥u). Return (c, u).
• verifycan (c,m, u): Return 1 iff H(m∥u) = c.

It is immediate to see that this scheme is classical-style binding if H is collision-resistant.
However, in general it will not be hiding; for example, H(m∥u) could leak the first bit of
m. However, it is hiding if H is a random oracle:

Lemma 17 Fix ℓu ≥ 0 and assume that |Y | ≤ 2ℓu/8. For a random oracle H : X → Y ,
the canonical commitment is statistically hiding.

10When working in the random oracle model: Quantum-polynomial-time computable given access to
the random oracle.
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Proof. This lemma was proven in [Pas04, Lemma 9]. The statement of the lemma there
additionally assumes that the message space of the canonical commitment is also {0, 1}ℓu
(i.e., equal to the space of the randomness u). However, this is never used in the proof.
Furthermore, the lemma there assumes that |Y | = 2ℓu/8, but the adaption to the case
|Y | ≤ 2ℓu/8 is straightforward. □

When using a hash function in the standard model, we can use the following commitment
scheme instead (which is almost identical to the independently and earlier discovered
commitment by Damg̊ard, Pedersen, and Pfitzmann [DPP97]):

Definition 18 (Bounded-length Halevi-Micali commitment [HM96]) Fix integers ℓ =
ℓ(η), n = n(η). Let L := 4ℓ+ 2n+ 4. Let H : {0, 1}L → {0, 1}ℓ be a hash function. Let
F = F (η) be a family of universal hash functions f : {0, 1}L → {0, 1}n. We define the
bounded-length Halevi-Micali commitment (comHMb , verifyHMb) with MSPη = {0, 1}n
as:

• comHMb (m): Pick f ∈ F and u ∈ {0, 1}L uniformly at random, conditioned on
f(u) = m. Compute h := H(u). Let c := (h, f). Return (c, u).

• verifyHMb (c,m, u) with c = (h, f): Check whether f(u) = m and h = H(u). If so,
return 1.

Definition 19 (Unbounded Halevi-Micali commitment [HM96]) Fix an integer ℓ = ℓ(η).
Let H : {0, 1}∗ → {0, 1}ℓ be a hash function. Let L := 6ℓ + 4. Let F be a family of
universal hash functions f : {0, 1}L → {0, 1}ℓ. We define the unbounded Halevi-Micali
commitment (comHMu , verifyHMu) as:

• comHMu (m): Pick f ∈ F and u ∈ {0, 1}L uniformly at random, conditioned on
f(u) = H(m). Compute h := H(u). Let c := (h, f). Return (c, u).

• verifyHMu (c,m, u) with c = (h, f): Check whether f(u) = H(m) and h = H(u). If
so, return 1.

Theorem 20 (Security of Halevi-Micali [HM96]) If ℓ is superlogarithmic, then the Halevi-
Micali commitment and the bounded-length Halevi-Micali commitment are statistically
hiding. If H is collision-resistant, then the Halevi-Micali commitment and the bounded-
length Halevi-Micali commitment are classical-style binding.

Note that [HM96] did not prove the classical-style binding property against quantum
adversaries. But the (very simple) proof of binding carries over unchanged to the
quantum setting (if H is collision-resistant against quantum adversaries). The statistical
hiding property holds against unlimited adversaries anyway, thus also against quantum
adversaries.

The following theorem shows that collision-resistance does not seem to be enough to
make the above constructions secure in the quantum setting, i.e., classical-style binding
is all we get.
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Theorem 21 There is an oracle O relative to which there exists a collision-resistant11

hash function H such that the canonical commitment scheme and both Halevi-Micali
commitment schemes using H admit the following attack:

There is a quantum-polynomial-time adversary AO that outputs a commitment c, then
expects a bit b, and then outputs with overwhelming probability a pair (m,u) such that
verify(c,m, u) = 1 and the first bit of m is b.

Clearly, a commitment with that property should not be considered secure. This
shows that collision-resistance is too weak a property for constructing commitments in
the quantum setting, at least when using standard constructions.

Proof. [ARU14, Definition 6] defines a specific oracle Oall (more precisely, a probability
distribution on oracles). We repeat only the parts of the construction that are relevant for
our proof: Let X := {0, 1}ℓ1 and Y := {0, 1}ℓ2 for some arbitrary polynomially-bounded
superlogarithmic ℓ1, ℓ2. For each y ∈ Y , let Sy ⊆ X be a uniformly random subset
of a certain size k. Let OV be an oracle that tests membership in Sy, more precisely
OV (y, x) = 1 iff x ∈ Sy. (OV may be queried in superposition.) Finally, Oall is defined
to be an oracle consisting of OV and several other oracles (some of them implementing
unitary transformations).

We use the following important facts about Oall :

Fact 1 (Hardness of two values) Let A be an algorithm making a polynomial number of
oracle queries. Then Pr[x ̸= x′ ∧ x, x′ ∈ Sy : (y, x)← AOall (1η)] is negligible.

This fact is a reformulation of [ARU14, Corollary 7 (i)].

Fact 2 (Searching one value) There is a pair (E1, E2) of quantum-polynomial-time oracle
algorithms such that:

• EOall
1 (1η) outputs y ∈ Y and a quantum state |Ψ(y)⟩.

• Given a Boolean circuit P with |{x ∈ Sy : P (x) = 1}| ≥ |Sy|/3, EOall
2 (1η, y, |Ψ(y)⟩, P )

outputs x ∈ Sy with P (x) = 1 with overwhelming probability.

This is a special case of [ARU14, Theorem 5].12

Informally, Fact 2 tells us that if we choose y ∈ Y ourselves, we get a quantum
trapdoor |Ψ(y)⟩ that allows us to search one value x ∈ Sy satisfying a predicate of our
choice, as long as this predicate is satisfied 1

3 of the time. (But note: we cannot get two
such x in the same Sy, as this would violate Fact 1.)

Let h2 : {0, 1}∗ → {0, 1}ℓ (for some arbitrary polynomially-bounded superlogarithmic
ℓ) be uniformly random. We can then define the oracle O to be the oracle containing
Oall and h2. (I.e., O gives access to Oall and an additional random oracle.) Note that
since h2 and Oall are independent, Fact 1 still applies when A is given access to O.

11H is collision-resistant iff for any quantum-polynomial-time A, Pr[x ̸= x′ ∧H(x) = H(x′) : (x, x′)←
A(1η)] is negligible.

12We have fixed δmin := 1/3 and n to be the security parameter, and we have removed the argument
|ΣΨ⟩ from E1 because |ΣΨ⟩ can be produced by E1 using the oracle OΨ contained in Oall .
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We now construct a hash function H : {0, 1}∗ → {0, 1}ℓ. For x ∈ X, y ∈ Y with
OV (y, x) = 1, let h1(x∥y) := 0∥y and let h1(z) := 1∥z everywhere else. Let H := h2 ◦ h1.

Claim 1 (Collision-resistance of H) H is collision-resistant (relative to O).

To show this, we show that h1 and h2 are collision-resistant relative to O. This then
shows that H = h2 ◦ h1 is collision-resistant relative to O. Any collision of h1 must be
of the form h1(x∥y) = h1(x

′∥y′) with x∥y ̸= x′∥y′ and OV (y
′, x′) = OV (y, x) = 1 since

h1 is injective everywhere else. By definition of h1, this implies that 0∥y = 0∥y′, thus
y = y′ and x ̸= x′. And then OV (y

′, x′) = OV (y, x) = 1 implies by definition of OV that
x, x′ ∈ Sy. By Fact 1, a polynomial-time adversary with oracle access to O finds such
x, x′, y only with negligible probability. This shows that h1 is collision-resistant relative
to O.

By [Zha15, Theorem 3.1], h2 is collision-resistant (given oracle access to h2).
13

Since Oall is chosen independently of h2, it can be simulated with no extra queries
to h2. I.e., an adversary breaking collision resistance of h2 using O = (Oall , h2) can
be transformed into one breaking collision resistance of h2 using h2. Hence h2 is also
collision-resistant given oracle access to O.

Thus h1, h2 are collision-resistant relative to O, and thus H = h2 ◦ h1 is collision-
resistant relative to O.

Attack on the canonical commitment scheme. Let ℓm be some arbitrary message length,
and ℓu the length of the opening information (see Definition 16). For this attack, we
assume that the length parameters ℓ1, ℓ2 in the construction of Oall have been chosen
such that ℓm + ℓu = ℓ1 + ℓ2. (This is always possible, since ℓ1, ℓ2 are only required to be
superlogarithmic.) The adversary A does the following:

• Let E1, E2 be the algorithms from Fact 2.
• (y, |Ψ(y)⟩)← EOall

1 (1η). Let c := h2(0∥y) and send c as the commitment.
• Upon input b, choose P such that P (x) := 1 iff the first bit of x is b. Run
x← EOall

2 (1η, y, |Ψ(y)⟩, P ). Split x∥y as m∥u := x∥y with |m| = ℓm, |u| = ℓu and
send (m,u). (Note: the lengths of m,u do not necessarily match the lengths of x, y,
but their combined length does since ℓ1 + ℓ2 = ℓm + ℓu.)

Since Sy ⊆ Y is a random set of (superpolynomial) cardinality k, we have that the
fraction of Sy having leading bit b (i.e., satisfying P ) is at least 1

3 with overwhelming
probability. Thus x as returned by E2 satisfies, by Fact 2, with overwhelming probability
x ∈ Sy and P (x) = 1. From P (x) = 1 it follows that the first bit of m is b as
required. And x ∈ Sy implies OV (y, x) = 1 which implies h1(x∥y) = 0∥y. Hence
H(m∥u) = h2(h1(x∥y)) = h2(0∥y) = c. Thus verifycan(c,m, u) = 1. This shows that the
attack on the canonical commitment is successful with overwhelming probability.

