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Abstract

In light of security challenges that have emerged in a world with complex networks and
cloud computing, the notion of functional encryption has recently emerged. In this work, we
show that in several applications of functional encryption (even those cited in the earliest works
on functional encryption), the formal notion of functional encryption is actually not sufficient
to guarantee security. This is essentially because the case of a malicious authority and/or
encryptor is not considered. To address this concern, we put forth the concept of verifiable
functional encryption, which captures the basic requirement of output correctness: even if the
ciphertext is maliciously generated (and even if the setup and key generation is malicious), the
decryptor is still guaranteed a meaningful notion of correctness which we show is crucial in
several applications.

We formalize the notion of verifiable function encryption and, following prior work in the
area, put forth a simulation-based and an indistinguishability-based notion of security. We
show that simulation-based verifiable functional encryption is unconditionally impossible even
in the most basic setting where there may only be a single key and a single ciphertext. We
then give general positive results for the indistinguishability setting: a general compiler from
any functional encryption scheme into a verifiable functional encryption scheme with the only
additional assumption being the Decision Linear Assumption over Bilinear Groups (DLIN). We
also give a generic compiler in the secret-key setting for functional encryption which maintains
both message privacy and function privacy. Our positive results are general and also apply
to other simpler settings such as Identity-Based Encryption, Attribute-Based Encryption and
Predicate Encryption. We also give an application of verifiable functional encryption to the
recently introduced primitive of functional commitments.

Finally, in the context of indistinguishability obfuscation, there is a fundamental question
of whether the correct program was obfuscated. In particular, the recipient of the obfuscated
program needs a guarantee that the program indeed does what it was intended to do. This ques-
tion turns out to be closely related to verifiable functional encryption. We initiate the study of
verifiable obfuscation with a formal definition and construction of verifiable indistinguishability
obfuscation.
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1 Introduction

Encryption has traditionally been seen as a way to ensure confidentiality of a communication chan-
nel between a unique sender and a unique receiver. However, with the emergence of complex
networks and cloud computing, recently the cryptographic community has been rethinking the no-
tion of encryption to address security concerns that arise in these more complex environments.

In particular, the notion of functional encryption (FE) was introduced [SW05, SW08], with the
first comprehensive formalizations of FE given in [BSW11, O’N10]. In FE, there is an authority
that sets up public parameters and a master secret key. Encryption of a value x can be performed
by any party that has the public parameters and x. Crucially, however, the master secret key can
be used to generate limited “function keys.” More precisely, for a given allowable function f , using
the master secret key, it is possible to generate a function key SKf . Applying this function key to
an encryption of x yields only f(x). In particular, an adversarial entity that holds an encryption of
x and SKf learns nothing more about x than what is learned by obtaining f(x). It is not difficult to
imagine how useful such a notion could be – the function f could enforce access control policies, or
more generally only allow highly processed forms of data to be learned by the function key holder.

Our work: The case of dishonest authority and encryptor. However, either implicitly
or explicitly, almost1 all known prior work on FE has not considered the case where either the
authority or the encryptor, or both, could be dishonest. This makes sense historically, since for
traditional encryption, for example, there usually isn’t a whole lot to be concerned about if the
receiver that chooses the public/secret key pair is herself dishonest. However, as we now illustrate
with examples, there are simple and serious concerns that arise for FE usage scenarios when the
case of a dishonest authority and encryptor is considered:

• Storing encrypted images: Let us start with a motivating example for FE given in the
paper of Boneh, Sahai, and Waters [BSW11] that initiated the systematic study of FE.
Suppose that there is a cloud service on which customers store encrypted images. Law
enforcement may require the cloud to search for images containing a particular face. Thus,
customers would be required to provide to the cloud a restrictive decryption key which allows
the cloud to decrypt images containing the target face (but nothing else). Boneh et al.
argued that one could use functional encryption in such a setting to provide these restricted
decryption keys.

However, we observe that if we use functional encryption, then law enforcement inherently
has to trust the customer to be honest, because the customer is acting as both the authority
and the encryptor in this scenario. In particular, suppose that a malicious authority could
create malformed ciphertexts and “fake” decryption keys that in fact do not provide the
functionality guarantees required by law enforcement. Then, for example, law enforcement
could be made to believe that there are no matching images, when in fact there might be
several matching images.

1One of the few counter-examples to this that we are aware of is the following works [Goy07, GLSW08, SS11] on
Accountable Authority IBE that dealt with the very different problem of preventing a malicious authority that tries
to sell decryption boxes.
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A similar argument holds if the cloud is storing encrypted text or emails (and law enforcement
would like to search for the presence of certain keywords or patterns).

• Audits: Next, we consider an even older example proposed in the pioneering work of Goyal,
Pandey, Sahai, and Waters [GPSW06] to motivate Attribute-Based Encryption, a special case
of FE. Suppose there is a bank that maintains large encrypted databases of the transactions in
each of its branches. An auditor is required to perform a financial audit to certify compliance
with various financial regulations such as Sarbanes-Oxley. For this, the auditor would need
access to certain types of data (such as logs of certain transactions) stored on the bank
servers. However the bank does not wish to give the auditors access to the entire data (which
would leak customer personal information, etc.). A natural solution is to have the bank use
functional encryption. This would enable it to release a key to the auditor which selectively
gives him access to only the required data.

However, note that the entire purpose of an audit is to provide assurances even in the setting
where the entity being audited is not trusted. What if either the system setup, or the
encryption, or the decryption key generation is maliciously done? Again, with the standard
notions of FE, all bets are off, since these scenarios are simply not considered.

Surprisingly, to the best of our knowledge, this (very basic) requirement of adversarial correct-
ness has not been previously captured in the standard definitions of functional encryption. Indeed,
it appears that many previous works overlooked this correctness requirement while envisioning
applications of (different types of) functional encryption. The same issue also arises in the con-
text of simpler notions of functional encryption such as identity based encryption (IBE), attribute
based encryption (ABE), and predicate encryption (PE), which have been studied extensively
[BF03, Wat05, SW05, GPSW06, KSW08, GVW13, GVW15].

In order to solve this problem, we define the notion of Verifiable Functional Encryption2 (VFE).
Informally speaking, in a VFE scheme, regardless of how the system setup is done, for each (possibly
maliciously generated) ciphertext C that passes a publicly known verification procedure, there must
exist a unique message m such that: for any allowed function description f and function key SKf

that pass another publicly known verification procedure, it must be that the decryption algorithm
given C, SKf , and f is guaranteed to output f(m). In particular, this also implies that if two
decryptions corresponding to functions f1 and f2 of the same ciphertext yield y1 and y2 respectively,
then there must exist a single message m such that y1 = f1(m) and y2 = f2(m).

We stress that even the public parameter generation algorithm can be corrupted. As illustrated
above, this is critical for security in many applications. The fact that the public parameters are
corrupted means that we cannot rely on the public parameters to contain an honestly generated
Common Random String or Common Reference String (CRS). This presents the main technical
challenge in our work, as we describe further below.

1.1 Our Contributions for Verifiable Functional Encryption

Our work makes the following contributions with regard to VFE:

2A primitive with the same name was also defined in [BF12]. However, their setting is entirely different to ours.
They consider a scenario where the authority as well as the encryptor are honest. Their goal is to convince a weak
client that the decryption (performed by a potentially malicious cloud service provider) was done correctly using the
actual ciphertext and function secret key.
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• We formally define verifiable functional encryption and study both indistinguishability and
simulation-based security notions. Our definitions can adapt to all major variants and pre-
decessors of FE, including IBE, ABE, and predicate encryption.

• We show that simulation based security is unconditionally impossible to achieve by con-
structing a one-message zero knowledge proof system from any simulation secure verifiable
functional encryption scheme. Interestingly, we show the impossibility holds even in the most
basic setting where there may only be a single key and a single ciphertext that is queried
by the adversary (in contrast to ordinary functional encryption where we know of general
positive results in such a setting from minimal assumptions [SS10]). Thus, in the rest of our
work, we focus on the indistinguishability-based security notion.

• We give a generic compiler from any public-key functional encryption scheme to a verifiable
public-key functional encryption scheme, with the only additional assumption being Decision
Linear Assumption over Bilinear Groups (DLIN). Informally, we show the following theorem.

Theorem 1. (Informal) Assuming there exists a secure public key functional encryption
scheme for the class of functions F and DLIN is true, there exists an explicit construction of
a secure verifiable functional encryption scheme for the class of functions F .

In the above, the DLIN assumption is used only to construct non-interactive witness indis-
tinguishable (NIWI) proof systems. We show that NIWIs are necessary by giving an explicit
construction of a NIWI from any verifiable functional encryption scheme. This compiler gives
rise to various verifiable functional encryption schemes under different assumptions. Some of
them have been summarized in the table below:

Table 1: Our Results for Verifiable FE
Verifiable Functionality Assumptions Needed

Verifiable IBE BDH+Random Oracle[BF03]

Verifiable IBE BDH+DLIN[Wat05]

Verifiable ABE for NC1 DLIN[OT10, Tak14]

Verifiable ABE for all Circuits LWE + DLIN[GVW13, BGG+14]

Verifiable PE for all Circuits LWE + DLIN[GVW15]

Verifiable FE for Inner Product Equality DLIN[OT10, Tak14]

Verifiable FE for Inner Product DLIN[ARW16]

Verifiable FE for Bounded Collusions DLIN[SS10, GVW12]

Verifiable FE for Bounded Collusions LWE + DLIN[GKP+13]

Verifiable FE for all Circuits iO + Injective OWF[GGH+13]

IBE stands for identity-based encryption, ABE for attribute-based encryption
and PE for predicate encryption. The citation given in the assumption column
shows a relevant paper that builds ordinary FE without verifiability for the stated
function class.

• We next give a generic compiler for the secret-key setting. Namely, we convert from any secret-
key functional encryption scheme to a verifiable secret-key functional encryption scheme with
the only additional assumption being DLIN. Informally, we show the following theorem :
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Theorem 2. (Informal) Assuming there exists a message hiding and function hiding secret-
key functional encryption scheme for the class of functions F and DLIN is true, there exists an
explicit construction of a message hiding and function hiding verifiable secret-key functional
encryption scheme for the class of functions F .

An Application: Non-Interactive Functional Commitments: In a traditional non-interactive
commitment scheme, a committer commits to a message m which is revealed entirely in the decom-
mitment phase. Analogous to the evolution of functional encryption from traditional encryption, we
consider the notion of functional commitments which were recently studied in [LRY16] as a natural
generalization of non-interactive commitments. In a functional commitment scheme, a committer
commits to a message m using some randomness r. In the decommitment phase, instead of reveal-
ing the entire message m, for any function f agreed upon by both parties, the committer outputs
a pair of values (a, b) such that using b and the commitment, the receiver can verify that a = f(m)
where m was the committed value. Similar to a traditional commitment scheme, we require the
properties of hiding and binding. Roughly, hiding states that for any pair of messages (m0,m1), a
commitment of m0 is indistinguishable to a commitment of m1 if f(m0) = f(m1) where f is the
agreed upon function. Informally, binding states that for every commitment c, there is a unique
message m committed inside c.
We show that any verifiable functional encryption scheme directly gives rise to a non-interactive
functional commitment scheme with no further assumptions.

Verifiable iO: As shown recently[AJ15, BV15, AJS15], functional encryption for general functions
is closely tied to indistinguishability obfuscation [BGI+01, GGH+13]. In obfuscation, aside from
the security of the obfuscated program, there is a fundamental question of whether the correct
program was obfuscated. In particular, the recipient of the obfuscated program needs a guarantee
that the program indeed does what it was intended to do.

Indeed, if someone hands you an obfuscated program, and asks you to run it, your first response
might be to run away. After all, you have no idea what the obfuscated program does. Perhaps it
contains backdoors or performs other problematic behavior. In general, before running an obfus-
cated program, it makes sense for the recipient to wait to be convinced that the program behaves
in an appropriate way. More specifically, the recipient would want an assurance that only certain
specific secrets are kept hidden inside it, and that it uses these secrets only in certain well-defined
ways.

In traditional constructions of obfuscation, the obfuscator is assumed to be honest and no
correctness guarantees are given to an honest evaluator if the obfuscator is dishonest. To solve this
issue, we initiate a formal study of verifiability in the context of indistinguishability obfuscation,
and show how to convert any iO scheme into a usefully verifiable iO scheme.

We note that verifiable iO presents some nontrivial modeling choices. For instance, of course, it
would be meaningless if a verifiable iO scheme proves that a specific circuit C is being obfuscated
– the obfuscation is supposed to hide exactly which circuit is being obfuscated. At the same
time, of course every obfuscated program does correspond to some Boolean circuit, and so merely
proving that there exists a circuit underlying an obfuscated program would be trivial. To resolve
this modeling, we introduce a public predicate P , and our definition will require that there is a
public verification procedure that takes both P and any maliciously generated obfuscated circuit
C̃ as input. If this verification procedure is satisfied, then we know that there exists a circuit C
equivalent to C̃ such that P (C) = 1. In particular, P could reveal almost everything about C,
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and only leave certain specific secrets hidden. (We also note that our VFE schemes can also be
modified to also allow for such public predicates to be incorporated there, as well.)

iO requires that given a pair (C0, C1) of equivalent circuits, the obfuscation of C0 should be
indistinguishable from the obfuscation of C1. However, in our construction, we must restrict our-
selves to pairs of circuits where this equivalence can be proven with a short witness. In other words,
there should be an NP language L such that (C0, C1) ∈ L implies that C0 is equivalent to C1. We
leave removing this restriction as an important open problem. However, we note that, to the best
of our knowledge, all known applications of iO in fact only consider pairs of circuits where proving
equivalence is in fact easy given a short witness3.

1.2 Technical Overview

At first glance, constructing verifiable functional encryption may seem easy. One naive approach
would be to just compile any functional encryption (FE) system with NIZKs to achieve verifiability.
However, note that this doesn’t work, since if the system setup is maliciously generated, then the
CRS for the NIZK would also be maliciously generated, and therefore soundness would not be
guaranteed to hold.

Thus, the starting point of our work is to use a relaxation of NIZK proofs called non-interactive
witness indistinguishable proof (NIWI) systems, that do guarantee soundness even without a CRS.
However, NIWIs only guarantee witness indistinguishability, not zero-knowledge. In particular, if
there is only one valid witness, then NIWIs do not promise any security at all. When using NIWIs,
therefore, it is typically necessary to engineer the possibility of multiple witnesses.

A failed first attempt and the mismatch problem: Two parallel FE schemes. A nat-
ural initial idea would be to execute two FE systems in parallel and prove using a NIWI that at
least one of them is fully correct: that is, its setup was generated correctly, the constituent cipher-
text generated using this system was computed correctly and the constituent function secret key
generated using this system was computed correctly. Note that the NIWI computed for proving
correctness of the ciphertext will have to be separately generated from the NIWI computed for
proving correctness of the function secret key.

This yields the mismatch problem: It is possible that in one of the FE systems, the ciphertext
is maliciously generated, while in the other, the function secret key is! Then, during decryption, if
either the function secret key or the ciphertext is malicious, all bets are off. In fact, several known
FE systems [GKP+13, GGH+13] specifically provide for programming either the ciphertext or the
function secret key to force a particular output during decryption.

Could we avoid the mismatch problem by relying on majority-based decoding? In particular,
suppose we have three parallel FE systems instead of two. Here, we run into the following problem:
If we prove that at least two of the three ciphertexts are honestly encrypting the same message,
the NIWI may not hide this message at all: informally speaking, the witness structure has too few
“moving parts”, and it is not known how to leverage NIWIs to argue indistinguishability. On the
other hand, if we try to relax the NIWI and prove only that at least two of the three ciphertexts are
honestly encrypting some (possibly different) message, each ciphertext can no longer be associated
with a unique message, and the mismatch problem returns, destroying verifiability.

3For instance, suppose that C0 uses an ordinary GGM PRF key, but C1 uses a punctured GGM PRF key. It is
easy to verify that these two keys are equivalent by simply verifying each node in the punctured PRF tree of keys by
repeated application of the underlying PRG.
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Let’s take a look at this observation a bit more in detail in the context of functional com-
mitments, which is perhaps a simpler primitive. Consider a scheme where the honest committer
commits to the same message m thrice using a non-interactive commitment scheme. Let Z1,Z2,Z3

be these commitments. Note that in the case of a malicious committer, the messages being com-
mitted m0,m1,m2, may all be potentially different. In the decommitment phase, the committer
outputs a and a NIWI proving that two out of the three committed values (say mi and mj) are
such that a = f(mi) = f(mj). With such a NIWI, it is possible to give a hybrid argument that
proves the hiding property (which corresponds to indistinguishability in the FE setting). However,
binding (which corresponds to verifiability) is lost: One can maliciously commit to m0,m1,m2

such that they satisfy the following property : there exists functions f, g, h for which it holds that
f(m0) = f(m1) 6= f(m2), g(m0) 6= g(m1) = g(m2) and h(m0) = h(m2) 6= h(m1). Now, if the
malicious committer runs the decommitment phase for these functions separately, there is no fixed
message bound by the commitment.

As mentioned earlier, one could also consider a scheme where in the decommitment phase, the
committer outputs f(m) and a NIWI proving that two out of the three commitments correspond
to the same message m (i.e. there exists i, j such that mi = mj) and f(mi) = a. The scheme
is binding but does not satisfy hiding any more. This is because there is no way to move from a
hybrid where all three commitments correspond to message m∗0 to one where all three commitments
correspond to message m∗1, since at every step of the hybrid argument, two messages out of three
must be equal.

This brings out the reason why verifiability and security are two conflicting requirements. Ver-
ifiability seems to demand a majority of some particular message in the constituent ciphertexts
whereas in the security proof, we have to move from a hybrid where the majority changes (from
that of m∗0 to that of m∗1). Continuing this way it is perhaps not that hard to observe that having
any number of systems will not solve the problem. Hence, we have to develop some new techniques
to solve the problem motivated above. This is what we describe next.

Our solution: Locked trapdoors. Let us start with a scheme with five parallel FE schemes.
Our initial idea will be to commit to the challenge constituent ciphertexts as part of the public
parameters, but we will need to introduce a twist to make this work, that we will mention shortly.
Before we get to the twist, let’s first see why having a commitment to the challenge ciphertext
doesn’t immediately solve the problem. Let’s introduce a trapdoor statement for the relation used
by the NIWI corresponding to the VFE ciphertexts. This trapdoor statement states that two of
the constituent ciphertexts are encryptions of the same message and all the constituent ciphertexts
are committed in the public parameters. Initially, the NIWI in the challenge ciphertext uses the
fact that the trapdoor statement is correct with the indices 1 and 2 encrypting the same message
m∗0. The NIWIs in the function secret keys use the fact that the first four indices are secret keys
for the same function. Therefore, this leaves the fifth index free (not being part of the NIWI in
any function secret key or challenge ciphertext) and we can switch the fifth constituent challenge
ciphertext to be an encryption of m∗1. We can switch the indices used in the NIWI for the function
secret keys (one at a time) appropriately to leave some other index free and transform the challenge
ciphertext to encrypt m∗0 in the first two indices and m∗1 in the last three. We then switch the proof
in the challenge ciphertext to use the fact that the last two indices encrypt the same message
m∗1. After this, in the same manner as above, we can switch the first two indices (one by one) of
the challenge ciphertext to also encrypt m∗1. This strategy will allow us to complete the proof of
indistinguishability security.
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Indeed, such an idea of committing to challenge ciphertexts in the public parameters has been
used in the FE context before, for example in [GGH+13]. However, observe that if we do this,
then verifiability is again lost, because recall that even the public parameters of the system are
under the adversary’s control! If a malicious authority generates a ciphertext using the correctness
of the trapdoor statement, he could encrypt the tuple (m,m,m1,m2,m3) as the set of messages
in the constituent ciphertexts and generate a valid NIWI. Now, for some valid function secret key,
decrypting this ciphertext may not give rise to a valid function output. The inherent problem here
is that any ciphertext for which the NIWI is proved using the trapdoor statement and any honestly
generated function secret key need not agree on a majority (three) of the underlying systems.