13Strictly speaking, [Zha15, Theorem 3.1] only applies to random oracles with finite but arbitrary
large domain, not to h2 which has domain {0, 1}∗. However, if an adversary finds a collision in h2 with
non-negligible probability µ, then there must be a length ℓ∗ such that the adversary finds a collision of
length at most ℓ∗ with probability at least µ/2. Thus an adversary breaking collision-resistance of h2

can be transformed into an adversary breaking collision-resistance of a random oracle with finite domain.
[Zha15, Theorem 3.1] then applies.
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Attack on the bounded-length Halevi-Micali commitment. Let n be the message length,
and ℓ, L as in Definition 18. For this attack, we assume that the length parameters ℓ1, ℓ2
have been chosen such that ℓ1 + ℓ2 = L. (This is always possible, since ℓ1, ℓ2 are only
required to be superlogarithmic.) The adversary A does the following:

• Let E1, E2 be the algorithms from Fact 2.
• (y, |Ψ(y)⟩)← EOall

1 (1η). Pick f ∈ F (the family of universal hash functions). Let
h := h2(0∥y) and let c := (h, f) and send c as the commitment.

• Upon input b, choose P such that P (x) := 1 iff the first bit of f(x) is b. Run
x← EOall

2 (1η, y, |Ψ(y)⟩, P ). Let u := x and m := f(u) and send (m,u).
Similarly as for the attack on the canonical commitment, we get that A gets with over-
whelming probability an x ∈ Sy with P (x) = 1 which then implies verifyHMb(c,m, u) = 1.

Attack on the unbounded Halevi-Micali commitment. We describe the attack on the
unbounded Halevi-Micali commitment. Let ℓm be a superpolynomial message length,
and L the length of the opening information (see Definition 19). For this attack, we
assume that the length parameters ℓ1, ℓ2 have been chosen such that ℓ1 + ℓ2 = ℓm. (This
is always possible, since ℓ1, ℓ2 are only required to be superlogarithmic.) The adversary
A does the following:

• Let E1, E2 be the algorithms from Fact 2.
• (y, |Ψ(y)⟩) ← EOall

1 (1η). Pick f ∈ F and u ∈ {0, 1}L such that f(u) = h2(0∥y).
Compute h := H(u). Let c := (h, f) and send c as the commitment.

• Upon input b, let P (x) := 1 iff the first bit of x is b. Run x← EOall
2 (1η, y, |Ψ(y)⟩, P ).

Let m := x∥y. Send (m,u).
Similarly as for the attack on the canonical commitment, we get that A gets with over-
whelming probability an x ∈ Sy with P (x) = 1 which then implies verifyHMu(c,m, u) = 1.
□

4 Collapsing hash functions

As seen in the previous section, for many protocols collision-resistance is not a sufficiently
strong property in the quantum setting. In the following, we propose a strengthening of
the collision-resistance property that seems more useful in the quantum setting, namely
“collapsing” hash functions. We believe that collapsing hash functions are a natural
assumption for real-life hash functions such as SHA-3 etc. This belief is supported by
the fact that the random oracle is collapsing (see Section 6).

The definition of collapsing hash functions is similar to that of collapsing commitments
(Definition 12).

Definition 22 (Collapsing) For a function H and algorithms A, B, consider the following
games:

Game1 : (S,M, c)← A(1η), m←Mcomp(M), b← B(1η, S,M)

Game2 : (S,M, c)← A(1η), b← B(1η, S,M)
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Here S,M are quantum registers. Mcomp(M) is a measurement of M in the computational
basis.

We call an adversary (A,B) valid if Pr[H(m) = c] = 1 when we run (S,M, c)← A(1η)
and measure M in the computational basis as m.

A function H is collapsing iff for any quantum-polynomial-time valid adversary (A,B),
the difference adv :=

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ is negligible. (We call adv

the advantage.)

Notice that the definition of collapsing hash functions is inherently quantum, even
though the object we consider (the hash function H) is classical. We know of no classical
analogue to collapsing hash functions. However, a collapsing hash function will necessarily
be collision-resistant, see Lemma 24 below.

We proceed to give a number of useful properties of collapsing hash functions.

Lemma 23 An injective function H is collapsing with advantage 0.

Proof. Consider an adversary (A,B) against Definition 22. Since (A,B) is valid, by
definition we have that m←Mcomp(M) in Game1 returns m with H(m) = c. Since H is
injective, this means there is only one such m. Thus M is in state |m⟩ before applying
m←Mcomp(M), and the measurement Mcomp(M) does not change the state of M . Thus
Pr[b = 1 : Game1] = Pr[b = 1 : Game2]. □

Lemma 24 A collapsing hash function is collision resistant.

Proof. Assume the hash function H is not collision resistant. Then there is a quantum
adversary C that outputs a collision (m,m′) with H(x) = H(x′) with non-negligible
probability µ.

We construct a quantum-polynomial-time adversary (A,B) for Definition 22.
Let A be the following quantum algorithm: It runs C to get a collision (m,m′). If

(m,m′) is a collision, it stores m,m′ in the register S, and initializes M with |Ψm,m′⟩ :=
1√
2
|m⟩+ 1√

2
|m′⟩. It sets c := H(m) = H(m′) and returns (S,M, c). If (m,m′) is not a

collision, A stores ⊥ in the register S, initializes M with |0⟩, sets c := H(0), and returns
(S,M, c).

The algorithm B retrieves m,m′ from S. If S contains ⊥ instead, B returns b := 0.
Otherwise B measures whetherM contains |Ψm,m′⟩, i.e., B measuresM with the projector
|Ψm,m′⟩⟨Ψm,m′ |. If this measurement succeeds, B returns b := 1, else B returns b := 0.

By construction, (A,B) is valid.
In Game2, with probability 1 − µ, B finds S to contain ⊥ and returns b = 0. If S

contains a collision m,m′, then by construction of A, M contains |Ψm,m′⟩, so B outputs
b = 1 with probability 1 in this case. Hence Pr[b = 1 : Game2] = µ.

In Game1, with probability 1 − µ, B finds S to contain ⊥ and returns b = 0. If
S contains a collision m,m′, then by construction the state of M before Mcomp(M) is
|Ψm,m′⟩, hence after that measurement it is |m⟩ or |m′⟩ (each with probability 1

2). In
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each case, the measurement performed by B (projector |Ψm,m′⟩⟨Ψm,m′ |) succeeds with
probability 1

2 . Thus, if S contains a collision, B returns b = 1 with probability 1
2 . Hence

Pr[b = 1 : Game1] = µ/2.
Hence

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ = µ

2 is non-negligible, in contradiction
to the assumption that H is collapsing. □

Definition 22 guarantees that the adversary cannot distinguish whether the registerM
is measured or not. Like in the case of commitments (cf. the discussion before Lemma 14)
we can ask what happens when a partial measurement is performed. Analogous to
Lemma 14 we get that a partial measurement cannot be noticed, either:

Lemma 25 (Collapsing w.r.t. partial measurements) For a function H and algorithms
A, B, consider the following games:

Game′1 : (S,M, c, f)← A(1η), x←Mf (M), b← B(1η, S,M)

Game2 : (S,M, c, f)← A(1η), b← B(1η, S,M)

Here f is a Boolean circuit (with multiple-bit output).14 And S,M are quantum registers.
Mf (M) measures f(m) where m is the content of M in the computational basis. Formally,
Mf (M) is the measurement defined by the projectors Px :=

∑
m:f(m)=x|m⟩⟨m| for all x

in the range of f .

If H is collapsing, then for any quantum-polynomial-time valid adversary (A,B), the
difference

∣∣Pr[b = 1 : Game′1]− Pr[b = 1 : Game2]
∣∣ is negligible.

Proof. The proof is analogous to that of Lemma 14. (The proof actually becomes a bit
simpler, because all occurrences of and arguments relating to Vc may be omitted.) □

Lemma 26 If a valid adversary (A,B) breaks the collapsing property of g◦f with advantage
ε, then there are valid adversaries (A′, B′) and (A′′, B′′) with advantages ε′, ε′′ against
g, f , respectively, such that ε ≤ ε′ + ε′′.

(A′, B′) and (A′′, B′′) each perform only two additional evaluations of f in comparison
to (A,B). (And one additional measurement in the computational basis. But no additional
evaluations of g.)

Proof. Consider the following circuits:

A B

A B
A B

c

b/
M

/
S

A B

A M B
A B

c

b/
M

/
S

/
(4)

14In the random oracle model, we also allow f to contain gates for evaluating the random oracle.
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Here M represents a measurement in the computational basis. (Discarding the outcome.)
By definition of ε, we have

ε =
∣∣∣Pr[b = 1 : lhs of (4)]− Pr[b = 1 : rhs of (4)]

∣∣∣.
Let Uf : |x⟩|y⟩ 7→ |x⟩|y ⊕ f(x)⟩. Since Uf is self-inverse, introducing two consecutive
applications of Uf into the lhs of (4) does not change the outcome probability. That is,
with

A B

A Uf Uf B

Uf Uf

A B

Uf Uf

c

b/
M

/
S

//

/
M′

|0⟩ / /

A′ B′

(5)

we have
Pr[b = 1 : lhs of (4)] = Pr[b = 1 : (5)].

The dashed boxes in (5) define a new adversary (A′, B′) against g. The top two wires
leaving A′ contain the state of A′, while the bottom wire M ′ contains the superposition
of hashed values. Since A is valid for g ◦ f , M contains a superposition of values m with
g ◦ f(m) = c. (By this we mean formally that the projector

∑
m,u:g◦f(m)=c|m⟩⟨m| applied

to M passes with probability 1.) Hence M ′ contains a superposition of values m′ = f(m)
with g(m′) = c. Thus A′ is valid for g. Let ε′ be the advantage of A′ against g. That is,
we have

ε′ =
∣∣Pr[b = 1 : (5)]− Pr[b = 1 : (6)]

∣∣
with the following circuit (6):

A B

A Uf Uf B

Uf M Uf

A B

Uf Uf

c

b/
M

/
S

//

/
M′

/|0⟩ / /

A′ B′

(6)

We now change the circuit slightly: Instead of discarding the outcome of the measurement
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M, we assign it to the classical variable c′′.

A B

A Uf Uf B

Uf M Uf

A B

Uf Uf

c

c′′

b/
M

/
S

//
M

/
M′

/|0⟩ / /

A′′ B′′

(7)

Obviously, not discarding c′′ does not change the distribution of b, hence

Pr[b = 1 : (6)] = Pr[b = 1 : (7)].

The dotted lines in (7) define an adversary (A′′, B′′) against f . The wires S and M ′

together form the state of (A′′, B′′), and the middle wire M is supposed to contain the
hashed values. If M contains the value m, then M ′ contains f(m) and c′′ will be f(m).
Thus, if we measure a particular value c′′, then M contains a superposition of values
m with f(m) = c′′. Thus, (A′′, B′′) is valid for f . Let ε′′ be the advantage of (A′′, B′′)
against f . Then we have

ε′′ =
∣∣Pr[b = 1 : (7)]− Pr[b = 1 : (8)]

∣∣
with the following circuit (8):

A B

A Uf M Uf B

Uf M Uf

A B

Uf Uf

c

c′′

b/
M

/
S

//
M

/
M′

/|0⟩ / /

A′′ B′′

(8)

The subcircuit consisting of the two Uf and the two measurements M are easily seen to
be equivalent to a measurement M on the M wire (since we do not use the outcome c′′).
Thus

Pr[b = 1 : (8)] = Pr[b = 1 : rhs of (4)].

Collecting all inequalities, we get:

ε =
∣∣Pr[b = 1 : lhs of (4)]− Pr[b = 1 : rhs of (4)]

∣∣ ≤ ε′ + ε′′. □

Corollary 27 If f and g are collapsing, so is g ◦ f .

Proof. Immediate from Lemma 26. □
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5 Commitments from collapsing hash functions

In Section 3 we saw that collision-resistant hash functions are not sufficient for several
standard constructions of commitment schemes. We will now show that those same
constructions are secure in the quantum setting when using collapsing hash functions
instead.

The following lemma (and its Corollary 29 below) allows us to extend the message
space of a collapsing commitment by hashing the message with a collapsing hash function.
Besides being useful in its own right, we need it in the analysis of the unbounded
Halevi-Micali commitment. The proof of the lemma is similar to that of Corollary 27.

Lemma 28 Let f be a hash function. Let (com, verify) be a commitment scheme. Let
comf (1

η,m) := com(f(m)) and verifyf (1
η, c,m, u) = verify(1η, c, f(m), u). If a valid

adversary (A,B) breaks the collapse binding property of (comf , verifyf ) with advantage ε
(with respect to Definition 12), then there are valid adversaries (A′, B′) and (A′′, B′′) with
advantages ε′, ε′′ against the collapse binding property of (com, verify) and the collapsing
property of f , respectively, such that ε ≤ ε′ + ε′′.

(A′, B′) and (A′′, B′′) each perform only two additional evaluations of f in comparison
to (A,B). (And one additional measurement in the computational basis. But no additional
evaluations of com or verify.)

Proof. Consider the following circuits:

A B

A B

A B

A B

c

b/
M

/
S

/
U

A B

A B

A M B

A B

c

b/
M

/
S

/
U

/ (9)

Here M represents a measurement in the computational basis. (Discarding the outcome.)
By definition of ε, we have

ε =
∣∣∣Pr[b = 1 : lhs of (9)]− Pr[b = 1 : rhs of (9)]

∣∣∣.
Let Uf : |x⟩|y⟩ 7→ |x⟩|y ⊕ f(x)⟩. Since Uf is self-inverse, introducing two consecutive
applications of Uf into the lhs of (9) does not change the outcome probability. That is,
with

A B

A B

A Uf Uf B

Uf Uf

A B

Uf Uf

c

b/
M

/
S

/
U

//

/
M′

|0⟩ / /

A′ B′

(10)
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we have
Pr[b = 1 : lhs of (9)] = Pr[b = 1 : (10)].

The dashed boxes in (10) define a new adversary (A′, B′) against (com, verify). The wires
S,M leaving A′ contain the state of A′, the wire M ′ contains the committed message,
and the wire U contains the opening information. Since A is valid for (comf , verifyf ),
M,U contains a superposition of values m,u with verify(1η, c, f(m), u) = 1. (By this we
mean formally that the projector

∑
m,u:verify(1η ,c,f(m),u)=1|m⟩⟨m|⊗ |u⟩⟨u| applied to M,U

passes with probability 1.) Hence M ′, U contains a superposition of values m′ = f(m)
with verify(1η, c,m′, u) = 1. Thus A′ is valid for (com, verify). Let ε′ be the advantage
of A′ against g. That is, we have

ε′ =
∣∣Pr[b = 1 : (10)]− Pr[b = 1 : (11)]

∣∣
with the following circuit (11):

A B

A B

A Uf Uf B

Uf M Uf

A B

Uf Uf

c

b/
M

/
S

/
U

//

/
M′

/|0⟩ / /

A′ B′

(11)

We now change the circuit slightly: Instead of discarding the outcome of the measurement
M, we assign it to the classical variable c′′.

A B

A B

A Uf Uf B

Uf M Uf

A B

Uf Uf

c

c′′

b/
M

/
S

/
U

//
M

/
M′

/|0⟩ / /

A′′ B′′

(12)

Obviously, not discarding c′′ does not change the distribution of b, hence

Pr[b = 1 : (11)] = Pr[b = 1 : (12)].

The dotted lines in (12) define an adversary (A′′, B′′) against f . The wires S, U , and M ′

together form the state of (A′′, B′′), and the middle wire M is supposed to contain the
hashed values. If M contains the value m, then M ′ contains f(m) and c′′ will be f(m).
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Thus, if we measure a particular value c′′, then M contains a superposition of values
m with f(m) = c′′. Thus, (A′′, B′′) is valid for f . Let ε′′ be the advantage of (A′′, B′′)
against f . Then we have

ε′′ =
∣∣Pr[b = 1 : (12)]− Pr[b = 1 : (13)]

∣∣
with the following circuit (13):

A B

A B

A Uf M Uf B

Uf M Uf

A B

Uf Uf

c

c′′

b/
M

/
S

/
U

//
M

/
M′

/|0⟩ / /

A′′ B′′

(13)

The subcircuit consisting of the two Uf and the two measurements M are easily seen to
be equivalent to a measurement M on the M wire (since we do not use the outcome c′′).
Thus

Pr[b = 1 : (13)] = Pr[b = 1 : rhs of (9)].

Collecting all inequalities, we get:

ε =
∣∣Pr[b = 1 : lhs of (9)]− Pr[b = 1 : rhs of (9)]

∣∣ ≤ ε′ + ε′′. □

Corollary 29 Let f be a collapsing function. Let (com, verify) be a collapse binding
commitment scheme. Let comf (1

η,m) := com(1η, f(m)) and verifyf (1
η, c,m, u) =

verify(1η, c, f(m), u). Then (comf , verifyf ) is a collapse-binding commitment scheme.

Proof. Immediate from Lemma 28. □

Lemma 30 If H is collapsing, then the canonical commitment scheme (comcan , verifycan),
and the bounded-length Halevi-Micali commitment (comHMb , verifyHMb), and the un-
bounded Halevi-Micali commitment (comHMu , verifyHMu) are collapse-binding. (For any
choice of the parameters ℓu, ℓ, n.)

We give the proof idea first. To show that the canonical commitment comcan is collapse-
binding, we use the characterization of collapse-binding from Definition 12. We need
to show that the adversary cannot distinguish between a measurement on register M
and no measurement on register M , assuming the adversary outputs M,U containing
a superposition of m,u with verifycan(c,m, u) = 1. The condition verifycan(c,m, u) = 1
is equivalent to H(m∥u) = c. Hence the adversary outputs in M,U a superposition of
preimages of c under H. Since H is collapsing, this implies that the adversary cannot
distinguish between a measurement on M,U and no measurement on M,U . This also
implies (using some additional work) that the adversary cannot distinguish between a
measurement on M and no measurement on M . Hence comcan is collapse-binding. The
Halevi-Micali commitments are handled similarly.
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Proof. We investigate the three commitment schemes one by one:

Canonical commitment. We show that (comcan , verifycan) is collapse-binding. Fix a
valid quantum-polynomial-time adversary (A,B) against the canonical commitment
scheme (with respect to Definition 12). By concatenating the registers M,U into a single
register M ′, we get an adversary (A′, B′) against the hash function H. Written in terms
of A′, B′ (and unfolding the definition of verifycan), the games from Definition 12 become:

Game1 : (S,M ′, c)← A′(1η), m←Mf (M ′), b← B′(1η, S,M ′)

Game2 : (S,M ′, c)← A′(1η), b← B′(1η, S,M ′)

where f(m∥u) := m and Mf is defined as in Lemma 25.
Since (A,B) is valid, we have verifycan(1

η, c,m, u) = 1 when m,u is the result of
measuringM,U . When we definem′ := m∥u, we have verify(1η, c,m, u) = 1 iff H(m′) = c
by definition of verify . Thus in an execution with (A′, B′), we have H(m′) = c. Thus
(A′, B′) is valid.

Since (A′, B′) is valid and quantum-polynomial-time, by Lemma 25, |Pr[b = 1 :
Game1]− Pr[b = 1 : Game2]| is negligible. (In Lemma 25, f is chosen by the adversary,
but we can transform A′ to output f itself.) Since Game1 and Game2 are equivalent to
the games from Definition 12, it follows that (comcan , verifycan) is collapsing.