To overcome this issue, we introduce the idea of a guided locking mechanism. Intuitively, we
require that the system cannot have both valid ciphertexts that use the correctness of the trapdoor
statement and valid function secret keys. Therefore, we introduce a new “lock” in the public
parameters. The statement being proved in the function secret key will state that this lock is a
commitment of 1, while the trapdoor statement for the ciphertexts will state that the lock is a
commitment of 0. Thus, we cannot simultaneously have valid ciphertexts that use the correctness
of the trapdoor statement and valid function secret keys. This ensures verifiability of the system.
However, while playing this cat and mouse game of ensuring security and verifiability, observe that
we can no longer prove that the system is secure! In our proof strategy, we wanted to switch the
challenge ciphertext to use the correctness of the trapdoor statement which would mean that no
valid function secret key can exist in the system. But, the adversary can of course ask for some
function secret keys and hence the security proof wouldn’t go through.

We handle this scenario by introducing another trapdoor statement for the relation correspond-
ing to the function secret keys. This trapdoor statement is similar to the honest one in the sense
that it needs four of the five constituent function secret keys to be secret keys for the same func-
tion. Crucially, however, additionally, it states that if you consider the five constituent ciphertexts
committed to in the public parameters, decrypting each of them with the corresponding constituent
function secret key yields the same output. Notice that for any function secret key that uses the
correctness of the trapdoor statement and any ciphertext generated using the correctness of its
corresponding trapdoor statement, verifiability is not lost. This is because of the condition that
all corresponding decryptions yield the same output. Indeed, for any function secret key that uses
the correctness of the trapdoor statement and any ciphertext generated using the correctness of
its non-trapdoor statement, verifiability is maintained. Thus, this addition doesn’t impact the
verifiability of the system.

Now, in order to prove security, we first switch every function secret key to be generated
using the correctness of the trapdoor statement. This is followed by changing the lock in the
public parameter to be a commitment of 1 and then switching the NIWI in the ciphertexts to use
their corresponding trapdoor statement. The rest of the security proof unravels in the same way
as before. After the challenge ciphertext is transformed into an encryption of message m∗1, we
reverse the whole process to switch every function secret key to use the real statement (and not
the trapdoor one) and to switch the challenge ciphertext to use the corresponding real statement.
Notice that the lock essentially guides the sequence of steps to be followed by the security proof as
any other sequence is not possible. In this way, the locks guide the hybrids that can be considered
in the security argument, hence the name “guided” locking mechanism for the technique. In fact,
using these ideas, it turns out that just having four parallel systems suffices to construct verifiable
functional encryption in the public key setting.
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In the secret key setting, to achieve verifiability, we also have to commit to all the constituent
master secret keys in the public parameters. However, we need an additional system (bringing the
total back to five) because in order to switch a constituent challenge ciphertext from an encryption
of m∗0 to that of m∗1, we need to puncture out the corresponding master secret key committed in the
public parameters. We observe that in the secret key setting, ciphertexts and function secret keys
can be seen as duals of each other. Hence, to prove function hiding, we introduce indistinguishable
modes and a switching mechanism. At any point in time, the system can either be in function
hiding mode or in message hiding mode but not both. At all stages, verifiability is maintained
using similar techniques.

Organisation: In section 2 we define the preliminaries used in the paper. In section 3, we give
the definition of a verifiable functional encryption scheme. This is followed by the construction
and proof of a verifiable functional encryption scheme in 4. In section 5, we give the construc-
tion of a secret key verifiable functional encryption scheme. Section 6 is devoted to the study of
verifiable obfuscation. An application of verifiable functional encryption is in achieving functional
commitments. This is described in Appendix H.

2 Preliminaries

Throughout the paper, let the security parameter be λ and let PPT denote a probabilistic poly-
nomial time algorithm. We defer the description of public key encryption and non-interactive
commitment schemes to Appendix A.

2.1 One message WI Proofs

We will be extensively using one message witness indistinguishable proofs NIWI as provided by
[GOS06].

Definition 1. A pair of PPT algorithms (P,V) is a NIWI for an NP relation RL if it satisfies:

1. Completeness: for every (x,w) ∈ RL, Pr[V(x, π) = 1 : π ← P(x,w)] = 1.

2. (Perfect) Soundness: Proof system is said to be perfectly sound if there for every x /∈ L and
π ∈ {0, 1}∗
Pr[V(x, π) = 1] = 0.

3. Witness indistinguishability: for any sequence I = {(x,w1, w2) : w1, w2 ∈ RL(x)}
{π1 : π1 ← P(x,w1)}(x,w1,w2)∈I ≈c {π2 : π2 ← P(x,w2)}(x,w1,w2)∈I

[GOS06] provides perfectly sound one message witness indistinguishable proofs based on the
decisional linear (DLIN) assumption. [BOV07] also provides perfectly sound proofs (although less
efficient) under a complexity theoretic assumption, namely that Hitting Set Generators against
co-non deterministic circuits exist. [BP15] construct NIWI from one-way permutations and indis-
tinguishability obfuscation.

3 Verifiable Functional Encryption

In this section we give the definition of a (public-key) verifiable functional encryption scheme.
Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote ensembles where each Xλ and Yλ is a finite set.
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Let F = {Fλ}λ∈N denote an ensemble where each Fλ is a finite collection of functions, and each
function f ∈ Fλ takes as input a string x ∈ Xλ and outputs f(x) ∈ Yλ. A verifiable functional
encryption scheme is similar to a regular functional encryption scheme with two additional algo-
rithms (VerifyCT,VerifyK). Formally, VFE = (Setup,Enc,KeyGen,Dec,VerifyCT,VerifyK) consists of
the following polynomial time algorithms:

• Setup(1λ). The setup algorithm takes as input the security parameter λ and outputs a master
public key-secret key pair (MPK,MSK).

• Enc(MPK, x) → CT. The encryption algorithm takes as input a message x ∈ Xλ and the
master public key MPK. It outputs a ciphertext CT.

• KeyGen(MPK,MSK, f) → SKf . The key generation algorithm takes as input a function
f ∈ Fλ, the master public key MPK and the master secret key MSK. It outputs a function
secret key SKf .

• Dec(MPK, f,SKf ,CT) → y or ⊥. The decryption algorithm takes as input the master public
key MPK, a function f , the corresponding function secret key SKf and a ciphertext CT. It
either outputs a string y ∈ Y or ⊥. Informally speaking, MPK is given to the decryption
algorithm for verification purpose.

• VerifyCT(MPK,CT)→ 1/0. Takes as input the master public key MPK and a ciphertext CT.
It outputs 0 or 1. Intuitively, it outputs 1 if CT was correctly generated using the master
public key MPK for some message x.

• VerifyK(MPK, f,SK) → 1/0. Takes as input the master public key MPK, a function f and a
function secret key SKf . It outputs either 0 or 1. Intuitively, it outputs 1 if SKf was correctly
generated as a function secret key for f .

The scheme has the following properties:

Definition 2. (Correctness) A verifiable functional encryption scheme VFE for F is correct if for
all f ∈ Fλ and all x ∈ Xλ

Pr

 (MPK,MSK)← Setup(1λ)
SKf ← KeyGen(MPK,MSK, f)

Dec(MPK, f,SKf ,Enc(MPK, x)) = f(x)

 = 1

Definition 3. (Verifiability) A verifiable functional encryption scheme VFE for F is verifiable if,
for all MPK ∈ {0, 1}∗, for all CT ∈ {0, 1}∗, there exists x ∈ X such that for all f ∈ F and
SK ∈ {0, 1}∗, if

VerifyCT(MPK,CT) = 1 and VerifyK(MPK, f,SK) = 1

then
Pr
[
Dec(MPK, f,SK,CT) = f(x)

]
= 1

Remark. Intuitively, verifiability states that each ciphertext (possibly associated with a ma-
liciously generated public key) should be associated with a unique message and decryption for a
function f using any possibly maliciously generated key SK should result in f(x) for that unique
message f(x) and nothing else (if the ciphertext and keys are verified by the respective algorithms).
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We also note that a verifiable functional encryption scheme should satisfy perfect correctness. Oth-
erwise, a non-uniform malicious authority can sample ciphertexts/keys from the space where it
fails to be correct. Thus, the primitives that we will use in our constructions are assumed to have
perfect correctness. Such primitives have been constructed before in the literature.

3.1 Indistinguishability Based Security

The indistinguishability based security for verifiable functional encryption is similar to the security
notion of a functional encryption scheme. For completeness, we define it below. We also consider a
{full/selective} CCA secure variant where the adversary, in addition to the security game described
below, has access to a decryption oracle which takes a ciphertext and a function as input and de-
crypts the ciphertext with an honestly generated key for that function and returns the output.
The adversary is allowed to query this decryption oracle for all ciphertexts of his choice except the
challenge ciphertext itself.
We define the security notion for a verifiable functional encryption scheme using the following game
(Full− IND) between a challenger and an adversary.

Setup Phase: The challenger (MPK,MSK)← vFE.Setup(1λ) and then hands over the master
public key MPK to the adversary.
Key Query Phase 1: The adversary makes function secret key queries by submitting functions
f ∈ Fλ. The challenger responds by giving the adversary the corresponding function secret key
SKf ← vFE.KeyGen(MPK,MSK, f).
Challenge Phase: The adversary chooses two messages (m0,m1) of the same size (each in Xλ))
such that for all queried functions f in the key query phase, it holds that f(m0) = f(m1). The
challenger selects a random bit b ∈ {0, 1} and sends a ciphertext CT← vFE.Enc(MPK,mb) to the
adversary.
Key Query Phase 2: The adversary may submit additional key queries f ∈Fλ as long as they
do not violate the constraint described above. That is, for all queries f , it must hold that
f(m0) = f(m1).
Guess: The adversary submits a guess b

′
and wins if b

′
= b. The adversary’s advantage in this

game is defined to be 2 ∗ |Pr[b = b
′
]− 1/2|.

We also define the selective security game, which we call (sel− IND) where the adversary outputs
the challenge message pair even before seeing the master public key.

Definition 4. A verifiable functional encryption scheme VFE is { selective, fully } secure if all
polynomial time adversaries have at most a negligible advantage in the {Sel− IND,Full− IND}
security game.

Functional Encryption: In our construction, we will use functional encryption as an underlying
primitive. Syntax of a functional encryption scheme is defined in [GGH+13]. It is similar to
the syntax of a verifiable functional encryption scheme except that it doesn’t have the VerifyCT
and VerifyK algorithms, the KeyGen algorithm does not take as input the master public key and
the decryption algorithm does not take as input the master public key and the function. Other
than that, the security notions and correctness are the same. However, in general any functional
encryption scheme is not required to satisfy the verifiability property.
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3.2 Simulation Based Security

Many variants of simulation based security definitions have been proposed for functional encryption.
In general, simulation security (where the adversary can request for keys arbitrarily) is shown to
be impossible [AGVW13]. We show that even the weakest form of simulation based security
is impossible to achieve for verifiable functional encryption. For completeness, simulation based
security of a verifiable functional encryption scheme is defined in Appendix B.

Theorem 3. There exists a family of functions, each of which can be represented as a polynomial
sized circuit, for which there does not exist any simulation secure verifiable functional encryption
scheme.

Proof. Let L be a NP complete language. Let R be the relation for this language. R : {0, 1}∗ ×
{0, 1}∗ → {0, 1}, takes as input a string x and a polynomial sized (in the length of x) witness w and
outputs 1 iff x ∈ L and w is a witness to this fact. For any security parameter λ, let us define a family
of functions Fλ as a family indexed by strings y ∈ {0, 1}λ. Namely, Fλ = {R(y, ·) ∀y ∈ {0, 1}λ}.

Informally speaking, any verifiable functional encryption scheme that is also simulation secure
for this family implies the existence of one message zero knowledge proofs for L. The proof system
is described as follows: the prover, who has the witness for any instance x of length λ, samples
a master public key and master secret key pair for a verifiable functional encryption scheme with
security parameter λ. Using the master public key, it encrypts the witness and samples a function
secret key for the function R(x, ·). The verifier is given the master public key, the ciphertext
and the function secret key. Informally, simulation security of the verifiable functional encryption
scheme provides computational zero knowledge while perfect soundness and correctness follow from
verifiability. A formal proof is shown in Appendix B.

In a similar manner, we can rule out even weaker simulation based definitions in the literature
where the simulator also gets to generate the function secret keys and the master public key.
Interestingly, IND secure VFE for the circuit family described in the above proof implies one message
witness indistinguishable proofs(NIWI) for NP and hence it is intuitive that we will have to make
use of NIWI in our constructions.

Theorem 4. There exists a family of functions, each of which can be represented as a polynomial
sized circuit, for which (selective) IND secure verifiable functional encryption implies the existence
of one message witness indistinguishable proofs for NP (NIWI).

We prove the theorem in Appendix B.

The definition for verifiable secret key functional encryption is given in Appendix B.2 and the
definition for verifiable multi-input functional encryption is given in Appendix C.1.2.

4 Construction of Verifiable Functional Encryption

In this section, we give a compiler from any Sel− IND secure public key functional encryption
scheme to a Sel− IND secure verifiable public key functional encryption scheme. The techniques
used in this construction have been elaborated upon in section ??. The resulting verifiable functional
encryption scheme has the same security properties as the underlying one - that is, the resulting
scheme is q-query secure if the original scheme that we started out with was q-query secure and
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so on, where q refers to the number of function secret key queries that the adversary is allowed to
make. We prove the following theorem :

Theorem 5. Let F = {Fλ}λ∈N be a parameterized collection of functions. Then, assuming there
exists a Sel− IND secure public key functional encryption scheme FE for the class of functions
F , a non-interactive witness indistinguishable proof system, a non-interactive perfectly binding
and computationally hiding commitment scheme, the proposed scheme VFE is a Sel− IND secure
verifiable functional encryption scheme for the class of functions F according to definition 3.1.

Notation : Without loss of generality, let’s assume that every plaintext message is of length λ
where λ denotes the security parameter of our scheme. Let (Prove,Verify) be a non-interactive
witness-indistinguishable (NIWI) proof system for NP, FE = (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec)
be a Sel− IND secure public key functional encryption scheme, Com be a statistically binding and
computationally hiding commitment scheme. Without loss of generality, let’s say Com commits to
a string bit-by-bit and uses randomness of length λ to commit to a single bit. We denote the length
of ciphertexts in FE by c-len = c-len(λ). Let len = 4 · c-len.
Our scheme VFE = (VFE.Setup,VFE.Enc,VFE.KeyGen,VFE.Dec,VFE.VerifyCT,
VFE.VerifyK) is as follows:

• Setup VFE.Setup(1λ) :
The setup algorithm does the following:

1. For all i ∈ [4], compute (MPKi,MSKi)← FE.Setup(1λ; si) using randomness si.

2. Set Z = Com(0len;u) and Z1 = Com(1;u1) where u,u1 represent the randomness used in
the commitment.

The master public key is MPK = ({MPKi}i∈[4],Z,Z1).
The master secret key is MSK = ({MSKi}i∈[4], {si}i∈[4], u, u1).

• Encryption VFE.Enc(MPK,m) :
To encrypt a message m, the encryption algorithm does the following:

1. For all i ∈ [4], compute CTi = FE.Enc(MPKi,m; ri).

2. Compute a proof π ← Prove(y, w) for the statement that y ∈ L using witness w where :
y = ({CTi}i∈[4], {MPKi}i∈[4],Z,Z1),

w = (m, {ri}i∈[4], 0, 0, 0|u|, 0|u1|).
L is defined corresponding to the relation R defined below.

Relation R :
Instance : y = ({CTi}i∈[4], {MPKi}i∈[4],Z,Z1)
Witness : w = (m, {ri}i∈[4], i1, i2, u, u1)
R1(y, w) = 1 if and only if either of the following conditions hold :

1. All 4 constituent ciphertexts encrypt the same message. That is,
∀i ∈ [4], CTi = FE.Enc(MPKi,m; ri)
(OR)

2. 2 constituent ciphertexts (corresponding to indices i1, i2) encrypt the same message, Z
is a commitment to all the constituent ciphertexts and Z1 is a commitment to 0. That
is,
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(a) ∀i ∈ {ı1, i2}, CTi = FE.Enc(MPKi,m; ri).

(b) Z = Com({CTi}i∈[4];u).

(c) Z1 = Com(0;u1).

The output of the algorithm is the ciphertext CT = ({CTi}i∈[4], π).
π is computed for statement 1 of relation R.

• Key Generation VFE.KeyGen(MPK,MSK, f) :
To generate the function secret key Kf for a function f , the key generation algorithm does
the following:

1. ∀i ∈ [4], compute Kfi = FE.KeyGen(MSKi, f ; ri).

2. Compute a proof γ ← Prove(y, w) for the statement that y ∈ L1 using witness w where:

y = ({Kfi }i∈[4], {MPKi}i∈[4],Z,Z1),

w = (f, {MSKi}i∈[4], {si}i∈[4], {ri}i∈[4], 03, 0|u|, u1).
L1 is defined corresponding to the relation R1 defined below.

Relation R1 :
Instance : y = ({Kfi }i∈[4], {MPKi}i∈[4],Z,Z1).
Witness : w = (f, {MSKi}i∈[4], {si}i∈[4], {ri}i∈[4], i1, i2, i3, u, u1)
R1(y, w) = 1 if and only if either of the following conditions hold :

1. Z1 is a commitment to 1, all 4 constituent function secret keys are secret keys for the
same function and are constructed using honestly generated public key-secret key pairs.

(a) ∀i ∈ [4], Kfi = FE.KeyGen(MSKi, f ; ri).

(b) ∀i ∈ [4], (MPKi,MSKi)← FE.Setup(1λ; si).

(c) Z1 = Com(1;u1).

(OR)

2. 3 of the constituent function secret keys (corresponding to indices i1, i2, i3) are keys for
the same function and are constructed using honestly generated public key-secret key
pairs, Z is a commitment to a set of ciphertexts CT such that each constituent ciphertext
in CT when decrypted with the corresponding function secret key gives the same output.
That is,

(a) ∀i ∈ {i1, i2, i3}, Kfi = FE.KeyGen(MSKi, f ; ri).

(b) ∀i ∈ {i1, i2, i3}, (MPKi,MSKi)← FE.Setup(1λ; si).

(c) Z = Com({CTi}i∈[4];u).

(d) ∃x ∈ Xλ such that ∀i ∈ [4], FE.Dec(CTi,K
f
i ) = x

The output of the algorithm is the function secret key Kf = ({Kfi }i∈[4], γ).
γ is computed for statement 1 of relation R1.

• Decryption VFE.Dec(MPK, f,Kf ,CT) :
This algorithm decrypts the ciphertext CT = ({CTi}i∈[4], π) using function secret key Kf =

({Kfi }i∈[4], γ) in the following way:
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1. Let y = ({CTi}i∈[4], {MPKi}i∈[4],Z,Z1) be the statement corresponding to proof π. If
Verify(y, π) = 0, then stop and output ⊥. Else, continue to the next step.

2. Let y1 = ({Kfi }i∈[4], {MPKi}i∈[4],Z,Z1) be the statement corresponding to proof γ. If
Verify(y1, γ) = 0, then stop and output ⊥. Else, continue to the next step.

3. For i ∈ [4], compute mi = FE.Dec(CTi,K
f
i ). If at least 3 of the mi’s are equal (let’s say

that value is m), output m. Else, output ⊥.

• VerifyCT VFE.VerifyCT(MPK,CT) :
Given a ciphertext CT = ({CTi}i∈[4], π), this algorithm checks whether the ciphertext was
generated correctly using master public key MPK. Let y = ({CTi}i∈[4], {MPKi}i∈[4],Z,Z1) be
the statement corresponding to proof π. If Verify(y, π) = 1, it outputs 1. Else, it outputs 0.