Bounded-length Halevi-Micali commitment. We show that (comHMb , verifyHMb) is
collapse-binding. Fix a valid quantum-polynomial-time adversary (A,B) against the
commitment scheme (with respect to Definition 12). By unfolding the definition of
(comHMb , verifyHMb), see Definition 18, the games from Definition 12 become:

Game1 : (S,M,U, h, f)← A(1η), m←Mcomp(M), b← B(1η, S,M,U)

Game2 : (S,M,U, h, f)← A(1η), b← B(1η, S,M,U)

and validity of A implies that M,U are such that when measuring them, we get m,u with
f(u) = m and h = H(u). We need to show that

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣

is negligible.
Since f(u) = m, measuring M in the computational basis is equivalent to applying

the measurement Mf on U . Here Mf is as in Lemma 25. Thus we have Pr[b = 1 :
Game1] = Pr[b = 1 : Game′1] with

Game′1 : (S,M,U, h, f)← A(1η), m←Mf (U), b← B(1η, S,M,U).

By Lemma 25, we get that
∣∣Pr[b = 1 : Game′1]− Pr[b = 1 : Game2]

∣∣ is negligible. (Here
we instantiate S,M, c, f in Lemma 25 with S := (S,M), M := U , c := h.)

Thus
∣∣Pr[b = 1 : Game1] − Pr[b = 1 : Game2]

∣∣ is also negligible, hence
(comHMb , verifyHMb) is collapse-binding.
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Unbounded Halevi-Micali commitment. We show that (comHMu , verifyHMu) is collapse-
binding. Let (com, verify) := (comHMb , verifyHMb) and f := H. Then (comf , verifyf )
as defined in Corollary 29 is the same as (comHMu , verifyHMu). We showed above that
(comHMb , verifyHMb) is collapse-binding. And f = H is collapsing by assumption. Thus
by Corollary 29, (comf , verifyf ) is collapse binding. Hence (comHMu , verifyHMu) is
collapse-binding. □

6 Random oracles are collapsing

In Section 5 we saw that collapsing hash functions imply collapse-binding commitments.
In this section, we explore the existence of collapsing hash functions. Specifically, we show
that the random oracle is collapsing. This implies that there are simple collapse-binding
commitments in the random oracle model. Furthermore, it supports the assumption
that real-life hash functions built by iterating a random-oracle-like function could be
collapse-binding (e.g., SHA-2 [Nat15]).15 Alternatively, we could also directly start with
the assumption that SHA-3 is collapsing, in that setting the constructions from Section 5
would not need the random oracle. (In fact, we advocate that a hash function that is not
collapsing should not be considered a post-quantum secure practical hash function, and
not recommended for future use.)

For the remainder of this section, X and Y are finite sets, and H : X → Y is a
random oracle (i.e., a uniformly distributed function). And q ≥ 1 always refers to an
upper bound on the number of oracle queries performed by the adversary.

Corollary 31 (Distinguishing random functions and injections [Zha15]) Assume that
|X| ≤ |Y |. Let H : X → Y be a uniformly random function. Let Ĥ : X → Y be a
uniformly random injection. Then for any q-query adversary A,

∣∣Pr[AH = 1]− Pr[AĤ = 1]
∣∣ ≤ 8π2 q3

3 |Y |
.

Proof. [Zha15, Section 3.1] shows this lemma for the case |X| = |Y |.16 For the general
case, let H ′ : Y → Y be a random function and Ĥ ′ : Y → Y be a random permutation.
Then H ′ ◦ Ĥ has the same distribution as H, and Ĥ ′ ◦ Ĥ has the same distribution as Ĥ.
Since the corollary holds for |X| = |Y |, we have that H ′ and Ĥ ′ can be distinguished
with probability at most 8π2q3/3|Y | by a q-query adversary, and thus H ′ ◦ Ĥ and Ĥ ′ ◦ Ĥ

15In fact, [Unr16a] shows that the Merkle-Damg̊ard-construction yields a collapsing hash function when
the underlying compression function is collapsing which implies that SHA-2 [Nat15] is collapsing if the
compression function is modeled as a random oracle. [Cza+18] shows the same for the sponge-construction
[Ber+07] which implies that Gluon [Ber+12] is collapsing if the compression is modeled as a random
oracle. (Note that this does not directly affect SHA-3 [NIS14], also based on the sponge-construction,
because SHA-3 uses an invertible permutation as its starting point; an invertible permutation is not
well-modeled by a random oracle but rather as a random permutation. Whether SHA-3 is collapsing in
the random-permutation model is an open question.)

16[Zha15] states the bound as C′q3/|Y | where C′ is an unspecified universal constant from Lemma 3.3

of their eprint. However, [Zha12, Corollary 7.5] reveals C′ to be 8π2

3
.
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can be distinguished with probability at most 8π2q3/3|Y |.17 Thus H and Ĥ can be
distinguished with probability at most 8π2q3/3|Y |. □

Lemma 32 Assume |X| ≤ |Y |. Then H is collapsing with advantage ≤ 16π2q3

3|Y | ≤ 53q3/|Y |.

Proof. Let Ĥ : X → Y be a random injective function. Let Game1,Game2 refer to

the games from Definition 22, and Ĝame1, Ĝame2 refer to those games with Ĥ instead
of H. Consider a adversary A that is valid for H and that makes q queries. Since every
value that Ĥ can take is also possible with non-zero probability for H, A must also be
valid for Ĥ. Since Ĥ is injective, by Lemma 23, Ĥ is collapsing with advantage 0, i.e.,

Pr[b = 1 : Ĝame1] = Pr[b = 1 : Ĝame2].
By Corollary 31, an adversary making q queries can distinguish H and Ĥ only with

probability 8π2q3/3|Y |. Thus
∣∣Pr[b = 1 : Gamei]− Pr[b = 1 : Ĝamei]

∣∣ ≤ 8π2q3/3|Y | for
i = 1, 2. Altogether

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ ≤ 16π2q3/3|Y |. □

Lemma 33 Assume |X| ≥ |Y |. Then H is collapsing with advantage 1251q3/|Y | (assuming
q ≥ 4).18

Proof. Throughout this proof, we call an adversary all-valid if it is valid in the sense of
Definition 22 for any function H of the considered domain/range (not just the specific
function H that we are considering in that definition). Note that an adversary that is valid
for the uniformly random function H is also all-valid because a uniformly random function
can take any value with non-zero probability. We call a function H ε-all-collapsing if
the distinguishing advantage in Definition 22 is ≤ ε for all all-valid adversaries. Note
that ε-collapsing trivially implies ε-all-collapsing. The motivation for using this slightly
different definition in the proof is that this allows us not to worry about whether a given
adversary for one function constructed below is also valid for another function. This
makes the proof simpler.

Let F1 : X → X be a uniformly random permutation.
Since F1 is injective with probability 1, is it collapsing with advantage 0 (Lemma 23)

and thus 0-all-collapsing.
Let F2 : X → X be a uniformly random function.
By Corollary 31, F1 and F2 are 8π2q3/3|X|-indistinguishable (by a q-query adversary).

Let G1 : X → Y and G2 : Y → X be uniformly random functions (independent of each
other). By [Zha12, Corollary 7.5] (“distinguishing small-range distributions”), G2 ◦G1

and F2 are 8π2q3/3|Y |-indistinguishable. Thus G2 ◦G1 and F1 are 8π2q3

3 (1/|X|+ 1/|Y |)-
indistinguishable

Since F1 is 0-all-collapsing, this implies that G2 ◦G1 is 2 · 8π
2q3

3 (1/|X|+ 1/|Y |)-all-
collapsing. Note that |imG2 ◦G1| ≤ |imG2| ≤ |domG2| = |Y |.

17Notice that it is possible to simulate superposition access to H ′ ◦ Ĥ given oracle access to H ′ using a
single query to H ′ per query. (But it would need two queries to Ĥ if we were to count those queries here
since the invocation of Ĥ needs to be uncomputed.)

18A more precise formula for all q can be found in (14) below.
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Let G3 : X → Y be a random function. For any fixed G1, G2, we have that G3|imG2◦G1

is a function whose domain imG2 ◦ G1 is smaller-equal than its range Y . Thus by

Lemma 32, G3|imG2◦G1 is 16π2q3

3|Y | -all-collapsing for any fixed G1, G2 (even if G1, G2 are

known to the adversary). And thus by averaging, G3|imG2◦G1 is also 16π2q3

3|Y | -all-collapsing
for random G1, G2.

By Lemma 26, if a q-query all-valid adversary breaks G3|imG2◦G1 ◦ (G2 ◦G1) with
some advantage ε, then there are all-valid adversaries breaking G3|imG2◦G1 and G2 ◦G1

with advantages ε1, ε2, respectively, with ε ≤ ε1 + ε2. (Strictly speaking, Lemma 26
is only stated for functions f, g where the domain of g does not depend on f , and
only in terms of valid adversaries, not all-valid adversaries. But it is straightforward
to see that the proof of Lemma 26 also applies in the present case.) And they make

q queries to G3|imG2◦G1 and q + 2 queries to G2 ◦ G1, respectively. Thus ε1 ≤ 16π2q3

3|Y |

and ε2 ≤ 16π2(q+2)3

3 (1/|X| + 1/|Y |). Thus ε ≤ 16π2(q3+(q+2)3)
3|Y | + 16π2(q+2)3

3|X| =: δ. Thus

G3 ◦G2 ◦G1 = G3|imG2◦G1 ◦ (G2 ◦G1) is δ-all-collapsing.

Recall G2 ◦G1 is 8π2q3

3 (1/|X|+ 1/|Y |)-indistinguishable from F1. Thus G3 ◦G2 ◦G1

is η := 8π2(2q)3

3 (1/|X| + 1/|Y |)-indistinguishable from G3 ◦ F1.
19 Since F1 is bijective

and independent of G3, and G3 is a uniformly random function, G3 ◦ F1 is uniformly
distributed, too, i.e., has the same distribution as H (from the statement of the lemma).
Thus G3 ◦G2 ◦G1 is η-indistinguishable from H. Since G3 ◦G2 ◦G1 is δ-all-collapsing, it
follows that H is δ + 2η-all-collapsing.

SinceH is a uniformly random function, it can take any value with non-zero probability.
Thus an adversary is valid for H iff it is all-valid. Thus H is δ + 2η-collapsing.

Finally note that

δ + 2η =
16π2((q + 2)3 + (2q)3)

3|X|
+

16π2(q3 + (q + 2)3 + (2q)3)

3|Y |
≤ 1251q3

|Y |
. (14)

Here the inequality uses both |X| ≥ |Y | and q ≥ 4. □

Remark about a prior version: A prior version of this work [Unr16b; Unr16c] had a
different approach for showing that random oracles are collapsing (in the |X| ≥ |Y |
case). We first defined the notion of “half-collision resistance” (which is a strengthening
of collision-resistance quite specific to that situation). Then we showed that half-collision
resistance implies collapsing, and that the random oracle has half-collision resistance. Un-
fortunately, there was a flaw in the proof that half-collision resistance implies collapsing.20

(Thanks to Atul Singh Arora for noticing this.) The proof we present here is completely
different (simpler and more direct) and saves the result that random oracles are collapsing.

19Note that to implement superposition queries to G3 ◦ F1 using superposition queries to F1, one needs
to query F1 twice for every query to G3 ◦ F1 because F1 needs to be uncomputed.

20Specifically, in [Unr16c], on page 33 in the proof of Lemma 33, we have the sentence: In particular,
since Bc returns b = 0 for |s⟩|m⟩ with f(m) ̸= c, we have that imPc ⊆ im(1− PB

c ) [. . . ]. Unfortunately,
in that context we only know that Bc returns b = 0 when we additionally assume that all ancilla bits in s
are set to 0. But that is not sufficient for deducing that imPc ⊆ im(1− PB

c ).
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(And the distinguishing probability bound is improved from O(
√
q3/|Y |) to O(q3/|Y |).)

However, we were not able to save the intermediate result that “half-collision resistance”
implies collapsing (but we do not know that it is wrong, either). Fortunately, to the best
of our knowledge, this result has not yet been used in the literature for other purposes.

On tightness. We showed (Lemmas 32 and 33) that a random H : X → Y is collapsing
with advantage O(q3/|Y |). Is this result tight? Our upper bound of O(q3/|Y |) for the
distinguishing probability means that to distinguish with constant probability, we need
at least Ω( 3

√
|Y |) queries. From [Zha15], we know that the collision-restance of H can be

broken with constant probabability in O( 3
√
|Y |) queries. (At least when |X| ≥

√
|Y |/2.)

By Lemma 24 (and the concrete bounds in its proof), this implies that the collapsing
property of H can be broken with constant distinguishing probability in O( 3

√
|Y |) queries

as well. Thus our lower bound of at least Ω( 3
√
|Y |) queries is tight (up to a constant

factor).
However, we do not know whether the upper bound O(q3/|Y |) for the distinguishing

probability is tight. (If the tight upper bound would be, e.g., O(q6/|Y |2), which is much
smaller, it would still translate to Ω( 3

√
|Y |) queries for a constant success probability.)

We stress that we have the same gap for collision-resistance. The probability of
finding a collision is O(q3/|Y |), but we do not know if this is tight. ([Zha15], which shows
collision-resistance of the random oracle, also shows tightness only in terms of the query
number for constant success probability.)

7 Zero-knowledge arguments of knowledge

In this section, we study the security of sigma-protocols. A sigma-protocol is a specific
kind three-round proof system in which the verifier’s message consists only of random bits.
Sigma-protocols play an important role in classical constructions of zero-knowledge proof
systems for two reasons: For a number of simple but important languages, sigma-protocols
exist. And given sigma-protocols for simple languages, there are efficient constructions
for more complex languages. (There are constructions for conjunctions and disjunctions
of sigma-protocols, as well as more complex threshold constructions [CDS94].)

In the classical setting, it is relatively simple to give conditions under which sigma-
protocols are zero-knowledge proofs of knowledge. In the quantum setting, however,
analyzing the security of sigma-protocols turns out to be much harder. Watrous [Wat09]
presented a rewinding technique for proving the zero-knowledge property of sigma-
protocols (see also Theorem 36 below). Unruh [Unr12] showed that sigma-protocols
are quantum proofs of knowledge under a specific additional condition called “strict
soundness”. This condition requires that the third message (“response”) in a valid
interaction is uniquely determined by the first two. However, strict soundness is a strong
additional assumption. [Unr12] showed how to achieve strict soundness by committing to
the response already in the first message. However, the commitment scheme used for this
needed to be perfectly-binding (actually, it needed to satisfy a somewhat stronger property,
called “strict binding”). In particular, this implies that the commitment scheme cannot be
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information-theoretically hiding (hence the resulting protocol cannot be statistical zero-
knowledge), and we cannot have short commitments (a perfectly-binding commitment
will always be at least as long as the message inside).

Furthermore, Ambainis, Rosmanis, and Unruh [ARU14] showed that the condition
of strict soundness is necessary, at least relative to an oracle. They also showed that
even if we assume that strict soundness holds, but only against computationally limited
adversaries,21 the resulting sigma-protocol will, in general, not be a quantum argument
of knowledge.22 Even more, it might not even be a quantum argument. That is, a
computationally limited adversary can successfully prove a wrong statement.

In this section we show how we can use collapse-binding commitments as a drop-in
replacement for the perfectly-binding commitments in the construction from [Unr12].
One particular consequence is that given collapse-binding hash functions we can construct
three-round statistical zero-knowledge quantum arguments of knowledge from sigma-
protocols (without using a common-reference string). This assumes the sigma-protocol
is statistical honest-verifier zero-knowledge and has special soundness. And that the
challenge space (the set from which the verifier picks its random message) is polynomially-
bounded. These properties, however, are also needed in the classical setting.

7.1 Interactive proof systems

An interactive proof system (P , V ) for some relation R consists of two interactive
quantum machines P and V that get classical inputs (x,w) ∈ R and x, respectively.
Afterwards, V outputs a bit. For formal definitions see [Unr12]. (In general, P and V can
exchange quantum messages, but our concrete constructions below will be classical.)

We consider two important properties of interactive proof systems: First, we want
them to be arguments of knowledge. Informally, they should convince the verifier that
the prover knows a witness w for the statement x (i.e., (x,w) ∈ R). Second, we want
them to be zero-knowledge. Informally, the proof should not leaks anything about the
witness besides its existence.

Quantum arguments of knowledge. The following definition of quantum arguments of
knowledge follows the definition from [Unr15b], with one difference: we have formulated
security against uniform malicious provers. That is, while in [Unr15b] the statement
x and the auxiliary input |Ψ⟩ are all-quantified, in our setting they are chosen by an
quantum-polynomial-time algorithm Z. The reason we consider only uniform malicious
provers here is: A non-uniform adversary can break any non-interactive commitment
(with classical messages) that is not already perfectly-binding. (Namely, the auxiliary
input can simply contain one commitment and two different openings.) Thus, since we
consider only non-interactive commitments in this paper, we need a uniform definition of

21I.e., it is hard to find two different valid interactions where the first two messages are equal but the
response is different.

22Argument and argument of knowledge are the variants of proof and proof of knowledge that consider
a computationally limited malicious prover.
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quantum arguments of knowledge. For a motivation of the remaining definitional choices,
see [Unr15b].

Definition 34 (Quantum Arguments of Knowledge) We call an interactive proof system
(P,V) for a relation R (uniformly) quantum-computationally extractable with knowledge
error κ if there exists a constant d > 0, a polynomially-bounded function p > 0, and
a quantum-polynomial-time oracle algorithm K such that for any unitary quantum-
polynomial-time algorithm P∗, for any polynomial ℓ, and for any quantum-polynomial-
time algorithm Z (input generator), there exists a negligible µ such that for any security
parameter η ∈ N, we have that

Pr[⟨P∗(1η, x, Z),V(1η, x)⟩ = 1 : (x, Z)← Z(1η)] ≥ κ(η) =⇒
Pr[(x,w) ∈ R : (x, Z)← Z(1η), w ← KP∗(1η ,x,Z)(1η, x)]

≥ 1
p(η)

(
Pr

[
⟨P∗(1η, x, Z),V(1η, x)⟩ = 1 : (x, Z)← Z(1η)

]
− κ(η)

)d
− µ(η).

Here ⟨P∗(1η, x, Z),V(1η, x)⟩ is the output of V after an interaction between P∗ and V
on the respective inputs x and Z. Z is a quantum register, x is classical, both initialized
using the algorithm Z. And KP∗(1η ,x,Z) refers to an execution of K with black-box access to
P∗(1η, x, Z). That is, K can apply the unitary Ux describing the prover P∗ and its inverse

U †
x. (See [Unr12] for a more detailed description of that black-box execution model.)

Quantum zero-knowledge. Roughly speaking, (P,V) is quantum-computationally zero-
knowledge iff for any quantum-polynomial-time malicious verifier V∗, there exists a
quantum-polynomial-time simulator S such that for any (x,w) ∈ R, the output state of
S is quantum computationally indistinguishable from the from the output state of V∗ in
an interaction with P(1η, x, w).

Similarly, quantum statistical zero-knowledge is defined in the same way, except
that V∗ is not required to be quantum-polynomial-time.

We will not use the definition of quantum zero-knowledge directly, only the imported
Theorem 36 from [Unr15b] will refer to it. We therefore omit the formal definition and
refer to [Unr15b].

7.2 Sigma-protocols

We now introduce sigma-protocols (following [Unr15a] with modifications as mentioned in
the footnotes). The notions are like the standard classical definitions, all that was done to
adopt them to the quantum setting was to make the adversary quantum-polynomial-time.

A sigma-protocol for a relation R is a three-message proof system. It is described by
its challenge space Nz (where |Nz| ≥ 2), a classical-polynomial-time prover (P1, P2) and
a deterministic classical-polynomial-time verifier V . The first message from the prover is
a ← P1(1

η, x, w) and is called the commitment , the uniformly random reply from the

verifier is z
$← Nz (called challenge), and the prover answers with r ← P2(1

η, x, w, z )
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(the response). We assume P1, P2 to share state. Finally V (1η, x, a, z , r) outputs whether
the verifier accepts.