• VerifyK VFE.VerifyK(MPK, f,K) :
Given a function f and a function secret key K = ({Ki}i∈[4], γ), this algorithm checks whether
the key was generated correctly for function f using the master secret key corresponding to
master public key MPK. Let y = ({Ki}i∈[4], {MPKi}i∈[4],Z,Z1) be the statement correspond-
ing to proof γ. If Verify(y, γ) = 1, it outputs 1. Else, it outputs 0.

Correctness :
Correctness follows directly from the correctness of the underlying FE scheme, correctness of the
commitment scheme and the completeness of the NIWI proof system.

4.1 Verifiability

Consider any master public key MPK and any ciphertext CT = ({CTi}i∈[4], π) such that
VFE.VerifyCT(MPK,CT) = 1. Now, there are two cases possible for the proof π.

1. Statement 1 of relation R is correct :
Therefore, there exists m ∈ Xλ such that ∀i ∈ [4], CTi = FE.Enc(MPKi,m; ri) where ri is a
random string. Consider any function f and function secret key K = ({Ki}i∈[4], γ) such that
VFE.VerifyK(MPK, f,K) = 1. There are two cases possible for the proof γ.

(a) Statement 1 of relation R1 is correct :
Therefore, ∀i ∈ [4], Ki is a function secret key for the same function - f . That is,
∀i ∈ [4], Ki = FE.KeyGen(MSKi, f ; r′i) where r′i is a random string. Thus, for all i ∈ [4],
FE.Dec(CTi,Ki) = f(m). Hence, VFE.Dec(MPK, f,K,CT) = f(m).

(b) Statement 2 of relation R1 is correct :
Therefore, there exists 3 indices i1, i2, i3 such that Ki1 ,Ki2 ,Ki3 are function secret keys
for the same function - f . That is, ∀i ∈ {i1, i2, i3}, Ki = FE.KeyGen(MSKi, f ; r′i) where
r′i is a random string Thus, for all i ∈ {i1, i2, i3}, FE.Dec(CTi,Ki) = f(m). Hence,
VFE.Dec(MPK, f,K,CT) = f(m).

2. Statement 2 of relation R is correct:
Therefore, Z1 = Com(0;u1) and Z = Com({CTi}i∈[4];u) for some random strings u, u1.
Also, there exists 2 indices i1, i2 and a message m ∈ Xλ such that for i ∈ {i1, i2}, CTi =
FE.Enc(MPKi,m; ri) where ri is a random string. Consider any function f and function
secret key K = ({Ki}i∈[4], γ) such that VFE.VerifyK(MPK, f,K) = 1. There are two cases
possible for the proof γ.
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(a) Statement 1 of relation R1 is correct :
Then, it must be the case that Z1 = Com(1;u′1) for some random string u′1. However,
we already know that Z1 = Com(0;u1) and Com is a perfectly binding commitment
scheme. Thus, this scenario isn’t possible. That is, both VFE.VerifyCT(MPK,CT) and
VFE.VerifyK(MPK, f,K) can’t be equal to 1.

(b) Statement 2 of relation R1 is correct :
Therefore, there exists 3 indices i′1, i

′
2, i
′
3 such that Ki′1 ,Ki′2 ,Ki′3 are function secret keys

for the same function - f . That is, ∀i ∈ {i′1, i′2, i′3}, Ki = FE.KeyGen(MSKi, f ; r′i) where
r′i is a random string. Thus, by pigeonhole principle, there exists i∗ ∈ {i′1, i′2, i′3} such
that i∗ ∈ {i1, i2} as well. Also, Z = Com({CTi}i∈[4];u) and ∀i ∈ [4], FE.Dec(CTi,Ki)
is the same. Therefore, for the index i∗, FE.Dec(CTi∗ ,Ki∗) = f(m). Hence, ∀i ∈ [4],
FE.Dec(CTi,Ki) = f(m). Therefore, VFE.Dec(MPK, f,K,CT) = f(m).

4.2 Security Proof

We now prove that the proposed scheme VFE is Sel− IND secure. We will prove this via a series of
hybrid experiments H1, . . . ,H16 where H1 corresponds to the real world experiment with challenge
bit b = 0 and H16 corresponds to the real world experiment with challenge bit b = 1. The hybrids
are summarized below in Table 4.2.

We briefly describe the hybrids below. A more detailed description can be found in Appendix
E.

• Hybrid H1: This is the real experiment with challenge bit b = 0. The master public key
is MPK = ({MPKi}i∈[4],Z,Z1) such that Z = Com(0len;u) and Z1 = Com(1;u1) for random
strings u, u1. The challenge ciphertext is CT∗ = ({CT∗i }i∈[4], π∗), where for all i ∈ [4], CT∗i =
FE.Enc(MPKi,m0; ri) for some random string ri. π

∗ is computed for statement 1 of relation
R.

• Hybrid H2: This hybrid is identical to the previous hybrid except that Z is computed differ-
ently. Z = Com({CT∗i }i∈[4];u).

• Hybrid H3: This hybrid is identical to the previous hybrid except that for every func-
tion secret key Kf , the proof γ is now computed for statement 2 of relation R1 using
indices {1, 2, 3} as the set of 3 indices {i1, i2, i3} in the witness. That is, the witness is
w = (f,MSK1,MSK2,MSK3, 0

|MSK4|, s1, s2, s3,
0|s4|, r1, r2, r3, 0

|r4|, 1, 2, 3, u, 0|u1|).

• Hybrid H4: This hybrid is identical to the previous hybrid except that Z1 is computed
differently. Z1 = Com(0;u1).

• Hybrid H5: This hybrid is identical to the previous hybrid except that the proof π∗ in the
challenge ciphertext is now computed for statement 2 of relation R using indices {1, 2} as the
2 indices {i1, i2} in the witness. That is, the witness is w = (m, r1, r2, 0

|r3|, 0|r4|, 1, 2, u, u1).

• Hybrid H6: This hybrid is identical to the previous hybrid except that we change the fourth
component CT∗4 of the challenge ciphertext to be an encryption of the challenge message m1

(as opposed to m0). That is, CT∗4 = FE.Enc(MPK4,m1; r4) for some random string r4. Note
that the proof π∗ is unchanged and is still proven for statement 2 of relation R.
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Hybrid ({CT∗i }i∈[4]) π∗ {Kfi }i∈[4] γ Z Z1 Security

H1 (m0,m0,m0,m0) 1 (f, f, f, f) 1 Com(0) Com(1) -

H2 (m0,m0,m0,m0) 1 (f, f, f, f) 1 Com({CT∗i }i∈[4]) Com(1) Com-Hiding

H3 (m0,m0,m0,m0) 1 (f, f, f , f) 2 Com({CT∗i }i∈[4]) Com(1) NIWI

H4 (m0,m0,m0,m0) 1 (f, f, f , f) 2 Com({CT∗i }i∈[4]) Com(0) Com-Hiding

H5 (m0,m0,m0,m0) 2 (f, f, f , f) 2 Com({CT∗i }i∈[4]) Com(0) NIWI

H6 (m0,m0,m0,m1) 2 (f, f, f , f) 2 Com({CT∗i }i∈[4]) Com(0) IND-secure FE

H7 (m0,m0,m0,m1) 2 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(0) NIWI

H8 (m0,m0,m1,m1) 2 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(0) IND-secure FE

H9 (m0,m0,m1,m1) 2 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(0) NIWI

H10 (m0,m1,m1,m1) 2 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(0) IND-secure FE

H11 (m0,m1,m1,m1) 2 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(0) NIWI

H12 (m1,m1,m1,m1) 2 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(0) IND-secure FE

H13 (m1,m1,m1,m1) 1 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(0) NIWI

H14 (m1,m1,m1,m1) 1 (f, f, f, f) 2 Com({CT∗i }i∈[4]) Com(1) Com-Hiding

H15 (m1,m1,m1,m1) 1 (f, f, f, f) 1 Com({CT∗i }i∈[4]) Com(1) NIWI

H16 (m1,m1,m1,m1) 1 (f, f, f, f) 1 Com(0) Com(1) Com-Hiding

Table 5.2 : Here, (m0,m0,m0,m0) indicates the messages that are encrypted to form the chal-

lenge ciphertext {CT∗i }i∈[4]. Similarly for the column {Kfi }i∈[4]. The column π∗ (and γ) denote
the statement proved by the proof in relation R ( and R1). The text in red indicates the difference
from the previous hybrid. The text in blue denotes the indices used in the proofs π∗ and γ. That
is, the text in blue in the column ({CT∗i }i∈[4]) denotes the indices used in the proof π∗ and the

text in blue in the column ({Kfi }i∈[4]) denotes the indices used in the proof γ for every function

secret key Kf corresponding to function f . In some cases, the difference is only in the indices used
in the proofs π∗ or γ and these are not reflected using red.

• Hybrid H7: This hybrid is identical to the previous hybrid except that for every func-
tion secret key Kf , the proof γ is now computed for statement 2 of relation R1 using
indices {1, 2, 4} as the set of 3 indices {i1, i2, i3} in the witness. That is, the witness is
w = (f,MSK1,MSK2, 0

|MSK3|,MSK4, s1, s2, 0
|s3|,

s4, r1, r2, 0
|r3|, r4, 1, 2, 4, u, 0

|u1|).

• Hybrid H8: This hybrid is identical to the previous hybrid except that we change the third
component CT∗3 of the challenge ciphertext to be an encryption of the challenge message m1

(as opposed to m0). That is, CT∗3 = FE.Enc(MPK3,m1; r3) for some random string r3.
Note that the proof π∗ is unchanged and is still proven for statement 2 of relation R.

• Hybrid H9: This hybrid is identical to the previous hybrid except that the proof π∗ in
the challenge ciphertext is now computed for statement 2 of relation R using message m1

and indices {3, 4} as the 2 indices {i1, i2} in the witness. That is, the witness is w =
(m1, 0

|r1|, 0|r2|, r3, r4, 3, 4, u, u1).
Also, for every function secret key Kf , the proof γ is now computed for statement 2 of relation
R1 using indices {1, 3, 4} as the set of 3 indices {i1, i2, i3} in the witness. That is, the witness
is w = (f,MSK1, 0

|MSK2|,MSK3,MSK4, s1,
0|s2|, s3, s4, r1, 0

|r2|, r3, r4, 1, 3, 4, u, 0
|u1|).
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• Hybrid H10: This hybrid is identical to the previous hybrid except that we change the second
component CT∗2 of the challenge ciphertext to be an encryption of the challenge message m1

(as opposed to m0). That is, CT∗2 = FE.Enc(MPK2,m1; r2) for some random string r2.
Note that the proof π∗ is unchanged and is still proven for statement 2 of relation R.

• Hybrid H11: This hybrid is identical to the previous hybrid except that for every func-
tion secret key Kf , the proof γ is now computed for statement 2 of relation R1 using
indices {2, 3, 4} as the set of 3 indices {i1, i2, i3} in the witness. That is, the witness is
w = (f, 0|MSK1|,MSK2,MSK3,MSK4, 0

|s1|, s2, s3,
s4, 0

|r1|, r2, r3, r4, 2, 3, 4, u, 0
|u1|).

• Hybrid H12: This hybrid is identical to the previous hybrid except that we change the first
component CT∗1 of the challenge ciphertext to be an encryption of the challenge message m1

(as opposed to m0). That is, CT∗1 = FE.Enc(MPK1,m1; r1) for some random string r1. Note
that the proof π∗ is unchanged and is still proven for statement 2 of relation R.

• Hybrid H13: This hybrid is identical to the previous hybrid except that the proof π∗ in
the challenge ciphertext is now computed for statement 1 of relation R. The witness is
w = (m1, {ri}i∈[4], 0, 0, 0|u|, 0|u1|).

• Hybrid H14: This hybrid is identical to the previous hybrid except that Z1 is computed
differently. Z1 = Com(1;u1).

• Hybrid H15: This hybrid is identical to the previous hybrid except that for every function
secret key Kf , the proof γ is now computed for statement 1 of relation R1. The witness is
w = (f, {MSKi}i∈[4], {si}i∈[4], {ri}i∈[4], 03, 0|u|, u1).

• Hybrid H16: This hybrid is identical to the previous hybrid except that Z is computed
differently. Z = Com(0len;u). This hybrid is identical to the real experiment with challenge
bit b = 1.

Below we will prove that (H1 ≈c H2) and (H5 ≈c H6). The indistinguishability of other hybrids
will follow along the same lines and is described in Appendix E.

Lemma 1. (H1 ≈c H2). Assuming that Com is a (computationally) hiding commitment scheme,
the outputs of experiments H1 and H2 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the commitment Z
is computed. Let’s consider the following adversary ACom that interacts with a challenger C to
break the hiding of the commitment scheme. Also, internally, it acts as the challenger in the
security game with an adversary A that tries to distinguish between H1 and H2. ACom executes the
hybrid H1 except that it does not generate the commitment Z on it’s own. Instead, after receiving
the challenge messages (m0,m1) from A, it computes CT∗ = ({CT∗i }i∈[4], π∗) as an encryption of
message m0 by following the honest encryption algorithm as in H1 and H2. Then, it sends two
strings, namely (0len) and ({CT∗i }i∈[4]) to the outside challenger C. In return, ACom receives a
commitment Z corresponding to either the first or the second string. It then gives this to A. Now,
whatever bit b A guesses, ACom forwards the same guess to the outside challenger C. Clearly, ACom

is a polynomial time algorithm and breaks the hiding property of Com unless H1 ≈c H2.
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Lemma 2. (H5 ≈c H6). Assuming that FE is a Sel− IND secure functional encryption scheme, the
outputs of experiments H5 and H6 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the challenge ciphertext
is created. More specifically, in H5, the fourth component of the challenge ciphertext CT∗4 is com-
puted as an encryption of message m0, while in H6, CT

∗
4 is computed as an encryption of message

m1. Note that the proof π∗ remains same in both the hybrids.

Let’s consider the following adversary AFE that interacts with a challenger C to break the secu-
rity of the underlying FE scheme. Also, internally, it acts as the challenger in the security game with
an adversary A that tries to distinguish between H5 and H6. AFE executes the hybrid H5 except
that it does not generate the parameters (MPK4,MSK4) itself. It sets (MPK4) to be the public key
given by the challenger C. After receiving the challenge messages (m0,m1) from A, it forwards the
pair (m0,m1) to the challenger C and receives a ciphertext CT which is either an encryption of m0

or m1 using public key MPK4. AFE sets CT∗4 = CT and computes CT∗ = ({CT∗i }i∈[4], π∗) as the
challenge ciphertext as in H5. Note that proof π∗ is proved for statement 2 of relation R. It then
sets the public parameter Z = Com({CT∗i }i∈[4];u) and sends the master public key MPK and the
challenge ciphertext CT∗ to A.

Now, whatever bit bA guesses, AFE forwards the same guess to the outside challenger C. Clearly,
AFE is a polynomial time algorithm and breaks the security of the functional encryption scheme
FE unless H5 ≈c H6.

5 Construction of Verifiable Secret Key Functional Encryption

In this section, we give a compiler from any Sel− IND secure message hiding and function hiding
secret key functional encryption scheme to a Sel− IND secure message hiding and function hiding
verifiable secret key functional encryption scheme. The resulting verifiable functional encryption
scheme has the same security properties as the underlying one - that is, the resulting scheme is
q-query secure if the original scheme that we started out with was q-query secure and so on, where
q refers to the number of function secret key queries (or encryption queries) that the adversary is
allowed to make. We prove the following theorem.

Theorem 6. Let F = {Fλ}λ∈N be a parameterized collection of functions. Then, assuming there ex-
ists a Sel− IND secure message hiding and function hiding secret key functional encryption scheme
FE for the class of functions F , a non-interactive witness indistinguishable proof system, a non-
interactive perfectly binding and computationally hiding commitment scheme, the proposed scheme
VFE is a Sel− IND secure message hiding and function hiding verifiable secret key functional en-
cryption scheme for the class of functions F according to definition C.1.

Notation : Without loss of generality, let’s assume that every plaintext message is of length λ
where λ denotes the security parameter of our scheme and that the length of every function in Fλ is
the same. Let (Prove,Verify) be a non-interactive witness-indistinguishable (NIWI) proof system for
NP, FE = (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec) be a Sel− IND secure message hiding and function
hiding secret key functional encryption scheme, Com be a statistically binding and computationally
hiding commitment scheme. Without loss of generality, let’s say Com commits to a string bit-by-bit
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and uses randomness of length λ to commit to a single bit. We denote the length of ciphertexts in
FE by c-len = c-len(λ). Let the length of every function secret key in FE be k-len = k-len(λ). Let
lenCT = 5 · c-len and lenf = 5 · k-len.
Our scheme VFE = (VFE.Setup,VFE.Enc,VFE.KeyGen,VFE.Dec,VFE.VerifyCT,
VFE.VerifyK) is as follows:

• Setup VFE.Setup(1λ) :
The setup algorithm does the following:

1. For all i ∈ [5], compute (MSKi) ← FE.Setup(1λ; pi) and Si = Com(MSKi; si) using
randomness si.

2. Set ZCT = Com(0lenCT ; a) and Zf = Com(0lenf ; b) where a, b represents the randomness
used in the commitments.

3. For all i ∈ [3], set Zi = Com(1;ui) where ui represents the randomness used in the
commitment. Let’s denote u-len = |u1|+ |u2|+ |u3|.

The public parameters are PP = ({Si}i∈[5],ZCT,Zf , {Zi}i∈[3]).
The master secret key is MSK = ({MSKi}i∈[5], {pi}i∈[5], {si}i∈[5], a, b, {ui}i∈[3]).

• Encryption VFE.Enc(PP,MSK,m) :
To encrypt a message m, the encryption algorithm does the following:

1. For all i ∈ [5], compute CTi = FE.Enc(MSKi,m; ri).

2. Compute a proof π ← Prove(y, w) for the statement that y ∈ L using witness w where :
y = ({CTi}i∈[5],PP),
w = (m,MSK, {ri}i∈[5], 02, 5, 0).
L is defined corresponding to the relation R defined below.

Relation R :
Instance : y = ({CTi}i∈[5],PP)
Witness : w = (m,MSK, {ri}i∈[5], i1, i2, j, k)
R1(y, w) = 1 if and only if either of the following conditions hold :

1. 4 out of the 5 constituent ciphertexts (except index j) encrypt the same message and are
constructed using honestly generated secret keys. Also, Z1 is a commitment to 1. That
is,

(a) ∀i ∈ [5]/{j}, CTi = FE.Enc(MSKi,m; ri).

(b) ∀i ∈ [5]/{j}, Si = Com(MSKi; si) and MSKi ← FE.Setup(1λ; pi)

(c) Z1 = Com(1;u1)

(OR)

2. 2 constituent ciphertexts (corresponding to indices i1, i2) encrypt the same message and
are constructed using honestly generated secret keys. ZCT is a commitment to all the
constituent ciphertexts, Z2 is a commitment to 0 and Z3 is a commitment to 1. That is,

(a) ∀i ∈ {ı1, i2}, CTi = FE.Enc(MSKi,m; ri).

(b) ∀i ∈ {ı1, i2}, Si = Com(MSKi; si) and MSKi ← FE.Setup(1λ; pi)
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(c) ZCT = Com({CTi}i∈[5]; a).

(d) Z2 = Com(0;u2).

(e) Z3 = Com(1;u3).

(OR)

3. 4 out of 5 constituent ciphertexts (except for index k) encrypt the same message and are
constructed using honestly generated secret keys. Zf is a commitment to a set of function
secret keys K such that each constituent function secret key in K when decrypted with
the corresponding ciphertext gives the same output . That is,

(a) ∀i ∈ [5]/{k}, CTi = FE.Enc(MSKi,m; ri).