Definition 35 (Properties of sigma-protocols) Let Σ = (Nz, P1, P2, V ) be a sigma-
protocol. We define:

• Completeness: For any quantum-polynomial-time algorithm A,

Pr[(x,w) ∈ R ∧ ok = 0 : (x,w)← A(1η),

a ← P1(1
η, x, w), z

$← Nz, r ← P2(1
η, x, w, z ), ok ← V (1η, x, a, z , r)]

is negligible.
• Computational special soundness: There is a quantum-polynomial-time algo-
rithm EΣ (the extractor)23 such that for any quantum-polynomial-time A, we have
that

Pr[(x,w) /∈ R ∧ z ̸= z ′ ∧ ok = ok ′ = 1 : (x, a, z , r , z ′, r ′)← A(1η),

ok ← V (1η, x, a, z , r), ok ′ ← V (1η, x, a, z ′, r ′), w ← EΣ(1
η, x, a, z , r , z ′, r ′)]

is negligible.
• Honest-verifier zero-knowledge (HVZK): There is a quantum-polynomial-
time algorithm SΣ (the simulator)24 such that for any quantum-polynomial-time
algorithm A and any polynomial ℓ, the following is negligible for all (x,w) ∈ R with
|x|, |w| ≤ ℓ(η) and all states |Ψ⟩:∣∣Pr[b = 1 : a ← P1(1

η, x, w), z
$← Nz, r ← P2(1

η, x, w, z ), b← A(1η, |Ψ⟩, a, z , r)]
−Pr[b = 1 : (a, z , r)← SΣ(1

η, x), b← A(1η, |Ψ⟩, a, z , r)]
∣∣

• Statistical honest-verifier zero-knowledge (SHVZK): Like HVZK, except
that we quantify over computationally unlimited A (not only quantum-polynomial-
time A).

Note that the above are the standard conditions expected from sigma-protocols in the
classical setting. In contrast, for a sigma-protocol to be a quantum proof of knowledge, a
much more restrictive condition is required, strict soundness [Unr12; ARU14]. We show
below how to circumvent this necessity by adding collapse-binding commitments to the
sigma-protocol (at least when we only need a quantum argument of knowledge).

Remark 1. Any sigma-protocol (Nz, P1, P2, V ) can be seen as an interactive proof (P,V)

in a natural way: P sends the output a of P1 to V. V picks z
$← Nz and sends it to P. P

sends the resulting output r of P2 to V. V checks the triple (a, z , r) using V .

The following theorem is shown in [Unr15b]:

23[Unr15a] requires a classical EΣ here. By allowing EΣ to be quantum here, we weaken the notion of
computational special soundness slightly, and thus strengthen our results below.

24[Unr15a] requires a classical SΣ here. By allowing EΣ to be quantum here, we weaken the notion of
HVZK/SHVZK slightly, and thus strengthen our results below.
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Theorem 36 (HVZK implies zero-knowledge [Unr15b]) Let Σ = (Nz, P1, P2, V ) be a
sigma-protocol. We consider Σ as an interactive proof (P,V), see Remark 1.

If |Nz| is polynomially-bounded and is SHVZK, then Σ is quantum statistical zero-
knowledge.

If |Nz| is polynomially-bounded and Σ is HVZK, then Σ is quantum computational
zero-knowledge.

Due to this theorem, it will be sufficient to verify that the sigma-protocols we
construct are HVZK/SHVZK. We will hence not need to use the definition of quantum
zero-knowledge explicitly in the following.

7.3 Constructing zero-knowledge arguments of knowledge

In [Unr12], the following idea was used to construct quantum proofs of knowledge: We
assume a sigma-protocol with special soundness and with polynomial-size |Nz|. We
convert it into a sigma-protocol with strict soundness as follows: When the prover sends
its commitment a ← P1(x,w), it additionally sends com(rz ) for all z ∈ Nz where rz
is the response to the challenge z. When the prover receives the challenge z , it opens
com(rz ) instead of sending rz . If the commitment has the “strict binding” property, the
resulting sigma-protocol has strict soundness (without losing the special soundness or
HVZK property).25 Strict binding is a strengthening of perfect binding, it means that
not only the message in the commitment is information-theoretically determined, but
also the opening information.

Given a sigma-protocol with strict and special soundness, we can show that it is a
proof of knowledge. Basically, [Unr12] runs the protocol twice (using the inverse of the
unitary malicious prover to rewind) to get two responses r , r ′ for different challenges
z ̸= z ′. The difficulty here is that measuring r can disturb the state of the malicious
prover, leading to a corrupt value r ′. The trick here is that due to the strict soundness,
the value r is essentially uniquely determined, and therefore the measurement does not
introduce too much disturbance.26

Unfortunately, that technique needs commitments with the strict binding property.
First, it is easy to see that strict binding commitments must be longer than the messages
they contain. Short strict binding commitments are not possible. Furthermore, the only
known construction of strict binding commitments [Unr12] uses quantum 1-1 one-way
functions. No candidates for those are known.

We show below that the same technique of committing to the responses works with
collapse-binding commitments. The crucial point in the analysis from [Unr12] was that
measuring the committed response does not change the state. The collapse-binding
property guarantees something slightly weaker: when measuring the committed response,
the state may change, but this cannot be noticed by a computationally limited adversary.

25This part was done only implicitly in [Unr12], in the analysis of the Hamiltonian cycle proof system.
26There is some disturbance due to the fact that it is not determined whether r is a valid response or

an invalid one.
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So with collapse-binding commitments, an analog reasoning as in [Unr12] can be used,
except that we get security only against quantum-polynomial-time adversaries. I.e., we
get a quantum argument of knowledge.

We will now describe this in more detail.
First, we formalize the sigma-protocol in which we commit to the responses:

Definition 37 (Sigma-protocol with committed responses) Let (Nz, P1, P2, V ) be a
sigma-protocol with polynomially-bounded |Nz|. Let (com, verify) be a commitment
scheme (with the responses of (Nz, P1, P2, V ) as message space). We construct a
sigma-protocol (Nz, P

′
1, P

′
2, V

′) as follows:
• P ′

1(1
η, x, w) runs: a ← P1(1

η, x, w). For each z ∈ Nz: rz ← P2(1
η, x, w, z ) 27 and

(cz , uz )← com(1η, rz ). Let a ′ := (a, (cz )z∈Nz) and return a ′.
• P ′

2(1
η, x, w, z ) returns r ′ := (rz , uz ).

• V ′(1η, x, a ′, z , r ′) with a ′ = (a, (cz )z∈Nz) and r ′ = (r , u): Check whether
verify(1η, cz , r , u) = 1 and V (1η, a, z , r) = 1. Iff so, return 1.

We show that the above construction is a quantum argument of knowledge:

Theorem 38 (Quantum argument of knowledge) If (Nz, P1, P2, V ) is a sigma-protocol
with computational special soundness for a relation R, and (com, verify) is collapse-
binding, then (Nz, P

′
1, P

′
2, V

′) from Definition 37 is computationally quantum extractable
for R with knowledge error 1/

√
|Nz|.

The proof of this theorem will rely on the following lemma from [Unr12]. (That
lemma is the core lemma of the rewinding technique from [Unr12].)

Lemma 39 (Extraction via quantum rewinding [Unr12]) Let C be a set with |C| = c.
Let (Pi)i∈C be projectors. Let |Φ⟩ be a unit vector. Let V :=

∑
i∈C

1
c∥Pi|Φ⟩∥2 and

E :=
∑

i,j∈C,i̸=j
1
c2
∥PiPj |Φ⟩∥2. Then, if V ≥ 1√

c
, E ≥ V (V 2 − 1

c ).

Proof of Theorem 38. Recall that any sigma-protocol can be seen as an interactive proof
system by Remark 1. Let (P,V) denote the interactive proof system resulting from the
sigma-protocol (Nz, P

′
1, P

′
2, V

′). (In particular, the verifier V sends a random z ∈ Nz, and
in the end checks whether verify(1η, cz , r , u) = 1 and V (1η, a, z , r) = 1.)

Let P∗ denote a malicious prover, i.e., a unitary quantum-polynomial-time algorithm.
Since P∗ attacks a sigma-protocol, it sends two messages. We can thus assume that P∗ is
of the following form:

• It operates on quantum registers Z,C,R,U . Here Z contains the internal state of
P∗ (initialized by algorithm Z). C is the register that will contain the first message
a ′ = (a, (cz )z ) sent by P∗. R,U contains the second message r ′ = (r , u) sent by P∗.
And C,R,U are initialized with |0⟩.

• The unitary Ux describes the unitary operation of P∗ on Z,C during the first
invocation of P∗. Ux is parametrized by the classical input x of P∗. The message
a ′ = (a, (cz )z ) is obtained by measuring C in the computational basis.

27We can run P2 several times using the final state of P1 because P1 is classical.

41



• The unitary Uz describes the unitary operation of P∗ on Z,R, U during the second
invocation of P∗. Uz is parametrized by the challenge z that P∗ receives. The
message r′ = (r, u) is obtained by measuring R and U in the computational basis.

We fix some additional notation for this proof:
• Vz : The projector on R,U onto the span of all |r , u⟩ with verify(1η, cz , r , u) = 1.
(That is, Vz measures whether measuring R,U would yield a valid opening of cz .)

• Wz : The projector on R onto the span of all |r⟩ with V (1η, a, z , r) = 1. (That is,
Wz measures whether measuring R yields a valid response r for challenge z .)

• Pz := U †
zWzVzUz . Since Vz andWz are projectors and diagonal in the computational

basis, they commute and their product is a projector. And since Uz is a unitary,
Pz is a projector (acting on registers Z,R,U).

• x←M(X) denotes that x is assigned the result of measuring the register X in the
computational basis.

• ok ← P (X) means that ok is assigned 1 iff measuring the register X with projector
P succeeds. (With P being, e.g., one of Vz ,Wz , Pz .)