(b) ∀i ∈ [5]/{k}, Si = Com(MSKi; si) and MSKi ← FE.Setup(1λ; pi)

(c) Zf = Com({Ki}i∈[5]; b).
(d) ∃x ∈ Xλ such that ∀i ∈ [5], FE.Dec(CTi,Ki) = x

The output of the algorithm is the ciphertext CT = ({CTi}i∈[5], π).
π is computed for statement 1 of relation R.

• Key Generation VFE.KeyGen(PP,MSK, f) :
To generate the function secret key Kf for a function f , the key generation algorithm does
the following:

1. ∀i ∈ [5], compute Kfi = FE.KeyGen(MSKi, f ; ri).

2. Compute a proof γ ← Prove(y, w) for the statement that y ∈ L1 using witness w where:

y = ({Kfi }i∈[5],PP),
w = (f,MSK, {ri}i∈[5], 03, 5, 0).
L1 is defined corresponding to the relation R1 defined below.

Relation R1 :
Instance : y = ({Kfi }i∈[5],PP).
Witness : w = (f,MSK, {ri}i∈[5], i1, i2, j, k)
R1(y, w) = 1 if and only if either of the following conditions hold :

1. 4 out of 5 constituent function secret keys (except index j) are keys for the same function
and are constructed using honestly generated secret keys. Also, Z2 is a commitment to
1. That is,

(a) ∀i ∈ [5]/{j}, Kfi = FE.KeyGen(MSKi, f ; ri).

(b) ∀i ∈ [5]/{j}, Si = Com(MSKi; si) and MSKi ← FE.Setup(1λ; pi)

(c) Z2 = Com(1;u1)

(OR)

2. 4 out of 5 constituent function secret keys (except index k) are keys for the same function
and are constructed using honestly generated secret keys. ZCT is a commitment to a set
of ciphertexts CT such that each constituent ciphertext in CT when decrypted with the
corresponding function secret key gives the same output . That is,

(a) ∀i ∈ [5]/{k}, Kfi = FE.KeyGen(MSKi, f ; ri).
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(b) ∀i ∈ [5]/{k}, Si = Com(MSKi; si) and MSKi ← FE.Setup(1λ; pi)

(c) ZCT = Com(CT; a).

(d) ∃x ∈ Xλ such that ∀i ∈ [5], FE.Dec(CTi,K
f
i ) = x

(OR)

3. 2 constituent function secret keys (corresponding to indices i1, i2) are keys for the same
function and are constructed using honestly generated secret keys. Zf is a commitment to
all the constituent function secret keys, Z1 is a commitment to 0 and Z3 is a commitment
to 0. That is,

(a) ∀i ∈ {ı1, i2}, Kfi = FE.KeyGen(MSKi, f ; ri).

(b) ∀i ∈ {ı1, i2}, Si = Com(MSKi; si) and MSKi ← FE.Setup(1λ; pi)

(c) Zf = Com({Kfi }i∈[5]; b).
(d) Z1 = Com(0;u1).

(e) Z3 = Com(0;u3).

The output of the algorithm is the function secret key Kf = ({Kfi }i∈[5], γ).
γ is computed for statement 1 of relation R1.

• Decryption VFE.Dec(PP,Kf ,CT) :
This algorithm decrypts the ciphertext CT = ({CTi}i∈[5], π) using function secret key Kf =

({Kfi }i∈[5], γ) in the following way:

1. Let y = ({CTi}i∈[5],PP) be the statement corresponding to proof π. If Verify(y, π) = 0,
then stop and output ⊥. Else, continue to the next step.

2. Let y1 = ({Kfi }i∈[5],PP) be the statement corresponding to proof γ. If Verify(y1, γ) = 0,
then stop and output ⊥. Else, continue to the next step.

3. For i ∈ [5], compute mi = FE.Dec(CTi,K
f
i ). If at least 3 of the mi’s are equal (let’s say

that value is m), output m. Else, output ⊥.

• VerifyCT VFE.VerifyCT(PP,CT) :
Given a ciphertext CT = ({CTi}i∈[5], π), this algorithm checks whether the ciphertext was
generated correctly using the master secret key corresponding to the public parameters PP.
Let y = ({CTi}i∈[5],PP) be the statement corresponding to proof π. If Verify(y, π) = 1, it
outputs 1. Else, it outputs 0.

• VerifyK VFE.VerifyK(PP,K) :
Given a function secret key K = ({Ki}i∈[5], γ), this algorithm checks whether the key was
generated correctly for some function using the master secret key corresponding to pub-
lic parameters PP. Let y = ({Ki}i∈[5],PP) be the statement corresponding to proof γ. If
Verify(y, γ) = 1, it outputs 1. Else, it outputs 0.

Correctness :
Correctness follows directly from the correctness of the underlying FE scheme, correctness of the
commitment scheme and the completeness of the NIWI proof system.
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The proofs for verifiability and security are given in Appendix F.

Verifiable Multi-Input Functional Encryption : We also study verifiability in the case
of multi-input functional encryption. The construction (and proofs) of a verifiable multi-input
functional encryption scheme are given in Appendix F.3.

6 Verifiable Indistinguishability Obfuscation

In this section, we first we recall the notion of indistinguishability obfuscation that was first pro-
posed by [BGI+01] and then define the notion of verifiable indistinguishability obfuscation. For
indistinguishability obfuscation, intuitively, we require that for any two circuits C0 and C1 that
are “functionally equivalent” (i.e for all inputs x in the domain, C0(x) = C1(x), the obfuscation of
C0 must be computationally indistinguishable from the obfuscation of C1. Below, we present the
formal definition following the syntax of [GGH+13].

Definition 5. (Indistinguishability Obfuscation) A uniform PPT machine iO is called an indistin-
guishability obfuscator for a circuit class {Cλ}λ∈N if the following conditions are satisfied:

• Functionality :
For every λ ∈ N, every C ∈ Cλ , every input x to C :

Pr[(iO(C))(x) 6= C(x)] <= negl(|C|),

where the probability is over the coins of iO.

• Polynomial Slowdown :
There exists a polynomial q such that for every λ ∈ N and every C ∈ Cλ, we have that
|iO(C)| <= q(|C|).

• Indistinguishability :
For all PPT distinguishers D, there exists a negligible function α such that for every λ ∈ N,
for all pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for all inputs x, then

|Pr[D(iO(C0))]− Pr[D(iO(C1))]| <= α(λ)

.

Definition 6. ((L, C)−Restricted Verifiable Indistinguishability Obfuscation) Let C = {Cλ}λ∈N de-
note an ensemble where each Cλ is a finite collection of circuits. Let L be any language in NP
defined by a relation R satisfying the following two properties:

1. For any two circuits C0, C1 ∈ C, if there exists a string w such that
R(C0, C1, w) = 1, then C0 is equivalent to C1.

2. For any circuit C ∈ C, R(C,C, 0) = 1.

Let Xλ be the ensemble of inputs to circuits in Cλ. Let P = {Pλ}λ∈N be an ensemble where each Pλ
is a collection of predicates and each predicate P ∈ Pλ takes as input a circuit C ∈ Cλ and outputs
a bit. A verifiable indistinguishability obfuscation scheme consists of the following algorithms:
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• viO(1λ, C, P ∈ Pλ)→ Ĉ. viO is a PPT algorithm that takes as input a security parameter λ,
a circuit C ∈ Cλ and a predicate P in Pλ. It outputs an obfuscated circuit Ĉ.

• Eval(Ĉ, x, P ∈ Pλ)→ y. EvalP is a deterministic algorithm that takes as input an obfuscation
Ĉ, an input x and a predicate P in Pλ. It outputs a string y.

The scheme must satisfy the following properties :

• Functionality :
For every λ ∈ N, every C ∈ Cλ, every P ∈ Pλ such that P(C) = 1 and every input x to C :

Pr[Eval(viO(λ,C, P ), x, P ) 6= C(x)] = 0,

where the probability is over the coins of viO.

• Polynomial Slowdown :
There exists a polynomial q such that for every λ ∈ N, every C ∈ Cλ and every P ∈ Pλ, we
have that |viO(λ,C,P)| <= q(|C| + |P| + λ). We also require that the running time of Eval
on input (Ĉ, x,P) is polynomially bounded in |P |+ λ+ |Ĉ|

• Indistinguishability :
We define indistinguishability with respect to two adversaries A = (A1,A2). We place no
restriction on the running time of A1. On input 1λ A1 outputs two equivalent circuits (C0, C1)
in Cλ, such that (C0, C1) ∈ L. For all PPT distinguishers A2, there exists a negligible function
α such that for every λ ∈ N , for pairs of circuits (C0, C1) and for all predicates P ∈ Pλ, we
have that if C0(x) = C1(x) for all inputs x and P(C0) = P(C1), then

|Pr[A2(viO(λ,C0, P ))]− Pr[A2(viO(λ,C1, P ))]| ≤ negl(λ)

• Verifiability :
In addition to the above algorithms, there exists an additional deterministic polynomial time
algorithm VerifyO that takes as input a string in {0, 1}∗ and a predicate P ∈ Pλ. It outputs
1 or 0. We say that the obfuscator viO is verifiable if : For any P ∈ Pλ and Ĉ ∈ {0, 1}∗ , if
VerifyO(Ĉ,P) = 1, then there exists a circuit C ∈ Cλ such that P (C) = 1 and for all x ∈ Xλ,
Eval(Ĉ, x,P) = C(x).

6.1 Construction

Let C = {C}λ be the set of all polynomial sized circuits and let Leq be an NP language given by
some relation Req.
Relation Req:
Instance: C ′, D′

Witness: γ
Req(C

′, D′, π) = 1 implies that :

1. C ′ = D′ ∈ Cλ for some λ ∈ N. That is, both circuits are equal. (OR)

2. C ′, D′ ∈ Cλ, and there exists a witness γ of size poly(|C ′|, |D′|) proving that C ′ is functionally
equivalent to D′.
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We now construct an (Leq, C)−restricted verifiable indistinguishability obfuscation scheme. Let iO
be a perfectly correct indistinguishability obfuscator and (Prove,Verify) be a NIWI for NP. Formally,
we prove the following theorem:

Theorem 7. Assuming NIWI is a witness indistinguishable proof system and iO is a secure indis-
tinguishability obfuscator for Cλ, the proposed scheme viO is a secure (Leq, C)−restricted verifiable
indistinguishability obfuscator.

viO(1λ,C,P): The obfuscator does the following.

• Compute Ci = iO(C; ri) ∀i ∈ [3].

• Compute a NIWI proof π for the following statement (P, C1, C2, C3) ∈ L using witness
(1, 2, C, C, r1, r2, 0) where L is an NP language defined by the following relation R1 where
Relation R1

Instance: y = (P, C1, C2, C3)
Witness: w = (i, j, Ci, Cj , ri, rj , γ)
R1(y, w) = 1 if and only if:

1. Ci = iO(Ci; ri) and Cj = iO(Cj ; rj) where i 6= j and i, j ∈ [3]. (AND)

2. P(Ci) = P(Cj) = 1 (AND)

3. Req(Ci, Cj , γ) = 1.

• Output (C1, C2, C3, π) as the obfuscation.

Eval(O = (C1,C2,C3, π),x,P) : To evaluate:

• Verify the proof π. Output ⊥ if the verification fails.

• Otherwise, output the majority of {Ci(x)}i∈[3].

We now investigate the properties of this scheme.

Correctness: By completeness of NIWI and correctness of the obfuscator iO it is straightforward
to see that our obfuscator is correct.

Verifiability: We now present the algorithm VerifyO. It takes as input an obfuscation (C1, C2, C3, π)
and a predicate P. It outputs 1 if π verifies and 0 otherwise. Note that if π verifies then there are
two indices i, j ∈ [3] such that Ci (Cj) is an iO obfuscation of some circuit Ci (Cj) and it holds that
P(Ci) = P(Cj) = 1. Also, either Ci = Cj or Ci is equivalent to Cj (due to the soundness of NIWI).
Hence, the evaluate algorithm always outputs Ci(x) on any input x due to perfect correctness of iO.

Security Proof :
Let P be a predicate and (C0, C1) be any two equivalent circuits in Cλ such that P (C0) = P (C1) = 1
and there exists a string γ1 such that Req(C0, C1, γ1) = 1. Let (C1, C2, C3, π) be the challenge
obfuscated circuit. We now define indistinguishable hybrids such that the first hybrid (Hybrid0)
corresponds to the real world security game where the challenger obfuscates C0 and the final hybrid
(Hybrid5) corresponds to the security game where the challenger obfuscates C1.
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• Hybrid0 : In this hybrid, Ci = iO(C0; ri) ∀i ∈ [3] and (1, 2, C0, C0, r1, r2, 0) is used as a
witness to compute π.

• Hybrid1 : This hybrid is same as the previous hybrid except that C3 is computed as C3 =
iO(C1; r3).

• Hybrid2 : This hybrid is same as the previous hybrid except that the witness used to compute
π is(1, 3, C0, C1, r1, r2, γ1) where γ1 is the witness for the statement (C0, C1) ∈ Leq.

• Hybrid3 : This hybrid is identical to the previous hybrid except that C2 is computed as
C2 = iO(C1; r2).

• Hybrid4 : This hybrid is same as the previous hybrid except that the witness used to compute
π is (2, 3, C1, C1, r1, r2, 0).

• Hybrid5 : This hybrid is identical to the previous hybrid except that C1 = iO(C1; r1). This
hybrid corresponds to the real world security game where the challenger obfuscates C1.

Now, we prove indistinguishability of the hybrids.

Lemma 3. Assuming iO is a secure indistinguishability obfuscator for Cλ, Hybrid0 is computation-
ally indistinguishable from Hybrid1.

Proof. Note that the only difference between Hybrid0 and Hybrid1 is the way C3 is generated. In
Hybrid0, it is generated as an obfuscation of C0, while in Hybrid1 it is generated as an obfuscation
of C1. Since C0 and C1 are equivalent the lemma now follows from the security of iO.

Lemma 4. Assuming NIWI is a witness indistinguishable proof system, Hybrid1 is computationally
indistinguishable from Hybrid2.

Proof. Note that the only difference between Hybrid1 and Hybrid2 is the way in which π is generated.
In Hybrid1 it uses (1, 2, C0, C0, r1, r2, 0) as its witness while in Hybrid2 it uses (1, 3, C0, C1, r1, r2, γ1)
as its witness where γ1 is the witness for the instance (C0, C1) satisfying the relation Req. The
lemma now follows due to the witness indistinguishability of NIWI.

Lemma 5. Assuming iO is a secure indistinguishability obfuscator for Cλ, Hybrid2 is computation-
ally indistinguishable from Hybrid3.

Proof. Note that the only difference between Hybrid2 and Hybrid3 is the way C2 is generated. In
Hybrid2, it is generated as an obfuscation of C0, while in Hybrid3 it is generated as an obfuscation
of C1. Since C0 and C1 are equivalent the lemma now follows from the security of iO.

Lemma 6. Assuming NIWI is a witness indistinguishable proof system, Hybrid3 is computationally
indistinguishable from Hybrid4.

Proof. Note that the only difference between Hybrid3 and Hybrid4 is the way π is generated. In
Hybrid3 it uses (1, 3, C0, C1, r1, r3, γ1) as its witness while in Hybrid4 it uses (2, 3, C1, C1, r2, r3, 0) as
its witness where γ1 is the witness for the instance (C0, C1) satisfying the relation Req. The lemma
now follows due to the witness indistinguishability of NIWI.
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Lemma 7. Assuming iO is a secure indistinguishability obfuscator for Cλ, Hybrid4 is computation-
ally indistinguishable from Hybrid5.

Proof. Note that the only difference between Hybrid4 and Hybrid5 is the way C1 is generated. In
Hybrid4 it is generated as an obfuscation of C0, while in Hybrid5 it is generated as an obfuscation
of C1. Since C0 and C1 are equivalent the lemma now follows from the security of iO.
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[LRY16] Benôıt Libert, Somindu Ramanna, and Moti Yung. Functional commitment schemes:
From polynomial commitments to pairing-based accumulators from simple assump-
tions. In ICALP 2016, 2016.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with
general relations from the decisional linear assumption. In CRYPTO, 2010.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In CCS, 2010.

[SS11] Amit Sahai and Hakan Seyalioglu. Fully secure accountable-authority identity-based
encryption. In PKC, 2011.

[SSW09] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems.
In TCC, 2009.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
2005.

[SW08] Amit Sahai and Brent Waters. Slides on functional encryption, powerpoint presenta-
tion. 2008.

[Tak14] Katsuyuki Takashima. Expressive attribute-based encryption with constant-size ci-
phertexts from the decisional linear assumption. In SCN, 2014.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In EURO-
CRYPT, 2005.

A Preliminaries

A.1 Public Key Encryption

A public key encryption scheme PKE over a message space X = Xλ consists of three algorithms
(PKE.Setup,PKE.Enc,PKE.Dec). Here, Xλ denotes the set of all strings of length λ. The algorithm
PKE.Setup takes the security parameter 1λ as input and outputs the public key pk and secret key
sk of the scheme. The algorithm PKE.Enc takes the public key pk and a message x ∈ Xλ as input
and outputs a ciphertext c that is an encryption of x. The algorithm PKE.Dec takes the secret key
sk and a ciphertext c as input and outputs a message x which is the decryption of c.

• Correctness: A public key encryption scheme PKE is said to be correct if for all messages
x ∈ Xλ :

Pr[(pk, sk)← PKE.Setup(1λ);PKE.Dec(sk,PKE.Enc(pk, x; r)) 6= x] 6 negl(λ)

• Semantic Security: A public key encryption scheme PKE is said to be semantically secure
if for all PPT adversaries A, the following holds:

Pr

[
b = b′

∣∣∣∣∣ (pk, sk)← PKE.Setup(1λ); (x0, x1, st)← A(1λ, pk);

b
$←− {0, 1}; c = PKE.Enc(pk, xb; r); b

′ ← A(c, st)

]
6

1

2
+ negl(λ)

30



A.2 Commitment Schemes

A commitment scheme Com is a PPT algorithm that takes as input a string x and randomness r
and outputs c ← Com(x, r). A perfectly binding and computationally hiding commitment scheme
must satisfy the following properties:

• Perfectly Binding: Two different strings cannot have the same commitment.
More formally, ∀x1 6= x2, r1, r2, Com(x1; r1) 6= Com(x2; r2).

• Computational Hiding: For all strings x0 and x1 (of the same length), for all non-uniform
PPT adversaries A, we have that:
|Pr[A(Com(x0) = 1]− Pr[A(Com(x1) = 1]| ≤ negl(λ)

In our constructions, we will use a standard non interactive perfectly binding and computationally
hiding commitment scheme. Such a commitment scheme can be based on one way permutations.

B Simulation Secure Verifiable Functional Encryption

In this section, we first formally define simulation secure verifiable functional encryption.

Definition 7. (SIM-Security) Let VFE denote a functional encryption scheme for a function family
F . For every PPT adversary B = (B1,B2) and a PPT simulator Sim, consider the following two
experiments:

ExprealvFE,B(1λ) ExpidealvFE,B,Sim(1λ)

{vFE.Setup(1λ)→ (MPK,MSK)}

B1(MPK)→ (f, stateB1)

{SKf ← vFE.KeyGen(MPK,MSK, f)}

B2(stateB1 ,SKf)→ (x, stateB2)

vFE.Enc(MPK, x)→ CT Sim(MPK, f,SKf , f(x))→ C̃T
Output (CT, stateB2) Output (C̃T, stateB2)

The scheme is said to be (single-key) SIM-secure if there exists a PPT simulator Sim such that
for all PPT adversaries (B1,B2), the outcomes of the two experiments are computationally indis-
tinguishable:

{ExprealvFE,B(1λ)}λ∈N ≈c {ExpidealvFE,B,Sim(1λ)}λ∈N

B.1 Proof of Theorem 3

Consider the following proof system (P,V) for an NP language L with relation R (modeled as a
circuit).