• We write U(X) or U(X) to mean that the unitary U is applied to the register X.
(With U being, e.g., one of Ux, Uz).

With that notation, we can rewrite the success probability of the malicious prover as
follows:

PrV := Pr[P∗(1η, x, Z),V(1η, x)⟩ = 1 : (x, Z)← Z(1η)]

= Pr[ok c = okv = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z
$← Nz,

Uz (ZRU), r ←M(R), u←M(U), ok c = verify(1η, cz , r , u), okv = V (1η, a, z , r)]

= Pr[ok = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z
$← Nz, ok ← Pz (ZRU)].

We now construct the extractor KP∗(1η ,x,Z)(1η, x) required by Definition 34. It operates
on quantum registers S,C,R,U as follows:

(x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU),

r ←M(R), U †
z (ZRU), Uz ′(ZRU), r′ ←M(R), w ← EΣ(1

η, x, a, z , r , z ′, r ′), return w.

Here EΣ is the extractor of the sigma-protocol (Nz, P1, P2, V ). This extractor exists
because the sigma-protocol has computational special soundness (see Definition 35). Note
that K only uses black-box access to P (via the unitaries Ux, Uz , Uz ′ and their inverses).

We will now bound the success probability of the extractor

PrE := Pr[(x,w) ∈ R : w ← KP∗(1η ,x,Z)(1η, x)]

= Pr[(x,w) ∈ R : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z , z ′
$← Nz,

Uz (ZRU), ok c ← Vz (RU), r ←M(R), U †
z (ZRU), Uz ′(ZRU),

r ′ ←M(R), w ← EΣ(1
η, x, a, z , r , z ′, r ′)]

= Pr[(x,w) ∈ R : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z , z ′
$← Nz,
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Uz (ZRU), ok c ← Vz (RU), r ←M(R), okv ← V (1η, x, a, z , r), U †
z (ZRU),

Uz ′(ZRU), r ′ ←M(R), ok ′v ← V (1η, x, a, z ′, r ′), w ← EΣ(1
η, x, a, z , r , z ′, r ′)].

Due to the computational special soundness of (Nz, P1, P2, V ), in the previous game, with
overwhelming probability, z ̸= z ′ and okv = 1 and okv′ = 1 implies (x,w) ∈ R. Thus
there exists a negligible µ1 such that

PrE ≥ Pr[z ̸= z ′ ∧ okv = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C), z , z ′
$← Nz,

Uz (ZRU), ok c ← Vz (RU), r ←M(R), okv ← V (1η, x, a, z , r), U †
z (ZRU),

Uz ′(ZRU), r ′ ←M(R), ok ′v ← V (1η, x, a, z ′, r ′)]− µ1 =: Pr′E −µ1.

Instead of computing okv ← V (1η, x, a, z , r) using the just measured r , we can instead
measure whether the register R contains a value r that would make V (1η, x, a, z , r) = 1
true. I.e., we can replace okv ← V (1η, x, a, z , r) by a measurement using the projectorWz .
Since at that point, R was just measured in the computational basis, the measurement
using Wz does not disturb the state of the system. Similarly, we can replace ok ′v ←
V (1η, x, a, z ′, r ′) by a measurement using Wz ′ . We get:

Pr′E = Pr[z ̸= z ′ ∧ okv = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), r ←M(R), okv ←Wz (R), U

†
z (ZRU),

Uz ′(ZRU), r′ ←M(R), ok ′v ←Wz ′(R)]

= Pr[z ̸= z ′ ∧ okv = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), r ←Mokc(R), okv ←Wz (R), U

†
z (ZRU),

Uz ′(ZRU), r′ ←M(R), ok ′v ←Wz ′(R)].

In the last probability, r ←Mokc(R) refers to a measurement on R that is only executed
if ok c = 1. (And r := ⊥ otherwise.) The last two probabilities are equal because M(R)
and Mokc(R) only differ if ok c = 0, in which case “z ̸= z ′ ∧ okv = ok ′v = 1” is false
anyway.

Since Vz measures whether R,U contains |r , u⟩ with verify(1η, cz , r , u) = 1, and since
(com, verify) is collapse-binding, and since the outcome r is never used, we have that no
quantum-polynomial-time adversary can distinguish between“ok c ← Vz (RU), r ←M(R)”
and “ok c ← Vz (RU)”, except with negligible probability. (Cf. Definition 11.) Thus there
is a negligible µ2 such that

Pr′E ≥ Pr[z ̸= z ′ ∧ okv = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), okv ←Wz (R), U

†
z (ZRU),

Uz ′(ZRU), r′ ←M(R), ok ′v ←Wz ′(R)]− µ2 =: Pr′′E −µ2.

Since M(R) and Wz ′(R) and Vz ′(RU) commute, and since adding additional/removing
operations after all values z , z ′, okv, ok

′
v are fixed does not change the distribution of

those values, we have that “r ′ ← M(R), ok ′v ← Wz ′(R)” and “ok ′c ← Vz ′(RU), ok ′v ←
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Wz (R), U
†
z ′(ZRU)” lead to the same distribution of z, z′, okv, ok

′
v. This justifies (∗) in

the following calculation:

Pr′′E
(∗)
= Pr[z ̸= z ′ ∧ okv = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), okv ←Wz (R), U

†
z (ZRU),

Uz ′(ZRU), ok ′c ← Vz ′(RU), ok ′v ←Wz ′(R), U
†
z ′(ZRU)]

≥ Pr[z ̸= z ′ ∧ ok c = okv = 1 ∧ ok ′c = ok ′v = 1 : (x, Z)← Z(1η), Ux(ZC),

(a, (cz )z )←M(C), z , z ′
$← Nz, Uz (ZRU), ok c ← Vz (RU), okv ←Wz (R),

U †
z (ZRU), Uz ′(ZRU), ok ′c ← Vz ′(RU), ok ′v ←Wz ′(R), U

†
z ′(ZRU)]

= Pr[z ̸= z ′ ∧ ok = 1 ∧ ok = 1 : (x, Z)← Z(1η), Ux(ZC), (a, (cz )z )←M(C),

z , z ′
$← Nz, ok ← Pz (ZRU), ok ← Pz ′(ZRU)].

Let αa ′ := Pr[a′ = (a, (cz )z )] in the previous game, and let |ψa′⟩ denote the post-
measurement-state of registers Z,R,U after the measurement (a, (cz )z )←M(C). Then

Pr′′E =
∑
a ′

αa ′
∑

z ,z ′

z ̸=z ′

1

|Nz|2
∥∥∥Pz ′Pz |ψa′⟩

∥∥∥2︸ ︷︷ ︸
=:Ea′

.

Furthermore, note that

PrV =
∑
a ′

αa ′
∑

z

1

|Nz|

∥∥∥Pz |ψa′⟩
∥∥∥2︸ ︷︷ ︸

=:Va′

.

Lemma 39 implies that if Va ′ ≥ 1/
√
|Nz|, then Ea ′ ≥ Va ′(V 2

a ′ − 1/|Nz|). Or stated

differently: Ea ′ ≥ φ(Va ′) where φ(x) := 0 for x < 1/
√
|Nz| and φ(x) := x(x2 − 1/|Nz|)

for x ≥ 1/
√
|Nz|. Since φ is convex on [0, 1], by Jensen’s inequality we get Pr′′E ≥ φ(PrV ).

In other words Pr′′E ≥ PrV (Pr
2
V −1/|Nz|) whenever PrV ≥ 1/

√
|Nz|. Furthermore, the

inequalities derived above give PrE ≥ Pr′′E −µ for µ := µ1 + µ2. And µ is negligible. It
follows that:

PrV ≥
1√
Nz

=⇒ PrE ≥ PrV

(
Pr2V −

1

|Nz|

)
− µ ≥

(
PrV −

1√
|Nz|

)3
− µ.

Thus (P,V) is quantum-computationally extractable for R with knowledge error κ :=
1/

√
|Nz|. □

Finally, we show that our protocol is still HVZK/SHVZK. From this we conclude
below (Corollary 41) that our protocol is quantum zero-knowledge.

Lemma 40 If |Nz| is polynomially-bounded, and (Nz, P1, P2, V ) is HVZK and (com, verify)
is computationally hiding, and com is a polynomial-time algorithm, then (Nz, P

′
1, P

′
2, V

′)
is HVZK.
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If |Nz| is polynomially-bounded, and (Nz, P1, P2, V ) is SHVZK and (com, verify) is
statistically hiding, and com is a polynomial-time algorithm, then (Nz, P

′
1, P

′
2, V

′) is
SHVZK.

Proof. We first prove the computational case of the lemma. Assume that |Nz| is
polynomially-bounded, and (Nz, P1, P2, V ) is HVZK and (com, verify) is computationally
hiding.