• P(x,w): Run (MPK,MSK)← vFE.Setup(1|x|).
Output π = (MPK,VFE.Enc(MPK, w),VFE.KeyGen(MPK,MSK,R(x, ·)).
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• V(π, x): Parse π = (MPK,CT,SKR(x,·)); if VFE.Dec(MPK,R(x, ·),SKR(x,·),CT) = 1, output
accept. Else, output reject.

We now examine the properties of the proof system described above.
(Perfect) Completeness: This follows from the correctness of the underlying verifiable functional
encryption scheme. An honest prover will run the setup of the VFE scheme honestly and will also
run the encryption and key generation honestly. Such a proof will always be accepted.
(Perfect) Soundness: Suppose x /∈ L and there is a proof π = (MPK,SKR(x,·),CT) that is accepted
by the receiver. Therefore, VFE.Dec(MPK,R(x, ·), SKR(x,·),CT) = 1. By the verifiability property,
this implies that the underlying message in the ciphertext is a witness to x ∈ L.
(Computational) Zero Knowledge: Due to the existence of the simulator Sim, the simulated
proof for any statement can be generated as follows:

1. Compute (MPK,MSK)← VFE.Setup(1|x|) and SK← VFE.KeyGen(MSK,R(x, ·)).

2. Compute C̃T← Sim(MPK,R(x, ·),SK, 1).

3. Output (MPK, C̃T,SK).

Note that by the definition of simulation based security, the simulated proof is computationally
indistinguishable from a genuine proof. Thus, simulation secure verifiable functional encryption
implies the existence of one message zero knowledge for NP, which is known to be impossible.
Hence, proved.

B.2 Proof of Theorem 4

Let the desired family of circuits Cλ and the proof system be the same as described in the previous
theorem. Soundness and completeness follow directly. It only remains to prove computational
witness indistinguishability of the proof system. If there is an adversary B that breaks witness
indistinguishability of the proof system, we construct an adversary A that breaks the security of
the verifiable functional encryption scheme. The adversary A sends (w0,w1) i.e. two witnesses for
x to the challenger for the VFE scheme and gets MPK and CT in return (where CT is either an
encryption of w0 or an encryption of w1). Then, A queries for the function key SK corresponding to
the function R(x, ·) to the verifiable functional encryption challenger. A sends (MPK,K,CT) to the
NIWI adversary B and outputs whatever B outputs. Note that if the advantage of A in breaking
the security of the functional encryption scheme is non-negligible, then so is the advantage of B in
breaking the witness indistinguishability of the proof system.

C Verifiable Secret Key Functional Encryption

In this section, we define verifiable secret key functional encryption. Let X = {Xλ}λ∈N and
Y = {Yλ}λ∈N denote ensembles where each Xλ and Yλ is a finite set. Let F = {Fλ}λ∈N denote an
ensemble where each Fλ is a finite collection of functions, and each function f ∈ Fλ takes as input
a string x ∈ Xλ and outputs f(x) ∈ Yλ. Similar to a secret key functional encryption scheme, a ver-
ifiable secret key functional encryption scheme VFE = (Setup,Enc,KeyGen,Dec,VerifyCT,VerifyK)
consists of the following polynomial time algorithms:
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• Setup(1λ). The setup algorithm takes as input the security parameter λ and outputs the
public parameters PP and the master secret key MSK.

• Enc(PP,MSK, x) → CT. The encryption algorithm takes as input a message x ∈ Xλ, the
public parameters PP and the master secret key MSK. It outputs a ciphertext CT.

• KeyGen(PP,MSK, f)→ SKf . The key generation algorithm takes as input a function f ∈ Fλ,
the public parameters PP and the master secret key MSK. It outputs a function secret key
SKf .

• Dec(PP,SKf ,CT) → y or ⊥. The decryption algorithm takes as input the public parameters
PP, a function secret key SKf and a ciphertext CT. It either outputs a string y ∈ Y or ⊥.
Informally speaking, PP is given to the decryption algorithm for verification purpose.

• VerifyCT(PP,CT) → 1/0. Takes as input the public parameters PP and a ciphertext CT. It
outputs 0 or 1. Intuitively, it outputs 1 if CT was correctly generated using the master secret
key MSK for some message x.

• VerifyK(PP,SK) → 1/0. Takes as input the public parameters PP, and a function secret key
SK. It outputs either 0 or 1. Intuitively, it outputs 1 if SK was correctly generated as a
function secret key for some function.

The scheme has the following properties:

Definition 8. (Correctness) A verifiable secret key functional encryption scheme VFE for F is
correct if for all f ∈ Fλ and all x ∈ Xλ

Pr

 (PP,MSK)← Setup(1λ)
SKf ← KeyGen(PP,MSK, f)

Dec(PP, SKf ,Enc(PP,MSK, x)) = f(x)

 = 1

Definition 9. (Verifiability) A verifiable secret key functional encryption scheme VFE for F is
verifiable if, for all PP ∈ {0, 1}∗, for all CT ∈ {0, 1}∗, there exists x ∈ X and for all SK ∈ {0, 1}∗,
there exists f ∈ F such that: if

VerifyCT(PP,CT) = 1 and VerifyK(PP, SK) = 1

then
Pr
[
Dec(PP,SK,CT) = f(x)

]
= 1

.

Remark: Note that unlike in the public key setting, the decryption algorithm doesn’t take as
input the function f corresponding to the secret key because we want our scheme to also satisfy
function hiding along with message hiding (defined later). Function hiding is trivially broken if the
decryption algorithm takes a function f as input.
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C.1 Indistinguishability based Security

C.1.1 Message Hiding

The indistinguishability based security notion for message hiding in a verifiable secret key func-
tional encryption is similar to the security notion for message hiding of a secret key functional
encryption scheme. For completeness, we define it below. We also consider a {full/selective} CCA
secure variant where the adversary, in addition to the security game described below, has access to
a decryption oracle which takes a ciphertext and a function as input and decrypts the ciphertext
with an honestly generated key for that function and returns the output. The adversary is allowed
to query this decryption oracle for all ciphertexts of his choice except the challenge ciphertext itself.
We define the security notion for message hiding in a verifiable secret key functional encryption
scheme using the following game (Full− IND) message hiding between a challenger and an adversary.
Setup Phase: The challenger runs the setup algorithm and generates (PP,MSK)← VFE.Setup(1λ).
The challenger then hands over the public parameters PP to the adversary. The adversary has ac-
cess to two oracles which it can query in any interleaved fashion.
Function Secret Key Oracle: The adversary makes function secret key queries by submitting
functions f ∈ Fλ. The challenger responds by giving the adversary the corresponding function
secret key SKf ← vFE.KeyGen(PP,MSK, f).
Encryption Oracle: The adversary queries with a message m ∈ Xλ and gets back a ciphertext
CT← vFE.Enc(PP,MSK,m).
Challenge Phase: The adversary chooses two messages (m0,m1) of the same size (each in Xλ)
such that for all queried functions f to the function secret key oracle, it holds that f(m0) = f(m1).
The challenger selects a random bit b ∈ {0, 1} and sends a ciphertext CT← VFE.Enc(PP,MSK,mb)
to the adversary.
Function Secret Key Oracle: The adversary may submit additional function queries f ∈Fλ as
long as they do not violate the constraint described above. That is, for all queries f , it must hold
that f(m0) = f(m1).
Encryption Oracle: The adversary may submit additional message queries.
Guess: The adversary submits a guess b

′
and wins if b

′
= b. The adversary’s advantage in this

game is defined to be 2 ∗ |Pr[b = b
′
]− 1/2|.

We also define the selective security game, which we call (sel− IND) where the adversary outputs
the challenge message pair even before seeing the public parameters.

Definition 10. A secret key verifiable functional encryption scheme VFE is { selective, fully }
secure message hiding if all polynomial time adversaries have at most a negligible advantage in the
{Sel− IND,Full− IND} message hiding security game.

One can also consider (q1, q2) secure secret-key VFE where the adversary is allowed upto q1 and
q2 queries to the oracles respectively. Our results are general and directly extend to these restricted
security models also.

C.1.2 Function Hiding

The indistinguishability based security notion for function hiding in a verifiable secret key func-
tional encryption is similar to the security notion for function hiding of a secret key functional
encryption scheme[SSW09, AAB+13]. For completeness, we define it below. We also consider a
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{full/selective} CCA secure variant where the adversary, in addition to the security game described
below, has access to a decryption oracle which takes a ciphertext and a function as input and de-
crypts the ciphertext with an honestly generated key for that function and returns the output. The
adversary is allowed to query this decryption oracle for all function secret keys of his choice except
the challenge function secret key itself.
We define the security notion for function hiding in a verifiable secret key functional encryption
scheme using the following game (Full− IND) function hiding between a challenger and an adversary.
Setup Phase: The challenger runs the setup algorithm and generates (PP,MSK)← VFE.Setup(1λ).
The challenger then hands over the public parameters PP to the adversary. The adversary has ac-
cess to two oracles which it can query in any interleaved fashion.
Function Secret Key Oracle: The adversary makes function secret key queries by submitting
functions f ∈ Fλ. The challenger responds by giving the adversary the corresponding function
secret key SKf ← VFE.KeyGen(PP,MSK, f).
Encryption Oracle: The adversary queries with a message m ∈ Xλ and gets back a ciphertext
CT← VFE.Enc(PP,MSK,m).
Challenge Phase: The adversary chooses two functions (f0, f1) of the same size (each in Fλ) such
that for all queried messages m to the encryption oracle, it holds that f0(m) = f1(m). The challenger
selects a random bit b ∈ {0, 1} and sends a function secret key SK← VFE.KeyGen(PP,MSK, fb) to
the adversary.
Function Secret Key Oracle: The adversary may submit additional function queries.
Encryption Oracle: The adversary may submit additional message queries m ∈ Xλ as long as
they do not violate the constraint described above. That is, for all queries m, it must hold that
f0(m) = f1(m).
Guess: The adversary submits a guess b

′
and wins if b

′
= b. The adversary’s advantage in this

game is defined to be 2 ∗ |Pr[b = b
′
]− 1/2|.

We also define the selective security game, which we call (sel− IND) where the adversary outputs
the challenge function pair even before seeing the public parameters.

Definition 11. A verifiable secret key functional encryption scheme VFE is { selective, fully }
secure function hiding if all polynomial time adversaries have at most a negligible advantage in the
{Sel− IND,Full− IND} function hiding security game.

Again, one can also consider (q1, q2) secure secret-key VFE where the adversary is allowed upto
q1 and q2 queries to the oracles respectively. Our results are general and directly extend to these
restricted security models also.

D Verifiable Multi-Input Functional Encryption

The issue of verifiability also applies to the setting of multi-input functional encryption [GGG+,
BGJS15, GJO15]. The syntax for verifiable multi-input functional encryption for a family of func-
tions F is similar to that of multi-input functional encryption except that it also has an additional
verifiability property. For completeness sake, we describe the syntax and security notions here. We
borrow some notations from [GGG+]. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote ensembles where
each Xλ and Yλ is a finite set. Let F = {Fλ}λ∈N denote an ensemble where each Fλ is a finite
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collection of n-ary functions. Each f ∈ Fλ takes as input n strings (x1, .., xn) where each xi ∈ Xλ
and outputs f(x1, .., xn) ∈ Yλ. We now describe the algorithms.

• Setup(1λ, n): is a PPT algorithm that takes as input the security parameter λ and the function
arity n. It outputs the public parameters PP, n encryption keys (EK1, ...,EKn) and the master
secret key MSK.

• Enc(PP,EKi, x): is a PPT algorithm that takes as input the public parameters PP, an en-
cryption key EKi ∈ (EK1, ..,EKn) and an input message x ∈ Xλ. It outputs a ciphertext CT
for message x corresponding to index i.

• KeyGen(PP,MSK, f): is a PPT algorithm that takes as input the public parameters PP, the
master secret key MSK and an n−ary function f ∈ Fλ. It outputs a function secret key SKf
.

• Dec(PP, f,SKf ,CT1, ..,CTn) : is a deterministic algorithm that takes as input the public
parameters PP, a function f , a function secret key SKf and n ciphertexts CT1, ..,CTn. It
outputs a string y ∈ Yk.

• VerifyCT(PP, i,CT)→ 1/0; takes as input a public parameter, cipher-text and an index i ∈ [n]
and outputs in {0, 1}

• VerifyK(PP, f,K)→ 1/0; takes as input a public parameter, a function and a key and outputs
in {0, 1}.

The scheme has the following properties:
Correctness. A verifiable multi-input functional encryption scheme vMIFE for F is correct if for
all f ∈ Fλ and all (x1, ..., xn) ∈ X nλ

Pr[(PP, ~EK,MSK)← vMIFE.Setup(1λ, n); skf ← KeyGen(PP,MSK, f);

Dec(PP, f, skf ,Enc(PP,EK1, x1) . . .Enc(PP,EKn, xn)) = f(x1, ..., xn)] = 1

Where the probability is taken over the coins of all these algorithms.

Definition 12. (Verifiability) A verifiable multi-input functional encryption scheme vMIFE for F
is verifiable if it holds that,

∀PP ∈ {0, 1}∗, ∀CTα1 , . . .CTαn ∈ {0, 1}∗, ∃xα1 , . . . xαn ∈ Xλ such that ∀ n-ary functions f ∈ Fλ
and SK ∈ {0, 1}∗,

If VerifyK(PP, f, sk) = 1 and VerifyCT(PP, i,CTαi) = 1 for all i ∈ [n] then,

Pr
[
Dec(PP, f,SK,CTα1 , ..,CTαn) = f(xα1 , .., xαn)

]
= 1

In the past, both simulation based and indistinguishability based definitions have been studied
for functional encryption. As with verifiable single input functional encryption, simulation security
is impossible to achieve in the multi-input setting and hence we restrict ourselves only to the
indistinguishability based security notion. We now describe the indistinguishability based security
definition for a verifiable multi-input functional encryption scheme (which is similar to the security
definition of a multi-input functional encryption [GGG+]).
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Definition 13. Let {f} be any set of functions f ∈ Fκ. Let [n] = {1, .., n} and I ⊆ [n]. Let ~X0

and ~X1 be a pair of input vectors, where ~Xb = {xb1,j , .., xbn,j}
q
j=1. We say that F and (X0, X1) are

I-compatible if they satisfy the following property: For every f ∈ {f}, every I
′

= {i1, .., it} ⊆ I,
every j1, .., jn−t ∈ [q] and every x

′
i1
, .., x

′
it
∈ Xκ,

f(< x0i1,j1 , .., x
0
in−t,jn−t

, x
′
i1 , .., x

′
it >) = f(< x1i1,j1 , .., x

1
in−t,jn−t

, x
′
i1 , .., x

′
it >)

where < yi1 , ..., yin > denotes a permutation of the values yi1 , .., yin such that the value yij is mapped
to the lth location if yij is the lth input (out of n inputs) to f .

IND-Secure vMIFE: Our security definition is parametrized by two variables t and q, where
t denotes the number of encryption keys known to the adversary, and q denotes the number of
challenge messages per encryption key. We are now ready to present our formal definition for
(t, q)-IND-secure verifiable multi-input functional encryption.

Definition 14. (Indisitinguishability based security). We say that a multi-input functional en-
cryption scheme vMIFE for for n ary functions F is (t, q)-IND-secure if for every PPT adversary
A = (A0,A1,A2), the advantage of A defined as in the figure 1.

AdvvMIFE,IND
A (1λ) = |Pr[INDvMIFE

A ]− 1/2|

is negl(λ), where:

INDvMIFE
A (1κ)

(I, st0)← A0(1λ) where |I| = t

(PP, ~EK,MSK)← vMIFE.Setup(1λ)

( ~X0, ~X1, st1)← AvMIFE.Keygen(PP,MSK,·)
1 (st0,PP, ~EKI) where ~X l = {xl1,j , .., xln,j}

q
j=1

d← {0, 1}; CTi,j ← vMIFE.Enc(PP,EKi, x
d
i,j) ∀i ∈ [n], j ∈ [q]

d
′ ← AvMIFE.KeyGen(PP,MSK,·)

2 (st1, ~CT)

Output (d = d
′
)

Figure 1: Security definition for vMIFE

In the above experiment, we require:

• Let {f} denote the entire set of key queries made by A1. Then, the challenge message vectors
~X0 and ~X1 chosen by A1 must be I−compatible with {f}.

• The key queries {g} made by A2 must be I-compatible with ~X0 and ~X1

We also consider selective indistinguishability-based security for verifiable multi-input functional
encryption. Formally, (t, q)-sel-IND-security is defined in the same manner as above, except that

the adversary A1 is required to choose the challenge message vectors ~X0, ~X1 before the setup is
performed by the challenger. We omit the formal definition to avoid repetition.
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E Security Proof for Public Key Verifiable Functional Encryption

We now prove that the scheme VFE proposed in section 4 is Sel− IND secure. We will prove this
via a series of hybrid experiments H1, . . . ,H16 where H1 corresponds to the real world experiment
with challenge bit b = 0 and H16 corresponds to the real world experiment with challenge bit b = 1.

Before describing the hybrids, we first describe a set of experiments that can later be instantiated
to construct the hybrids.

• Experiment Exp1(λ, b, bz):
The experiment takes as input two variables b and bz.

1. Adversary sends challenge messages (m0,m1) to the challenger.

2. Challenger runs VFE.Setup(1λ) to produce MPK = ({MPKi}i∈[4],Z,Z1) and MSK =
({MSKi}i∈[4], {si}i∈[4], u, u1).

3. Challenger does the following:

(a) For all i ∈ [4], compute CT∗i = FE.Enc(MPKi,mb; ri).

(b) If bz = 1, reinitialize Z as Z = Com({CT∗i }i∈[4];u).

(c) Compute a proof π∗ ← Prove(y, w) for the statement that y ∈ L using witness w
where :
y = ({CT∗i }i∈[4], {MPKi}i∈[4],Z,Z1) and w = (m, {ri}i∈[4], 0, 0, 0|u|, 0|u1|).
The language L and the corresponding relation R are defined in the protocol in
Section 4.

(d) The challenge ciphertext is CT∗ = ({CT∗i }i∈[4], π∗) where the proof π∗ is computed
for statement 1 of relation R.

4. Challenger sends MPK and challenge ciphertext CT∗ to the adversary.

5. For every function secret key query f made by the adversary, the challenger does the
following:

(a) ∀i ∈ [4], compute Kfi = FE.KeyGen(MSKi, f ; ri).

(b) Compute a proof γ ← Prove(y, w) for the statement that y ∈ L1 using witness w
where:
y = ({Kfi }i∈[4], {MPKi}i∈[4],Z,Z1) and w = (f, {MSKi}i∈[4], {si}i∈[4], {ri}i∈[4], 03, 0|u|, u1).
The language L1 and the corresponding relation R1 are defined in the protocol in
Section 4.

(c) The function secret key is Kf = ({Kfi }i∈[4], γ) where γ is computed for statement 1

of relation R1. Kf is sent to the adversary.

6. Finally, the adversary makes a guess b′ and wins if b = b′.

• Experiment Exp2(λ, b, bz1):
The experiment takes as input two variables b and bz1 .

1. Adversary sends challenge messages (m0,m1) to the challenger.

2. Challenger runs VFE.Setup(1λ) to produce MPK = ({MPKi}i∈[4],Z,Z1) and MSK =
({MSKi}i∈[4], {si}i∈[4], u, u1). It reinitializes Z1 as Z1 = Com(bz1 ;u1).

38



3. Challenger does the following:

(a) For all i ∈ [4], compute CT∗i = FE.Enc(MPKi,mb; ri).

(b) Reinitialize Z as Z = Com({CT∗i }i∈[4];u).

(c) Compute a proof π∗ ← Prove(y, w) for the statement that y ∈ L using witness w
where :
y = ({CT∗i }i∈[4], {MPKi}i∈[4],Z,Z1) and w = (m, {ri}i∈[4], 0, 0, 0|u|, 0|u1|).
The language L and the corresponding relation R are defined in the protocol in
Section 4.

(d) The challenge ciphertext is CT∗ = ({CT∗i }i∈[4], π∗) where the proof π∗ is computed
for statement 1 of relation R.

4. Challenger sends MPK and challenge ciphertext CT∗ to the adversary.

5. For every function secret key query f made by the adversary, the challenger does the
following:

(a) ∀i ∈ [4], compute Kfi = FE.KeyGen(MSKi, f ; ri).

(b) Compute a proof γ ← Prove(y, w) for the statement that y = ({Kfi }i∈[4], {MPKi}i∈[4],Z,Z1) ∈
L1 using witness w as :
(f,MSK1,MSK2,MSK3, 0

|MSK4|, s1, s2, s3, 0
|s4|, r1, r2, r3, 0

|r4|, 1, 2, 3, u, 0|u1|) if b = 0
and
(f, 0|MSK1|,MSK2,MSK3,MSK4, 0

|s1|, s2, s3, s4, 0
|r1|, r2, r3, r4, 2, 3, 4, u, 0

|u1|) if b = 1.
The language L1 and the corresponding relation R1 are defined in the protocol in
Section 4.

(c) The function secret key is Kf = ({Kfi }i∈[4], γ) where γ is computed for statement 2

of relation R1. Kf is sent to the adversary.

6. Finally, the adversary makes a guess b′ and wins if b = b′.

• Experiment Exp3(λ, b, b1):
The experiment takes as input two variables b and b1.

1. Adversary sends challenge messages (m0,m1) to the challenger.

2. Challenger runs VFE.Setup(1λ) to produce MPK = ({MPKi}i∈[4],Z,Z1) and MSK =
({MSKi}i∈[4], {si}i∈[4], u, u1). It reinitializes Z1 as Z1 = Com(0;u1).

3. Challenger does the following:

(a) If b = 0, for all i ∈ {1, 2, 3}, compute CT∗i = FE.Enc(MPKi,m0; ri) and CT∗4 =
FE.Enc(MPK4,mb1 ; r4).

(b) If b = 1, for all i ∈ {2, 3, 4}, compute CT∗i = FE.Enc(MPKi,m1; ri) and CT∗1 =
FE.Enc(MPK1,mb1 ; r1).

(c) Reinitialize Z as Z = Com({CT∗i }i∈[4];u).

(d) Compute a proof π∗ ← Prove(y, w) for the statement that y = ({CT∗i }i∈[4], {MPKi}i∈[4],Z,Z1) ∈
L using witness w as :
(m, r1, r2, 0

|r3|, 0|r4|, 1, 2, u, u1) if b = 0 and
(m, 0|r1|, 0|r2|, r3, r4, 3, 4, u, u1) if b = 1.
The language L and the corresponding relation R are defined in the protocol in
Section 4.
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(e) The challenge ciphertext is CT∗ = ({CT∗i }i∈[4], π∗) where the proof π∗ is computed
for statement 2 of relation R.

4. Challenger sends MPK and challenge ciphertext CT∗ to the adversary.

5. For every function secret key query f made by the adversary, the challenger does the
following:

(a) ∀i ∈ [4], compute Kfi = FE.KeyGen(MSKi, f ; ri).

(b) Compute a proof γ ← Prove(y, w) for the statement that y = ({Kfi }i∈[4], {MPKi}i∈[4],Z,Z1) ∈
L1 using witness w as :
(f,MSK1,MSK2,MSK3, 0

|MSK4|, s1, s2, s3, 0
|s4|, r1, r2, r3, 0

|r4|, 1, 2, 3, u, 0|u1|) if b = 0
and
(f, 0|MSK1|,MSK2,MSK3,MSK4, 0

|s1|, s2, s3, s4, 0
|r1|, r2, r3, r4, 2, 3, 4, u, 0

|u1|) if b = 1.
The language L1 and the corresponding relation R1 are defined in the protocol in
Section 4.

(c) The function secret key is Kf = ({Kfi }i∈[4], γ) where γ is computed for statement 2

of relation R1. Kf is sent to the adversary.

6. Finally, the adversary makes a guess b′ and wins if b = b′.

• Experiment Exp4(λ, b, b1):
The experiment takes as input two variables b and b1.

1. Adversary sends challenge messages (m0,m1) to the challenger.

2. Challenger runs VFE.Setup(1λ) to produce MPK = ({MPKi}i∈[4],Z,Z1) and MSK =
({MSKi}i∈[4], {si}i∈[4], u, u1). It reinitializes Z1 as Z1 = Com(0;u1).

3. Challenger does the following:

(a) If b = 0, for all i ∈ {1, 2}, compute CT∗i = FE.Enc(MPKi,m0; ri), CT
∗
4 = FE.Enc(MPK4,m1; r4)

and CT∗3 = FE.Enc(MPK3,mb1 ; r3).

(b) If b = 1, for all i ∈ {3, 4}, compute CT∗i = FE.Enc(MPKi,m1; ri), CT
∗
1 = FE.Enc(MPK1,m0; r1)

and CT∗2 = FE.Enc(MPK2,mb1 ; r2).

(c) Reinitialize Z as Z = Com({CT∗i }i∈[4];u).

(d) Compute a proof π∗ ← Prove(y, w) for the statement that y = ({CT∗i }i∈[4], {MPKi}i∈[4],Z,Z1) ∈
L using witness w as :
(m, r1, r2, 0

|r3|, 0|r4|, 1, 2, u, u1) if b = 0 and
(m, 0|r1|, 0|r2|, r3, r4, 3, 4, u, u1) if b = 1.
The language L and the corresponding relation R are defined in the protocol in
Section 4.

(e) The challenge ciphertext is CT∗ = ({CT∗i }i∈[4], π∗) where the proof π∗ is computed
for statement 2 of relation R.

4. Challenger sends MPK and challenge ciphertext CT∗ to the adversary.

5. For every function secret key query f made by the adversary, the challenger does the
following:

(a) ∀i ∈ [4], compute Kfi = FE.KeyGen(MSKi, f ; ri).
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(b) Compute a proof γ ← Prove(y, w) for the statement that y = ({Kfi }i∈[4], {MPKi}i∈[4],Z,Z1) ∈
L1 using witness w as :
(f,MSK1,MSK2, 0

|MSK3|,MSK4, s1, s2, 0
|s3|, s4, r1, r2, 0

|r3|, r4, 1, 2, 4, u, 0
|u1|) if b = 0

and
(f,MSK1, 0

|MSK2|,MSK3,MSK4, s1, 0
|s2|, s3, s4, r1, 0

|r2|, r3, r4, 1, 3, 4, u, 0
|u1|) if b = 1.

The language L1 and the corresponding relation R1 are defined in the protocol in
Section 4.

(c) The function secret key is Kf = ({Kfi }i∈[4], γ) where γ is computed for statement 2

of relation R1. Kf is sent to the adversary.

6. Finally, the adversary makes a guess b′ and wins if b = b′.

• Hybrid H1: This hybrid is generated by running Exp1(λ, 0, 0) which is identical to the real
experiment with challenge bit b = 0.
The master public key is MPK = ({MPKi}i∈[4],Z,Z1) such that Z = Com(0len;u) and Z1 =
Com(1;u1) for random strings u, u1. The challenge ciphertext is CT∗ = ({CT∗i }i∈[4], π∗), where
for all i ∈ [4], CT∗i = FE.Enc(MPKi,m0; ri) for some random string ri. π∗ is computed for
statement 1 of relation R.

• Hybrid H2: This hybrid is identical to the previous hybrid except that Z is computed differ-
ently. Z = Com({CT∗i }i∈[4];u).
This hybrid is generated by running Exp1(λ, 0, 1).

• Hybrid H3: This hybrid is identical to the previous hybrid except that for every func-
tion secret key Kf , the proof γ is now computed for statement 2 of relation R1 using
indices {1, 2, 3} as the set of 3 indices {i1, i2, i3} in the witness. That is, the witness is
w = (f,MSK1,MSK2,MSK3, 0

|MSK4|, s1, s2, s3, 0
|s4|, r1, r2, r3, 0

|r4|, 1, 2, 3, u, 0|u1|).
This hybrid is generated by running Exp2(λ, 0, 1).

• Hybrid H4: This hybrid is identical to the previous hybrid except that Z1 is computed
differently. Z1 = Com(0;u1).
This hybrid is generated by running Exp2(λ, 0, 0).

• Hybrid H5: This hybrid is identical to the previous hybrid except that the proof π∗ in the
challenge ciphertext is now computed for statement 2 of relation R using indices {1, 2} as the
2 indices {i1, i2} in the witness. That is, the witness is w = (m, r1, r2, 0

|r3|, 0|r4|, 1, 2, u, u1).
This hybrid is generated by running Exp3(λ, 0, 0).

• Hybrid H6: This hybrid is identical to the previous hybrid except that we change the fourth
component CT∗4 of the challenge ciphertext to be an encryption of the challenge message m1

(as opposed to m0). That is, CT∗4 = FE.Enc(MPK4,m1; r4) for some random string r4. Note
that the proof π∗ is unchanged and is still proven for statement 2 of relation R.
This hybrid is generated by running Exp3(λ, 0, 1).

• Hybrid H7: This hybrid is identical to the previous hybrid except that for every func-
tion secret key Kf , the proof γ is now computed for statement 2 of relation R1 using
indices {1, 2, 4} as the set of 3 indices {i1, i2, i3} in the witness. That is, the witness is
w = (f,MSK1,MSK2, 0

|MSK3|,MSK4, s1, s2, 0
|s3|, s4, r1, r2, 0

|r3|, r4, 1, 2, 4, u, 0
|u1|).

This hybrid is generated by running Exp4(λ, 0, 0).
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• Hybrid H8: This hybrid is identical to the previous hybrid except that we change the third
component CT∗3 of the challenge ciphertext to be an encryption of the challenge message m1

(as opposed to m0). That is, CT∗3 = FE.Enc(MPK3,m1; r3) for some random string r3.
Note that the proof π∗ is unchanged and is still proven for statement 2 of relation R.
This hybrid is generated by running Exp4(λ, 0, 1).

• Hybrid H9: This hybrid is identical to the previous hybrid except that the proof π∗ in
the challenge ciphertext is now computed for statement 2 of relation R using message m1

and indices {3, 4} as the 2 indices {i1, i2} in the witness. That is, the witness is w =
(m1, 0

|r1|, 0|r2|, r3, r4, 3, 4, u, u1).
Also, for every function secret key Kf , the proof γ is now computed for statement 2 of relation
R1 using indices {1, 3, 4} as the set of 3 indices {i1, i2, i3} in the witness. That is, the witness
is w = (f,MSK1, 0

|MSK2|,MSK3,MSK4, s1, 0
|s2|, s3, s4, r1, 0

|r2|, r3, r4, 1, 3, 4, u, 0
|u1|).

This hybrid is generated by running Exp4(λ, 1, 0).

• Hybrid H10: This hybrid is identical to the previous hybrid except that we change the second
component CT∗2 of the challenge ciphertext to be an encryption of the challenge message m1

(as opposed to m0). That is, CT∗2 = FE.Enc(MPK2,m1; r2) for some random string r2.
Note that the proof π∗ is unchanged and is still proven for statement 2 of relation R.
This hybrid is generated by running Exp4(λ, 1, 1).

• Hybrid H11: This hybrid is identical to the previous hybrid except that for every func-
tion secret key Kf , the proof γ is now computed for statement 2 of relation R1 using
indices {2, 3, 4} as the set of 3 indices {i1, i2, i3} in the witness. That is, the witness is
w = (f, 0|MSK1|,MSK2,MSK3,MSK4, 0

|s1|, s2, s3, s4, 0
|r1|, r2, r3, r4, 2, 3, 4, u, 0

|u1|).
This hybrid is generated by running Exp3(λ, 1, 0).

• Hybrid H12: This hybrid is identical to the previous hybrid except that we change the first
component CT∗1 of the challenge ciphertext to be an encryption of the challenge message m1

(as opposed to m0). That is, CT∗1 = FE.Enc(MPK1,m1; r1) for some random string r1. Note
that the proof π∗ is unchanged and is still proven for statement 2 of relation R.
This hybrid is generated by running Exp3(λ, 1, 1).

• Hybrid H13: This hybrid is identical to the previous hybrid except that the proof π∗ in
the challenge ciphertext is now computed for statement 1 of relation R. The witness is
w = (m1, {ri}i∈[4], 0, 0, 0|u|, 0|u1|).
This hybrid is generated by running Exp2(λ, 1, 0).

• Hybrid H14: This hybrid is identical to the previous hybrid except that Z1 is computed
differently. Z1 = Com(1;u1).
This hybrid is generated by running Exp2(λ, 1, 1).

• Hybrid H15: This hybrid is identical to the previous hybrid except that for every function
secret key Kf , the proof γ is now computed for statement 1 of relation R1. The witness is
w = (f, {MSKi}i∈[4], {si}i∈[4], {ri}i∈[4], 03, 0|u|, u1).
This hybrid is generated by running Exp1(λ, 1, 1).

• Hybrid H16: This hybrid is identical to the previous hybrid except that Z is computed
differently. Z = Com(0len;u).
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This hybrid is generated by running Exp1(λ, 1, 0) which is identical to the real experiment
with challenge bit b = 1.

We will now prove the indistinguishability of the hybrids.

Lemma 8. (H1 ≈c H2). Assuming that Com is a (computationally) hiding commitment scheme,
the outputs of experiments H1 and H2 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the commitment Z
is computed. Let’s consider the following adversary ACom that interacts with a challenger C to
break the hiding of the commitment scheme. Also, internally, it acts as the challenger in the
security game with an adversary A that tries to distinguish between H1 and H2. ACom executes the
hybrid H1 except that it does not generate the commitment Z on it’s own. Instead, after receiving
the challenge messages (m0,m1) from A, it computes CT∗ = ({CT∗i }i∈[4], π∗) as an encryption of
message m0 by following the honest encryption algorithm as in H1 and H2. Then, it sends two
strings, namely (0len) and ({CT∗i }i∈[4]) to the outside challenger C. In return, ACom receives a
commitment Z corresponding to either the first or the second string. It then gives this to A. Now,
whatever bit b A guesses, ACom forwards the same guess to the outside challenger C. Clearly, ACom

is a polynomial time algorithm and breaks the hiding property of Com unless H1 ≈c H2.

Lemma 9. (H2 ≈c H3). Assuming that (Prove,Verify) is a non-interactive witness indistinguishable
(NIWI) proof system, the outputs of experiments H2 and H3 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the proof γ is com-
puted for each function secret key query f . In H2, γ is computed for statement 1 of relation R1

using the ”real” witness w = (f, {MSKi}i∈[4], {si}i∈[4], {ri}i∈[4], 03, 0|u|, u1). In H3, γ is computed
for statement 2 of relation R1 using the ”trapdoor” witness
w = (f,MSK1,MSK2,MSK3, 0

|MSK4|, s1, s2, s3, 0
|s4|, r1, r2, r3, 0

|r4|, 1, 2, 3, u, 0|u1|). Thus, by a stan-
dard hybrid argument, the indistinguishability of the two hybrids follows from the witness indis-
tinguishability property of the NIWI proof system.

Lemma 10. (H3 ≈c H4). Assuming that Com is a (computationally) hiding commitment scheme,
the outputs of experiments H3 and H4 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the commitment Z1

is computed. Let’s consider the following adversary ACom that interacts with a challenger C to
break the hiding of the commitment scheme. Also, internally, it acts as the challenger in the
security game with an adversary A that tries to distinguish between H3 and H4. ACom executes the
hybrid H1 except that it does not generate the commitment Z1 on it’s own. Instead, after receiving
the challenge messages (m0,m1) from A, it computes CT∗ = ({CT∗i }i∈[4], π∗) as an encryption
of message m0 by following the honest encryption algorithm as in H1 and H2. Then, it sends two
strings, namely (0len) and (1len) to the outside challenger C. In return, ACom receives a commitment
Z1 corresponding to either the first or the second string. It then gives this to A. Now, whatever
bit b A guesses, ACom forwards the same guess to the outside challenger C. Clearly, ACom is a
polynomial time algorithm and breaks the hiding property of Com unless H3 ≈c H4.

Lemma 11. (H4 ≈c H5). Assuming that (Prove,Verify) is a non-interactive witness indistinguish-
able (NIWI) proof system, the outputs of experiments H4 and H5 are computationally indistinguish-
able.
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Proof. The only difference between the two hybrids is the manner in which the proof π∗ in the
challenge ciphertext is computed. In H4, π

∗ is computed for statement 1 of relation R using the
”real” witness w = (m0, {ri}i∈[4], 02, 0|u|, 0|u1|) where {ri}i∈[4] are the randomness used to generate
{CT∗i }i∈[4]. In H3, π

∗ is computed for statement 2 of relation R using the ”trapdoor” witness w =

(m, r1, r2, 0
|r3|, 0|r4|, 1, 2, u, u1). Thus, by a standard hybrid argument, the indistinguishability of

the two hybrids follows from the witness indistinguishability property of the NIWI proof system.

Lemma 12. (H5 ≈c H6). Assuming that FE is a Sel− IND secure functional encryption scheme,
the outputs of experiments H5 and H6 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the challenge ciphertext
is created. More specifically, in H5, the fourth component of the challenge ciphertext CT∗4 is com-
puted as an encryption of message m0, while in H6, CT

∗
4 is computed as an encryption of message

m1. Note that the proof π∗ remains same in both the hybrids.

Let’s consider the following adversary AFE that interacts with a challenger C to break the secu-
rity of the underlying FE scheme. Also, internally, it acts as the challenger in the security game with
an adversary A that tries to distinguish between H5 and H6. AFE executes the hybrid H5 except
that it does not generate the parameters (MPK4,MSK4) itself. It sets (MPK4) to be the public key
given by the challenger C. After receiving the challenge messages (m0,m1) from A, it forwards the
pair (m0,m1) to the challenger C and receives a ciphertext CT which is either an encryption of m0

or m1 using public key MPK4. AFE sets CT∗4 = CT and computes CT∗ = ({CT∗i }i∈[4], π∗) as the
challenge ciphertext as in H5. Note that proof π∗ is proved for statement 2 of relation R. It then
sets the public parameter Z = Com({CT∗i }i∈[4];u) and sends the master public key MPK and the
challenge ciphertext CT∗ to A.

Now, whatever bit bA guesses, AFE forwards the same guess to the outside challenger C. Clearly,
AFE is a polynomial time algorithm and breaks the security of the functional encryption scheme
FE unless H5 ≈c H6.

Lemma 13. (H6 ≈c H7). Assuming that (Prove,Verify) is a non-interactive witness indistinguish-
able (NIWI) proof system, the outputs of experiments H6 and H7 are computationally indistinguish-
able.

Proof. The only difference between the two hybrids is the manner in which the proof γ is computed
for each function secret key query f . In H6, γ is computed for statement 2 of relation R1 using
the witness w = (f,MSK1,MSK2,MSK3, 0

|MSK4|, s1, s2, s3, 0
|s4|, r1, r2, r3, 0

|r4|, 1, 2, 3, u, 0|u1|). In H7,
γ is computed for statement 2 of relation R1 using the witness
w = (f,MSK1,MSK2, 0

|MSK3|,MSK4, s1, s2, 0
|s3|, s4, r1, r2, 0

|r3|, r4, 1, 2, 4, u, 0
|u1|). Thus, by a stan-

dard hybrid argument, the indistinguishability of the two hybrids follows from the witness indis-
tinguishability property of the NIWI proof system.

Lemma 14. (H7 ≈c H8). Assuming that FE is a Sel− IND secure functional encryption scheme,
the outputs of experiments H5 and H6 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the challenge ciphertext
is created. More specifically, in H7, the third component of the challenge ciphertext CT∗3 is computed
as an encryption of message m0, while in H8, CT

∗
3 is computed as an encryption of message m1.
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Note that the proof π∗ remains same in both the hybrids. Thus, the proof is very similar to the
proof of Lemma 12.