We need to show that (Nz, P
′
1, P

′
2, V

′) is HVZK. By definition of HVZK, and by
construction of (Nz, P

′
1, P

′
2, V

′), that means that for any quantum-polynomial-time A,

Pr1 := Pr[b = 1 : a ← P1(1
η, x, w), for each z : rz ← P2(1

η, x, w, z ),

for each z : (cz , uz )← com(1η, rz ), z
$← Nz,

b′ ← A(1η, |Ψ⟩, a, (cz )z , z , rz , uz )]
≈ Pr[b = 1 : (a, (cz )z , z, rz , uz )← S′

Σ(1
η, x),

b′ ← A(1η, |Ψ⟩, a, (cz )z , z, rz , uz )] =: Prsim (15)

Here S′
Σ is a quantum-polynomial-time simulator that we will construct below. And ≈

means that the difference between the probabilities is negligible.
We then calculate:

Pr1 = Pr[b = 1 : a ← P1(1
η, x, w), z

$← Nz, rz ← P2(1
η, x, w, z ), (cz , uz )← com(1η, rz ),

for each z ′ ̸= z : rz ′ ← P2(1
η, x, w, z ),

for each z ′ ̸= z : (cz ′ , uz ′)← com(1η, rz ′), b
′ ← A(1η, |Ψ⟩, a, (cz )z , z , rz , uz )]

(∗)
≈ Pr[b = 1 : a ← P1(1

η, x, w), z
$← Nz, rz ← P2(1

η, x, w, z ), (cz , uz )← com(1η, rz ),

for each z ′ ̸= z : rz ′ ← P2(1
η, x, w, z ),

for each z ′ ̸= z : (cz ′ , uz ′)← com(1η, 0), b′ ← A(1η, |Ψ⟩, a, (cz )z , z , rz , uz )]
= Pr[b = 1 : a ← P1(1

η, x, w), z
$← Nz, rz ← P2(1

η, x, w, z ), (cz , uz )← com(1η, rz ),

for each z ′ ̸= z : (cz ′ , uz ′)← com(1η, 0), b′ ← A(1η, |Ψ⟩, a, (cz )z , z , rz , uz )]
(∗∗)
≈ Pr[b = 1 : (a, z , rz )← SΣ(1

η, x), (cz , uz )← com(1η, rz ),

for each z ′ ̸= z : (cz ′ , uz ′)← com(1η, 0), b′ ← A(1η, |Ψ⟩, a, (cz )z , z , rz , uz )] =: Pr2

Here (∗) uses that (com, verify) is computationally hiding and A is quantum-polynomial-
time. com(1η, 0) refers to a commitment to some fixed message 0 in the message space of
com. And (∗∗) follows from the HVZK property of (Nz, P1, P2, V ) for suitable quantum-
polynomial-time SΣ.

Let S′
Σ(1

η, x) perform the following steps:

(a, z , rz )← SΣ(1
η, x), (cz , uz )← com(1η, rz ),

for each z ′ ̸= z : (cz ′ , uz ′)← com(1η, 0), return (a, (cz ), z , rz , uz ).

Then S′
Σ is quantum-polynomial-time, and

Pr2 = Pr[b = 1 : (a, (cz )z , z , rz , uz )← S′
Σ(1

η, x), b′ ← A(1η, |Ψ⟩, a, (cz )z , z , rz , uz )] = Prsim .
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Hence Pr1 ≈ Prsim , so (15) holds, and it follows that (Nz, P
′
1, P

′
2, V

′) is HVZK. This
shows the lemma in the computational case.

The statistical case of the lemma is shown fully analogously, except that we do not
assume A to be quantum-polynomial-time (and thus have to use the statistical hiding
property of (com, verify) and the SHVZK property of (Nz, P1, P2, V )). □

Corollary 41 (Zero-knowledge) If |Nz| is polynomially-bounded, and (Nz, P1, P2, V ) is
HVZK and (com, verify) is computationally hiding, and com is a polynomial-time algo-
rithm, then (Nz, P

′
1, P

′
2, V

′) is computational zero-knowledge.
If |Nz| is polynomially-bounded, and (Nz, P1, P2, V ) is SHVZK and (com, verify) is

statistically hiding, and com is a polynomial-time algorithm, then (Nz, P
′
1, P

′
2, V

′) is
statistical zero-knowledge.

Proof. Immediate from Lemma 40 and Theorem 36. □

8 Interactive quantum commitments

The definition of the collapse-binding property (Definition 11) was formulated specifically
for non-interactive commitments where only classical messages are exchanged and where
the verification in the opening phase is deterministic.

For completeness, we show here how the definition can be generalized to interactive
commitments that may send quantum states and have a quantum verification algorithm.
Note that we still consider the case where the message that we commit to is classical.
Also, for technical reasons, we consider only commitments where the opening phase
consists of a single quantum message.

We stress that, in contrast to Definition 11, we have not investigated this definition
further. For example, we do not know whether commitments according to Definition 42
below are useful for constructing zero-knowledge arguments. We mainly state this
definition for reference and leave it to future research to see how well the definition
behaves.

We model an interactive commitment using two interactive algorithms SND (sender)
and RCP (recipient) for the commit phase, and a quantum algorithm VER for the opening
phase. (S,U,R) ← ⟨SND(1η,m),RCP(1η)⟩ denotes an execution of the interaction
between SND and RCP where SND is committing to the message m (and with security
parameter η). Here the quantum registers S,U,R contain the state of SND, the opening
information (which consists of a single message), and the state of RCP, respectively. The
algorithm VER takes the security parameter and quantum registers M,U,R as input and
outputs a single bit, indicating whether the opening phase succeeded.

Definition 42 (Collapse-binding – generalized) Let Z be an auxiliary quantum regis-
ter. Let P η

VER be a projector on quantum registers M,U,R,Z (parametric in the se-
curity parameter η), such that for any η and any quantum state |Ψ⟩ on M,U,R,
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Pr[VER(1η,M,U,R) = 1 :MUR← |Ψ⟩] =
∣∣P η

VER(|Ψ⟩ ⊗ |0⟩)
∣∣2.28

For an interactive algorithm A and a non-interactive algorithm B, consider the
following games:

Game1 : (S,M,U,R)← ⟨A(1η),RCP(1η)⟩, Z ← |0⟩, ok ← P η
VER(M,U,R,Z),

m←Mok (M), b← B(1η, S,M,U)

Game2 : (S,M,U,R)← ⟨A(1η),RCP(1η)⟩, Z ← |0⟩, ok ← P η
VER(M,U,R,Z),

b← B(1η, S,M,U)

Here (S,M,U,R)← ⟨A(1η),RCP(1η)⟩ denotes an interaction between A and the honest
recipient RCP. The quantum registers S,M,U are output by A, the register R contains
the final state of RCP. Z ← |0⟩ means the quantum register Z is initialized with |0⟩.
ok ← PVER(M,U,R,Z) means that ok is the output of measuring the joint register
M,U,R,Z with projector PVER. Mok is as in Definition 11.

We say (SND,RCP,VER) is collapse-binding relative to PVER iff for any quantum-
polynomial-time interactive algorithm A and any quantum-polynomial-time algorithm B,
the difference

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ is negligible in η.

We stress that the choice of the purification P η
VER of VER is not irrelevant. In general,

different purifications P η
VER may have different post-measurement state even if they realize

the same algorithm VER [Unr14]. Thus Definition 42 could be satisfied with one P η
VER

and not satisfied with another. We conjecture that in most cases where the definition is
used, one will simply need the existence of some quantum-polynomial-time P η

VER.
Notice that for a non-interactive commitment scheme with classical messages, Defini-

tion 42 coincides with Definition 11: In the non-interactive case, RCP simply stores the clas-
sical message c it receives, hence (S,M,U,R)← ⟨A,RCP⟩ becomes (S,M,U, c)← A(1η).
And the projector PVER from Definition 42 can be chosen as

∑
c Vc ⊗ |c⟩⟨c| where Vc is

the projector from Definition 11.
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28In other words, PVER performs the same measurement as VER does using an ancilla system Z.
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whether VER outputs 1. Then PVER := U†P1U is one possible choice for PVER.
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Symbol index

η Security parameter 14

1η Security parameter in unary representation 14

I Identity 14

A† Conjugate transpose of A 14

x∥y Concatenation of bitstrings x and y 14

N Natural numbers 1, 2, . . .

[N ] {1, . . . , N}
imP Image of map P

dom f Domain of function f

Rex Real part of complex number x

⌈x⌉ x rounded towards +∞
x← A x is assigned the output of algorithm A 14

x
$← S x chosen uniformly from set S/according to distribu-

tion S
14

(c, u)← com(m) Produces a commitment c with opening information u 14

verify(c,m, u) Verifies that commitment c opens as m (opening in-
formation u)

14

MSPη Message space of commitment scheme 15

comn n-fold parallel composition of com 18

verifyn n-fold parallel verifyposition of verify 18

comcan Canonical commitment 20

verifycan Canonical commitment 20

trM Trace of matrix M . trEM denotes partial trace
w.r.t. subsystem E

comHMu Unbounded Halevi-Micali commitment 21

verifyHMu Unbounded Halevi-Micali commitment 21

comHMb Bounded-length Halevi-Micali commitment 21

verifyHMb Bounded-length Halevi-Micali commitment 21

{0, 1}n Bitstrings of length n

|Ψ⟩ Vector in a Hilbert space (usually a quantum state) 14

⟨Ψ| Conjugate transpose of |Ψ⟩ 14

|+⟩ 1√
2
|0⟩+ 1√

2
|1⟩ 14

|−⟩ 1√
2
|0⟩ − 1√

2
|1⟩ 14

|x| Absolute value / cardinality of x

∥x∥ Euclidean norm of x 14

f + g A combination of the functions f, g
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f |g A combination of the functions f, g

Oall Oracle from [ARU14], contains OV 22

OV Oracle from [ARU14], tests membership in Sy 22

O Oracle containing Oall and a random oracle h2 22

a Commitment (first message in sigma protocol) 38

z Challenge (second message in sigma protocol) 38

r Response (third message in sigma protocol) 38

Nz Domain for challenge in sigma protocol 38

Σ Usually stands for a sigma protocol (Nz, P1, P2, V )

EΣ(x, com, z , r , z
′, r ′)Special soundness extractor for sigma protocol Σ 39

SΣ Honest-verifier simulator extractor for sigma protocol
Σ

39

⟨P, V ⟩ Output of V after an interaction between P and V 38, 46, 47

V Verifier from an interactive proof (P,V) 37

P Prover from an interactive proof (P,V) 37

S Simulator for an interactive proof (P,V) 38

KP Extractor for an interactive proof (with black-box
access to malicious prover P∗)

38

Z Input generator for an interactive proof 38

PrV Success probability of the malicious prover to make
the verifier accept

42

PrE Success probability of the extractor K 42

SND(m) Sender in an interactive commitment scheme 46

RCP(m) Recipient in an interactive commitment scheme 46

VER(m) Verification algorithm in an interactive commitment
scheme

46

adv Advantage of an adversary in breaking a scheme 25
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