Lemma 15. (H8 ≈c H9). Assuming that (Prove,Verify) is a non-interactive witness indistinguish-
able (NIWI) proof system, the outputs of experiments H8 and H9 are computationally indistinguish-
able.

Proof. The proof is very similar to the proof of Lemma 13.

Lemma 16. (H9 ≈c H10). Assuming that FE is a Sel− IND secure functional encryption scheme,
the outputs of experiments H9 and H10 are computationally indistinguishable.

Proof. The proof is very similar to the proof of Lemma 14.

Lemma 17. (H10 ≈c H11). Assuming that (Prove,Verify) is a non-interactive witness indistin-
guishable (NIWI) proof system, the outputs of experiments H10 and H11 are computationally indis-
tinguishable.

Proof. The proof is very similar to the proof of Lemma 13.

Lemma 18. (H11 ≈c H12). Assuming that FE is a Sel− IND secure functional encryption scheme,
the outputs of experiments H11 and H12 are computationally indistinguishable.

Proof. The proof is very similar to the proof of Lemma 14.

Lemma 19. (H12 ≈c H13). Assuming that (Prove,Verify) is a non-interactive witness indistin-
guishable (NIWI) proof system, the outputs of experiments H12 and H13 are computationally indis-
tinguishable.

Proof. The proof is very similar to the proof of Lemma 11.

Lemma 20. (H13 ≈c H14). Assuming that Com is a (computationally) hiding commitment scheme,
the outputs of experiments H13 and H14 are computationally indistinguishable.

Proof. The proof is very similar to the proof of Lemma 10.

Lemma 21. (H14 ≈c H15). Assuming that (Prove,Verify) is a non-interactive witness indistin-
guishable (NIWI) proof system, the outputs of experiments H14 and H15 are computationally indis-
tinguishable.

Proof. The proof is very similar to the proof of Lemma 9.

Lemma 22. (H15 ≈c H16). Assuming that Com is a (computationally) hiding commitment scheme,
the outputs of experiments H15 and H16 are computationally indistinguishable.

Proof. The proof is very similar to the proof of Lemma 8.

F Proofs for Secret Key Verifiable Functional Encryption

. In this section, we give the formal proof of verifiability and security for the secret key verifiable
functional encryption scheme constructed in section 5.
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F.1 Verifiability

Consider any public parameters PP and any ciphertext CT = ({CTi}i∈[5], π) such that
VFE.VerifyCT(PP,CT) = 1. Now, there are three cases possible for the proof π.

1. Statement 1 of relation R is correct :
Therefore, there exists m ∈ Xλ, index j such that ∀i ∈ [5]/{j}, CTi = FE.Enc(MPKi,m; ri)
where ri is a random string. Also, Z1 = Com(1;u1) where u1 is a random string. Consider
any function secret key K = ({Ki}i∈[5], γ) such that VFE.VerifyK(PP,K) = 1. There are three
cases possible for the proof γ.

(a) Statement 1 of relation R1 is correct :
Therefore, there exists f ∈ Fλ and index j1 such that ∀i ∈ [5]/{j1}, Ki is a function
secret key for the same function - f . That is, ∀i ∈ [5]/{j1}, Ki = FE.KeyGen(MSKi, f ; r′i)
where r′i is a random string.
Thus, for all i ∈ [5]/{j, j1}, FE.Dec(CTi,Ki) = f(m). Hence, VFE.Dec(PP,K,CT) =
f(m).

(b) Statement 2 of relation R1 is correct :
Therefore, there exists f ∈ Fλ and index k such that ∀i ∈ [5]/{k}, Ki is a function secret
key for the same function - f . That is, ∀i ∈ [5]/{k}, Ki = FE.KeyGen(MSKi, f ; r′i) where
r′i is a random string.
Thus, for all i ∈ [5]/{j, k}, FE.Dec(CTi,Ki) = f(m). Hence, VFE.Dec(PP,K,CT) =
f(m).

(c) Statement 3 of relation R1 is correct :
Then, it must be the case that Z1 = Com(0;u′1) for some random string u′1. However, we
already know that Z1 = Com(1;u1) and Com is a perfectly binding commitment scheme.
Thus, this scenario isn’t possible. That is, in this case, both VFE.VerifyCT(PP,CT) and
VFE.VerifyK(PP,K) can’t be equal to 1.

2. Statement 2 of relation R is correct:
Therefore, Z2 = Com(0;u2), Z3 = Com(1;u3) and ZCT = Com({CTi}i∈[5]; a) for some random
strings u2, u3, a. Also, there exists 2 indices i1, i2 and a message m ∈ Xλ such that for
i ∈ {i1, i2}, CTi = FE.Enc(PPi,m; ri) where ri is a random string. Consider any function
secret key K = ({Ki}i∈[5], γ) such that VFE.VerifyK(PP,K) = 1. There are three cases possible
for the proof γ.

(a) Statement 1 of relation R1 is correct :
Then, it must be the case that Z2 = Com(1;u′2) for some random string u′2. However, we
already know that Z2 = Com(0;u2) and Com is a perfectly binding commitment scheme.
Thus, this scenario isn’t possible. That is, in this case, both VFE.VerifyCT(PP,CT) and
VFE.VerifyK(PP,K) can’t be equal to 1.

(b) Statement 2 of relation R1 is correct :
Therefore, there exists an index k such that ∀i ∈ [5]/{k}, Ki are function secret keys
for the same function - f . That is, ∀i ∈ [5]/{k}, Ki = FE.KeyGen(MSKi, f ; r′i) where
r′i is a random string. Thus, by pigeonhole principle, there exists i ∈ [5]/{k} such that
i ∈ {i1, i2} as well.
Also, ZCT = Com({CTi}i∈[5]; a) and ∀i ∈ [5], FE.Dec(CTi,Ki) is the same. For the
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index i, FE.Dec(CTi,Ki) = f(m). Hence, ∀i ∈ [5], FE.Dec(CTi,Ki) = f(m). Therefore,
VFE.Dec(PP,K,CT) = f(m).

(c) Statement 3 of relation R1 is correct :
Then, it must be the case that Z3 = Com(0;u′3) for some random string u′3. However, we
already know that Z3 = Com(1;u3) and Com is a perfectly binding commitment scheme.
Thus, this scenario isn’t possible. That is, in this case, both VFE.VerifyCT(PP,CT) and
VFE.VerifyK(PP,K) can’t be equal to 1.

3. Statement 3 of relation R is correct :
Therefore, there exists m ∈ Xλ, index k such that ∀i ∈ [5]/{k}, CTi = FE.Enc(MPKi,m; ri)

where ri is a random string. Also, Zf = Com({Kfi }i∈[5], b) for some random string b and there

exists x ∈ Xλ such that ∀i ∈ [5], FE.Dec(CTi,K
f
i ) = x. Consider any function secret key

K = ({Ki}i∈[5], γ) such that VFE.VerifyK(PP,K) = 1. There are three cases possible for the
proof γ.

(a) Statement 1 of relation R1 is correct :
Therefore, there exists f ∈ Fλ and index j such that ∀i ∈ [5]/{j}, Ki is a function secret
key for the same function - f . That is, ∀i ∈ [5]/{j}, Ki = FE.KeyGen(MSKi, f ; r′i) where
r′i is a random string.
Thus, for all i ∈ [5]/{j, k}, FE.Dec(CTi,Ki) = f(m). Hence, VFE.Dec(PP,K,CT) =
f(m).

(b) Statement 2 of relation R1 is correct :
Therefore, there exists f ∈ Fλ and index k1 such that ∀i ∈ [5]/{k1}, Ki is a function
secret key for the same function - f . That is, ∀i ∈ [5]/{k1},
Ki = FE.KeyGen(MSKi, f ; r′i) where r′i is a random string.
Thus, for all i ∈ [5]/{k, k1}, FE.Dec(CTi,Ki) = f(m). Hence, VFE.Dec(PP,K,CT) =
f(m).

(c) Statement 3 of relation R1 is correct :
Therefore, there exists indices i1, i2 and a function f such that ∀i{i1, i2}, Ki = FE.KeyGen(MSKi, f ; r′i)
where r′i is a random string. Thus, by pigeonhole principle, there exists i ∈ [5]/{k} such
that i ∈ {i1, i2} as well.

Also, Zf = Com({Kfi }i∈[5]; b) and ∀i ∈ [5], FE.Dec(CTi,K
f
i ) is the same. However,

we have that Zf = Com({Ki}i∈[5]; b′) for some random string b′. Since Com is a per-

fectly binding commitment scheme, {Kfi }i∈[5] = {Ki}i∈[5]. Therefore, for the index
i, FE.Dec(CTi,Ki) = f(m). Hence, ∀i ∈ [5], FE.Dec(CTi,Ki) = f(m). Therefore,
VFE.Dec(PP,K,CT) = f(m).

F.2 Message Hiding Security Proof

We now prove that the proposed scheme VFE is Sel− IND secure message hiding. We will prove this
via a series of hybrid experiments H1, . . . ,H28 where H1 corresponds to the real world experiment
with challenge bit b = 0 and H28 corresponds to the real world experiment with challenge bit b = 1.

• Hybrid H1: This is the real experiment with challenge bit b = 0. The master secret key
is MSK = ({MSKi}i∈[5], {pi}i∈[5], {si}i∈[5], a, b, {ui}i∈[3]). The public parameters are PP =
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({Si}i∈[5],ZCT,Zf , {Zi}i∈[3]) such that ∀i ∈ [5], Si = Com(MSKi; si), ZCT = Com(0lenCT ; a),

Zf = Com(0lenf ; b) and ∀i ∈ [3], Zi = Com(1;ui) for random strings a, b, {ui}i∈[3]. The chal-
lenge ciphertext is CT∗ = ({CT∗i }i∈[5], π∗), where for all i ∈ [5], CT∗i = FE.Enc(PP,MSKi,m0; ri)
for some random string ri. π

∗ is computed for statement 1 of relation R.

• Hybrid H2: This hybrid is identical to the previous hybrid except that ZCT is computed
differently. ZCT = Com({CT∗i }i∈[5]; a).

• Hybrid H3: This hybrid is identical to the previous hybrid except that for every function
secret key Kf , the proof γ is now computed for statement 2 of relation R1 using index 5 as
the index k in the witness.

• Hybrid H4: This hybrid is identical to the previous hybrid except that Z2 is computed
differently. Z2 = Com(0;u2).

• Hybrid H5: This hybrid is identical to the previous hybrid except that the proof π∗ in the
challenge ciphertext is now computed for statement 2 of relation R using indices {1, 2} as the
2 indices {i1, i2} in the witness.

• Hybrid H6: This hybrid is identical to the previous hybrid except that S5 is computed
differently. S5 = Com(0; s5).

• Hybrid H7: This hybrid is identical to the previous hybrid except that we change the fifth
component CT∗5 of the challenge ciphertext to be an encryption of the challenge message m1

(as opposed to m0). That is, CT∗5 = FE.Enc(PP,m1; r5) for some random string r5. Note that
the proof π∗ is unchanged and is still proven for statement 2 of relation R.

• Hybrid H8: This hybrid is identical to the previous hybrid except that S5 is computed
differently. S5 = Com(MSK5; s5).

• Hybrid H9: This hybrid is identical to the previous hybrid except that for every function
secret key Kf , the proof γ is now computed for statement 2 of relation R1 using index 4 as
the index k in the witness.

• Hybrid H10: This hybrid is identical to the previous hybrid except that S4 is computed
differently. S4 = Com(0; s4).

• Hybrid H11: This hybrid is identical to the previous hybrid except that we change the fourth
component CT∗4 of the challenge ciphertext to be an encryption of the challenge message m1

(as opposed to m0). That is, CT∗4 = FE.Enc(PP,m1; r4) for some random string r4. Note that
the proof π∗ is unchanged and is still proven for statement 2 of relation R.

• Hybrid H12: This hybrid is identical to the previous hybrid except that S4 is computed
differently. S4 = Com(MSK5; s4).

• Hybrid H13: This hybrid is identical to the previous hybrid except that for every function
secret key Kf , the proof γ is now computed for statement 2 of relation R1 using index 3 as
the index k in the witness.

• Hybrid H14: This hybrid is identical to the previous hybrid except that S3 is computed
differently. S3 = Com(0; s3).
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• Hybrid H15: This hybrid is identical to the previous hybrid except that we change the third
component CT∗3 of the challenge ciphertext to be an encryption of the challenge message m1

(as opposed to m0). That is, CT∗3 = FE.Enc(PP,m1; r3) for some random string r3. Note that
the proof π∗ is unchanged and is still proven for statement 2 of relation R.

• Hybrid H16: This hybrid is identical to the previous hybrid except that S3 is computed
differently. S3 = Com(MSK3; s3).

• Hybrid H17: This hybrid is identical to the previous hybrid except that for every function
secret key Kf , the proof γ is now computed for statement 2 of relation R1 using index 2 as
the index k in the witness.
Also, the proof π∗ in the challenge ciphertext is now computed for statement 2 of relation R
using indices {4, 5} as the 2 indices {i1, i2} in the witness.

• Hybrid H18: This hybrid is identical to the previous hybrid except that S2 is computed
differently. S2 = Com(0; s2).

• Hybrid H19: This hybrid is identical to the previous hybrid except that we change the second
component CT∗2 of the challenge ciphertext to be an encryption of the challenge message m1

(as opposed to m0). That is, CT∗2 = FE.Enc(PP,m1; r2) for some random string r2. Note that
the proof π∗ is unchanged and is still proven for statement 2 of relation R.

• Hybrid H20: This hybrid is identical to the previous hybrid except that S2 is computed
differently. S2 = Com(MSK2; s2).

• Hybrid H21: This hybrid is identical to the previous hybrid except that for every function
secret key Kf , the proof γ is now computed for statement 2 of relation R1 using index 1 as
the index k in the witness.

• Hybrid H22: This hybrid is identical to the previous hybrid except that S1 is computed
differently. S1 = Com(0; s1).

• Hybrid H23: This hybrid is identical to the previous hybrid except that we change the first
component CT∗1 of the challenge ciphertext to be an encryption of the challenge message m1

(as opposed to m0). That is, CT∗1 = FE.Enc(PP,m1; r1) for some random string r1. Note that
the proof π∗ is unchanged and is still proven for statement 2 of relation R.

• Hybrid H24: This hybrid is identical to the previous hybrid except that S1 is computed
differently. S1 = Com(MSK1; s1).

• Hybrid H25: This hybrid is identical to the previous hybrid except that the proof π∗ in the
challenge ciphertext is now computed for statement 1 of relation R with index j as 5.

• Hybrid H26: This hybrid is identical to the previous hybrid except that Z2 is computed
differently. Z2 = Com(1;u2).

• Hybrid H27: This hybrid is identical to the previous hybrid except that for every function
secret key Kf , the proof γ is now computed for statement 1 of relation R1 with index j as 5.
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• Hybrid H28: This hybrid is identical to the previous hybrid except that ZCT is computed
differently. ZCT = Com(0lenCT ; a).
This hybrid is identical to the real experiment with challenge bit b = 1.

Below we will prove that (H1 ≈c H2), (H2 ≈c H3) and (H6 ≈c H7). The indistinguishability of
other hybrids will follow along the same lines. We will now prove the indistinguishability of the
hybrids.

Lemma 23. (H1 ≈c H2). Assuming that Com is a (computationally) hiding commitment scheme,
the outputs of experiments H1 and H2 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the commitment ZCT is
computed. Let’s consider the following adversary ACom that interacts with a challenger C to break
the hiding of the commitment scheme. Also, internally, it acts as the challenger in the security
game with an adversary A that tries to distinguish between H1 and H2. ACom executes the hybrid
H1 except that it does not generate the commitment ZCT on it’s own. Instead, after receiving
the challenge messages (m0,m1) from A, it computes CT∗ = ({CT∗i }i∈[5], π∗) as an encryption of
message m0 by following the honest encryption algorithm as in H1 and H2. Then, it sends two
strings, namely (0lenCT) and ({CT∗i }i∈[5]) to the outside challenger C. In return, ACom receives a
commitment Z corresponding to either the first or the second string. It then gives this to A. Now,
whatever bit b A guesses, ACom forwards the same guess to the outside challenger C. Clearly, ACom

is a polynomial time algorithm and breaks the hiding property of Com unless H1 ≈c H2.

Lemma 24. (H2 ≈c H3). Assuming that (Prove,Verify) is a non-interactive witness indistinguish-
able (NIWI) proof system, the outputs of experiments H2 and H3 are computationally indistinguish-
able.

Proof. The only difference between the two hybrids is the manner in which the proof γ is computed
for each function secret key query f . In H2, γ is computed for statement 1 of relation R1 using the
”real” witness with index j as 5. That is, w = (f,MSK, {ri}i∈[5], 02, 5, 0). In H3, γ is computed
for statement 2 of relation R1 using the ”trapdoor” witness with index k as 5. That is, w =
(f,MSK, {ri}i∈[5], 03, 5). Thus, by a standard hybrid argument, the indistinguishability of the two
hybrids follows from the witness indistinguishability property of the NIWI proof system.

Lemma 25. (H6 ≈c H7). Assuming that FE is a Sel− IND secure message hiding functional en-
cryption scheme, the outputs of experiments H6 and H7 are computationally indistinguishable.

Proof. The only difference between the two hybrids is the manner in which the challenge ciphertext
is created. More specifically, in H6, the fifth component of the challenge ciphertext CT∗5 is computed
as an encryption of message m0, while in H7, CT

∗
5 is computed as an encryption of message m1.

Note that the proof π∗ remains same in both the hybrids.

Let’s consider the following adversary AFE that interacts with a challenger C to break the secu-
rity of the underlying FE scheme. Also, internally, it acts as the challenger in the security game with
an adversary A that tries to distinguish between H6 and H7. AFE executes the hybrid H6 except
that it does not generate the parameter (MSK5) itself. Note that it sets S5 = Com(0; s5). After
receiving the challenge messages (m0,m1) from A, it forwards the pair (m0,m1) to the challenger
C and receives a ciphertext CT which is either an encryption of m0 or m1. AFE sets CT∗5 = CT
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and computes CT∗ = ({CT∗i }i∈[5], π∗) as the challenge ciphertext as in H6. Note that proof π∗ is
proved for statement 2 of relation R. It then sets the public parameter ZCT = Com({CT∗i }i∈[5];u)
and sends the public parameters PP and the challenge ciphertext CT∗ to A.

Now, whatever bit bA guesses, AFE forwards the same guess to the outside challenger C. Clearly,
AFE is a polynomial time algorithm and breaks the security of the functional encryption scheme
FE unless H6 ≈c H7.

F.3 Function Hiding Security Proof

The security proof for the function hiding property is very similar to the one in the previous section
for message hiding. Observe that the NP relations in our scheme are symmetric with respect to
encryption and function secret key generation and so the same proof as above would work in this
case with roles reversed. For completeness, we describe the proof below.

We prove this via a series of hybrid experiments H1, . . . ,H28 where H1 corresponds to the real
world experiment with challenge bit b = 0 and H28 corresponds to the real world experiment with
challenge bit b = 1.

• Hybrid H1: This is the real experiment with challenge bit b = 0. The master secret key
is MSK = ({MSKi}i∈[5], {pi}i∈[5], {si}i∈[5], a, b, {ui}i∈[3]). The public parameters are PP =

({Si}i∈[5],ZCT,Zf , {Zi}i∈[3]) such that ∀i ∈ [5], Si = Com(MSKi; si), ZCT = Com(0lenCT ; a),

Zf = Com(0lenf ; b) and ∀i ∈ [3], Zi = Com(1;ui) for random strings a, b, {ui}i∈[3]. The chal-
lenge function secret key is K∗ = ({Ki}i∈[5], γ∗), where for all i ∈ [5], K∗i = FE.KeyGen(PP,MSKi, f0; ri)
for some random string ri. γ

∗ is computed for statement 1 of relation R1.

• Hybrid H2: This hybrid is identical to the previous hybrid except that Z3 and is computed
differently. Z3 = Com(0;u3).

• Hybrid H3: This hybrid is identical to the previous hybrid except that Zf and is computed
differently. Zf = Com({Ki}i∈[5]; b).

• Hybrid H4: This hybrid is identical to the previous hybrid except that for every ciphertext
CTm, the proof π is now computed for statement 3 of relation R using index 5 as the index
k in the witness.

• Hybrid H5: This hybrid is identical to the previous hybrid except that Z1 is computed
differently. Z1 = Com(0;u1).

• Hybrid H6: This hybrid is identical to the previous hybrid except that the proof γ∗ in the
challenge function secret key is now computed for statement 3 of relation R1 using indices
{1, 2} as the 2 indices {i1, i2} in the witness.

• Hybrid H7: This hybrid is identical to the previous hybrid except that S5 is computed
differently. S5 = Com(0; s5).

• Hybrid H8: This hybrid is identical to the previous hybrid except that we change the fifth
component K∗5 of the challenge function secret key to be a secret key of the challenge function

51



f1 (as opposed to f0). That is, K∗5 = FE.KeyGen(PP,MSK5, f1; r5) for some random string r5.
Note that the proof γ∗ is unchanged and is still proven for statement 3 of relation R1.

• Hybrid H9: This hybrid is identical to the previous hybrid except that S5 is computed
differently. S5 = Com(MSK5; s5).

• Hybrid H10: This hybrid is identical to the previous hybrid except that for every ciphertext
CTm, the proof π is now computed for statement 3 of relation R using index 4 as the index
k in the witness.

• Hybrid H11: This hybrid is identical to the previous hybrid except that S4 is computed
differently. S4 = Com(0; s4).

• Hybrid H12: This hybrid is identical to the previous hybrid except that we change the fourth
component K∗4 of the challenge function secret key to be a secret key of the challenge function
f1 (as opposed to f0). That is, K∗4 = FE.KeyGen(PP,MSK4, f1; r4) for some random string r4.
Note that the proof γ∗ is unchanged and is still proven for statement 2 of relation R1.

• Hybrid H13: This hybrid is identical to the previous hybrid except that S4 is computed
differently. S4 = Com(MSK5; s4).

• Hybrid H14: This hybrid is identical to the previous hybrid except that for every ciphertext
CTm, the proof π is now computed for statement 3 of relation R using index 3 as the index
k in the witness.

• Hybrid H15: This hybrid is identical to the previous hybrid except that S3 is computed
differently. S3 = Com(0; s3).

• Hybrid H16: This hybrid is identical to the previous hybrid except that we change the third
component K∗3 of the challenge function secret key to be a secret key of the challenge function
f1 (as opposed to f0). That is, K∗3 = FE.KeyGen(PP,MSK3, f1; r3) for some random string r3.
Note that the proof γ∗ is unchanged and is still proven for statement 3 of relation R1.

• Hybrid H17: This hybrid is identical to the previous hybrid except that S3 is computed
differently. S3 = Com(MSK3; s3).

• Hybrid H18: This hybrid is identical to the previous hybrid except that for every ciphertext
CTm, the proof π is now computed for statement 3 of relation R using index 2 as the index
k in the witness.
Also, the proof γ∗ in the challenge function secret key is now computed for statement 3 of
relation R1 using indices {4, 5} as the 2 indices {i1, i2} in the witness.

• Hybrid H19: This hybrid is identical to the previous hybrid except that S2 is computed
differently. S2 = Com(0; s2).

• Hybrid H20: This hybrid is identical to the previous hybrid except that we change the second
component K∗2 of the challenge function secret key to be a secret key of the challenge function
f1 (as opposed to f0). That is, K∗2 = FE.KeyGen(PP,MSK2, f1; r2) for some random string r2.
Note that the proof γ∗ is unchanged and is still proven for statement 3 of relation R1.
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• Hybrid H21: This hybrid is identical to the previous hybrid except that S2 is computed
differently. S2 = Com(MSK2; s2).

• Hybrid H22: This hybrid is identical to the previous hybrid except that for every ciphertext
CTm, the proof π is now computed for statement 3 of relation R using index 1 as the index
k in the witness.

• Hybrid H23: This hybrid is identical to the previous hybrid except that S1 is computed
differently. S1 = Com(0; s1).

• Hybrid H24: This hybrid is identical to the previous hybrid except that we change the first
component K∗1 of the challenge function secret key to be a secret key of the challenge function
f1 (as opposed to f0). That is, K∗1 = FE.KeyGen(PP,MSK1, f1; r1) for some random string r1.
Note that the proof γ∗ is unchanged and is still proven for statement 3 of relation R1.

• Hybrid H25: This hybrid is identical to the previous hybrid except that S1 is computed
differently. S1 = Com(MSK1; s1).

• Hybrid H26: This hybrid is identical to the previous hybrid except that the proof γ∗ in the
challenge function secret key is now computed for statement 1 of relation R1 with index j as
5.

• Hybrid H27: This hybrid is identical to the previous hybrid except that Z1 is computed
differently. Z1 = Com(1;u1).

• Hybrid H28: This hybrid is identical to the previous hybrid except that for every ciphertext
CTm, the proof π is now computed for statement 1 of relation R with index j as 5.

• Hybrid H29: This hybrid is identical to the previous hybrid except that Z3 and is computed
differently. Z3 = Com(1;u3).

• Hybrid H30: This hybrid is identical to the previous hybrid except that Zf is computed
differently. Zf = Com(0lenf ; b).
This hybrid is identical to the real experiment with challenge bit b = 1.

The proof of indistinguishability between every consecutive pair of hybrids follows very similarly
to the proofs in the case of message hiding and are not elaborated here.

G Construction of Verifiable Multi-Input Functional Encryption

G.1 Equivalence of circuits

Let us define a relation Req with the following property: Req : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {0, 1},
takes as input two circuits C0 and C1 and a poly-sized string w. It outputs 1 if C0 and C1 are
equivalent and w is a witness of this fact. In general, two equivalent circuits might not have
a witness of the fact that they are equivalent as checking equivalence is in coNP. We model
this equivalence by viewing w as a functionality preserving transformation that takes C0 to C1.
Therefore, this relation given two circuits outputs 1 iff there exists a polynomial sized (in the size
of circuit) transformation that maps one circuit to the other while preserving the functionality. We
use this, relation to define our verifiable multi-input functional encryption scheme, vMIFE.
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Definition 15. (Special family Feq) Let, Feq = {Feq,k} be a family of circuits in n ary polynomial
size circuits, which takes input from X nk and outputs in Y. This family is special if, ∀f ∈Feq,k
and ∀i ∈ [n] for any x1, x2 ∈Xk, it holds that F1 = f(∗, ..∗, x1, ∗, .., ∗) is functionally equivalent to
F2 = f(∗, ..∗, x2, ∗, .., ∗) where x1, x2 are fed into f at index i, then there is some polynomial size
witness w satisfying R(F1,F2,w) = 1.

We now present our construction vMIFE with strong verifiability for this special family of cir-
cuits (with a sketch of proof).
Notation: Let Com denote a perfectly binding and non interactive commitment scheme. Let iO
denote an indistinguishability obfuscator and NIWI denote a perfectly sound one message witness
indistinguishable proof system. Finally, let PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a semanti-
cally secure perfectly correct public-key encryption scheme. We denote the length of cipher texts
in PKE by c− len = c− len(k). Let len = 4 ∗ c− len.

G.2 Construction

vMIFE.Setup(1k, n): The setup algorithm generates four PKE key pairs for each index i ∈ [n]. Then
it computes two commitments of 0. Encryption key for index i, EKi is set as four corresponding
public keys. Master secret key is set as the collection of all PKE secret keys and random tapes used
to generate keys. Formally,
Generate key pairs for public key encryption scheme, {(PKi[j], SKi[j])← PKE.Setup(1k;Ri[j])}i∈[n],j∈[4].
Also form two commitments Z1 = Com(0len) and Z2 = Com(0log n). Encryption key for the index i
is generated as:
EKi = {PKi[1], ..,PKi[4]}. The master secret key is set as: MSK = {SKi[j],Ri[j]}i∈[n],j∈[4]. Public
parameter is declared as the collection of the two commitments, Z1 and Z2. The algorithm outputs
{PP, {EKi}i∈[n],MSK}

vMIFE.Enc(PP,EKi,m): For the index i ∈ [n], cipher-text is generated by encrypting the message
under the four corresponding PKE public keys and proving that either all four cipher-texts encrypt
the same message or under a trapdoor condition (specified later) two of the cipher-text encrypt the
same message. Formally,
Compute {CTi[j] = PKE.Enc(PKi[j],m)}j∈[4]. Next compute a NIWI proof, π for the statement
{PP, i,CTi[1], ..,CTi[4]} where:

• Either all (CTi[1],CTi[2],CTi[3],CTi[4]) encrypt the same message m under (PKi[1],PKi[2],
PKi[3],PKi[4]) respectively. Cipher-text with such a proof is referred to as genuine cipher-
text. Witness for proving this statement contains the message and the randomness used in
creating the cipher-texts. or,

• ∃(j1 6= j2) such that the cipher-texts (CTi[j1],CTi[j2]) encrypt the same message m under the
key (PKi[j1],PKi[j2]) respectively. Additionally, Z2 is a commitment of (CTi[1],CTi[2],
CTi[3],CTi[4]) and Z1 is a commitment of i. In an honestly generated setup, this statement
is always false. But, in a maliciously generated setup a cipher-text may have a trapdoor
witness that contains the message, indices of the two cipher-texts with the randomness used
in creating those two cipher-text and the commitments (Z1,Z2).

Output CTi = {CTi[1],CTi[2],CTi[3],CTi[4], π}.
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vMIFE.KeyGen(PP,MSK, f): Let Gf be the following circuit as described in figure 2

Gf

Constants: Public Keys {PKi[j]}i∈[n],j∈[4], secret keys {SKi[j]}i∈[n],j∈[4] and commitments
Z1,Z2

Input: Cipher-text CT1, ...,CTn, CTi encrypted under EKi

1. Parse each CTi = (CTi[1], ..,CTi[4], πi) and let yi = (PP, i,CTi[1], ..,CTi[4]) be the state-
ment corresponding to the string πi. For all i ∈ [n], run NIWI.Verify(yi, πi). If, any
verification fails output ⊥.

2. {ai[j] = PKE.Dec(SKi[j],CTi[j])}i∈[n],j∈[4]. By the soundness of the NIWI, for all (ex-
cept possibly one) i ∈ [n], ai[1] = ai[2] = ai[3] = ai[4]. For every i, compute mi, first
two occurring equal values of (ai[1], ai[2], ai[3], ai[4]). This existence is guaranteed by
soundness of NIWI. Circuit outputs f(m1, ..,mn).

Figure 2: Functionality Gf

Compute three independent obfuscations of the circuit Gf (see figure 4). i.e. Ki
f =iO(Gf) ∀i ∈ [3].

Compute a NIWI proof γ for the statement (PP, f,K1
f ,K

2
f ,K

3
f ) where:

• 2 out of 3 obfuscations (K1
f ,K

2
f ,K

3
f ) satisfy one of the following:

– Either is an obfuscations of Gf (see figure 5) and uses all four corresponding secret keys
per index. Additionally, these four key pairs per index are correctly generated. Program
proving this statement is said to be genuine or,

– Z1 is a commitment of some i ∈ [n] and Z2 is a commitment of four PKE cipher-texts
(i.e. Z2 = Com(C[1],C[2],C[3],C[4]) ) that satisfy a special property; There exists an s ∈
[4] and the circuits F[j] (defined below) indexed by j ∈ [4] \ s are functionally equivalent
(using the relation of equivalence). We define, F[j] = f(∗, ..∗,PKE.Dec(SKi[j],C[j]), ∗, .., ∗).
Here, PKE.Dec(SKi[j],C[j]) is fed as ith input to the circuit f; Under this condition, the
program is an obfuscation of Gs

f of circuit in figure 3. Additionally, for every index i ∈ [n],
three key pairs (PKi[j],SKi[j]) for j ∈ [4] \ s are correctly generated.

Witness for this statement includes two indices (two out of three in [3]) that correspond to the
obfuscations of the circuit of the types described above and corresponding witnesses. Witness for
these circuits may include corresponding randomization used by the obfuscator, secret keys used
by the circuits, opening of the commitments Z1,Z2, and possibly random tapes used to create PKE
key pairs.

vMIFE.Dec(PP, f,Kf ,CT1, ..,CTn): The algorithm first parses Kf = (K1
f ,K

2
f ,K

3
f , γ). Let y = (PP, f,K1

f ,K
2
f ,K

3
f )

be the statement corresponding to the γ. The decryption algorithm first verifies γ and if it fails, it
outputs ⊥.
Then, it outputs majority of (K1

f (CT1, ..,CTn),K2
f (CT1, ..,CTn),K3

f (CT1, ..,CTn)). Let us now ex-
amine following properties,

Correctness: Correctness follows from correctness of PKE, correctness of iO and perfect com-
pleteness of NIWI.
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Gs
f

Constants: Public Keys {PKi[j]}i∈[n],j∈[4], secret keys {SKi[j]}i∈[n],j∈[4]\s and commitments
Z1,Z2

Input: Cipher-text CT1, ...,CTn, CTi encrypted under EKi

1. Parse each CTi = (CTi[1], ..,CTi[4], πi) and let yi = (PP, i,CTi[1], ..,CTi[4]) be the state-
ment corresponding to the string πi. For each i ∈ [n], run NIWI.Verify(yi, πi). If, any
verification fails output ⊥.

2. {ai[j] = PKE.Dec(SKi[j],CTi[j])}i∈[n],j∈[4]\s. Circuit computes f(a1[j], .., an[j]) ∀j ∈ [4] \ s.
If the three values are equal, it outputs the same value otherwise it outputs ⊥.

Figure 3: Functionality Gs
f

Verifiability: This scheme is a verifiable multi-input functional encryption scheme where the ver-
ification algorithms verify the NIWI proofs corresponding to the cipher-texts and the keys. This is
because at a time there can be only one index under which there can exist a dishonest ciphertext
and that too is committed along with the index in the commitment Z1,Z2. In this case by the
soundness of NIWI, there are two constituent PKE ciphertexts in the committed ciphertext that
encrypt the same message. Hence, there exist a message which repeats first while decryption with
respective PKE secret keys. Call that message m. Any genuine key for f will use this m to compute
the decryption. Due to the soundness of the NIWI, any malicious key for f with a valid proof, will
also use this m. This is because, for any circuit in the key that use three PKE keys (say, indexed
by [4]\ s for some s) and has a witness, the circuits f(∗, . . . ,mj , . . . , ∗) are equivalent for j ∈ [4]\ s.
Here mj is the PKE decryption of constituent ciphertext with corresponding PKE key indexed by
j ∈ [4] \ s.

Theorem 8. Assuming the existence of indistinguishability obfuscation for all efficiently computable
circuits, one way permutations, perfectly sound one message witness indistinguishable proofs for
NP and semantically secure perfectly correct public key encryption, vMIFE is a selectively secure
verifiable public key multi-input functional encryption scheme for the family of circuits Feq.

Proof. (Sketch.) The proof begins with a hybrid where the message vector ~M0 is encrypted. Then
we move to a hybrid where Z1,Z2 commits to the index 1 and first challenge ciphertext for index
1. Then we use switch the keys to use three secret keys instead of four (and using the trapdoor
witness). This way we can switch one PKE ciphertext in the first challenge ciphertext for index 1.
This way we gradually move to a hybrid where the first challenge ciphertext encrypt M1

i for i ∈ [q].
We now go to the honest key generation using all four secret keys. After this, we can repeat the
above procedure for all indices one by one, once we get to a hybrid where the challenge ciphertext
vector encrypts M1.
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H Non-Interactive Functional Commitments

Functional commitments with setup has been introduced in [LRY16]. Here, we define non-interactive
functional commitments. A non-interactive functional commitment scheme for an ensemble X
of plaintext messages and an ensemble of functions F consists of three p.p.t. algorithms FC =
(FCom,KeyGen,Verify) defined below:

• FCom(1λ, x) : The commitment algorithm takes as input the security parameter 1λ and a
plaintext x ∈ Xλ. It outputs a commitment C and some randomness R.

• KeyGen(R,C, f) : The keygen algorithm takes as input a commitment C, its associated ran-
domness R and a function f . It outputs a function key skf .

• Verify(f, sk, C, y) : The verification algorithm takes as input a function f , a function key sk,
a commitment C and a value y. It outputs 1 or 0.

We require the following properties for a functional commitment scheme:

Correctness. For all x ∈ Xλ, f ∈ Fλ,

Pr[(C,R)← FCom(1λ, x); skf ← KeyGen(R,C, f);Verify(f, skf , C, f(x)) = 1] = 1

Perfect Binding. It holds that for any λ ∈ N, and for all C ∈ {0, 1}∗, ∃x ∈ Xλ such that for any
f ∈ Fλ, K ∈ {0, 1}∗ and y ∈ {0, 1}∗, if Verify(f,K,C, y) = 1 then it must hold that y = f(x).

Computational Hiding. We describe this property with the help of a game played between a
committer and a polynomial time receiver.
Commit Phase: The receiver outputs two equal length messages (m0,m1) in Xλ. The committer
picks b ∈ {0, 1} and computes (C∗, R)← FCom(1λ,mb). The committer then outputs C∗.
Decommitment Phase: The receiver chooses f ∈ Fλ such that f(m0) = f(m1) and sends it to
the committer. The committer then computes skf ← KeyGen(R,C, f) and outputs (f(mb), skf ).
Guess: The receiver submits a guess b

′
and wins if b

′
= b. The receiver’s advantage in this game

is defined to be 2 ∗ |Pr[b = b
′
]− 1/2|.

We say that the scheme FC is computationally hiding if the advantage of any polynomial time
receiver in winning the game described above is at most negl(λ) for some negligible function negl.
One can also consider a definition where the receiver is allowed to issue q KeyGen queries in the
decommitment phase. We call such a scheme q−hiding.

Theorem 9. If there exists a verifiable functional encryption scheme VFE secure against q function
secret key queries for function space F and message space X , then there exists a q−hiding non-
interactive functional commitment scheme for function space F and message space X .

Proof. The proof of this theorem is straightforward and we directly describe our construction here.
Let VFE be a functional encryption scheme satisfying the requirement described in the theorem.
We describe our functional commitment scheme FC = (FCom,KeyGen,Verify) as follows:

- FCom(1λ,m) : To commit m, we first run VFE.Setup(1λ) → (MPK,MSK). Then, encrypt m
to compute CT← VFE.Enc(MPK,m). Output ({MPK,CT},MSK).
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- KeyGen(R,C, f) : On input R = MSK and C = {MPK,CT}, compute
skf ← VFE.KeyGen(MPK,MSK, f). Output skf .

- Verify(f, skf , C, y) : Parse C = {MPK,CT}. Output 1 if VFE.Dec(MPK, f, skf ,CT) = y. Else,
output 0.

We now analyze the properties of the scheme. It is easy to see that correctness and hiding follow
from the correctness and the security of the underlying VFE scheme. Binding follows from the
verifiability property of the VFE scheme.

From the above theorem and using schemes in [GOS06, GVW12], we get the following corollary:

Corollary 1. Assuming decisional linear assumption over bilinear groups, there exists a compu-
tationally q-hiding non-interactive functional commitment scheme for all circuits for any bounded
q.

From the above theorem and using schemes in [GOS06, ARW16], we get the following corollary:

Corollary 2. Assuming decisional linear assumption over bilinear groups, there exists a com-
putationally q-hiding non-interactive functional commitment scheme for inner products for any
unbounded q that is polynomial in the security parameter.

Note that similar to verifiable functional encryption, a non-interactive functional commitment
scheme for circuits implies the existence of a NIWI proof system. This essentially proves that our
result is tight.
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