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ABSTRACT
Secure inference allows a server holding a machine learning (ML)

inference algorithmwith private weights, and a client with a private

input, to obtain the output of the inference algorithm, without

revealing their respective private inputs to one another. While this

problem has received plenty of attention, existing systems are not

applicable to a large class of ML algorithms (such as in the domain

of Natural Language Processing) that perform featurization as their

first step. In this work, we address this gap and make the following

contributions:

• We initiate the formal study of secure featurization and its

use in conjunction with secure inference protocols.

• We build secure featurization protocols in the one/two/three-

server settings that provide a tradeoff between security and

efficiency.

• Finally, we apply our algorithms in the context of secure

phishing detection and evaluate our end-to-end protocol on

models that are commonly used for phishing detection.

KEYWORDS
Secure multi-party computation; Phishing Detection; Private Set

Intersection

1 INTRODUCTION
Secure Inference. The availability of vast volumes of data, as well

as advances in machine learning (ML) algorithms, have dramatically

improved the performance of ML models in a variety of domains.

With the ever growing demand to protect private information, per-

haps the most important problem that has emerged in this space,

is that of secure inference. In this, a server S holds a pre-trained

ML model𝑀 (with weights𝑤 ) and a client C holds an input 𝑥 . The

goal is for one (or both) of the parties to learn the output of the

inference algorithm on input 𝑥 - i.e.,𝑀 (𝑤, 𝑥) - without revealing
any other information to either participant. Specifically, C must

learn nothing more about𝑤 (other than what can be inferred from

the output it receives) and S must learn nothing about 𝑥 . Secure

inference is a special case of the cryptographically well-known

notion of secure 2-party computation [16, 52] and a rich body of

work [3, 8, 15, 19, 25, 29, 30, 33, 43–45, 51] has studied this problem

in detail.
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Featurization. Unfortunately, existing secure inference protocols

are applicable only for use-cases such as image-recognition [19, 29,

33, 44], or for time-series forecasting [43]. In these applications,

𝑀 can directly operate on the raw input data of C, call this 𝑥 ′,
as 𝑥 ′ is a vector of numerical values. However, in a large class of

ML algorithms, such as in the domain of Natural Language Pro-

cessing (NLP) [11], the raw input data 𝑥 ′ must be processed into

a vector of numerical values 𝑥 before it can be input to 𝑀 [54].

This process is called featurization. A featurization algorithm, F,
typically utilizes a list of tokens, known as the dictionary 𝐷 , to
convert 𝑥 ′ to 𝑥 . 𝐷 is a private input of S (model owner) since it is

obtained at model training time. Hence, to protect the privacy of

inputs during secure inference, the featurization algorithm must

also be executed in a privacy-preserving manner, a problem that

has remained unexplored. This work focuses on the problem of

secure featurization and its use in secure inference protocols. The

goal in secure featurization is for S, with dictionary 𝐷 and C, with
raw input 𝑥 ′ to securely compute 𝑥 = F(𝐷, 𝑥 ′). Further, in order to

protect the sensitive inputs of both the participants, they must not

learn this output (𝑥) in the clear and only learn secret shares of it.

These can then be fed into secure inference protocols in order for

the relevant participants to learn𝑀 (𝑤, 𝑥).

Bag ofWords Approach [54].We focus on a ubiquitous featuriza-

tion algorithm in the domain of NLP called Bag-of-Words approach.
This technique makes use of tokenization, the process of parsing
textual data record (raw input) into a list of tokens. This can be

done either through simple 𝑛-gram character tokens or by splitting

the text by basic delimiters (“.”, “,”, “:”, “/”, etc.) to generate tokens.

To build the dictionary 𝐷 , S first processes each textual record

in the training dataset into tokens. S then performs further dif-

ferent kinds of processing on these obtained tokens, e.g., removes

rarely occurring tokens, groups all numerical tokens as a single

token called “numeric” token, groups all tokens that comprise of

whitespace characters only (space character, tab character, new-line

character) into a single token called “whitespace token”, and so on.

This list of processed tokens is called a dictionary 𝐷 . Let 𝑛0 denote
the size of this dictionary.

Featurization of client’s raw input 𝑥 ′ into a vector of numerical

values 𝑥 (of same size 𝑛0) is done as follows: First, tokenization is

performed on 𝑥 ′ to obtain a collection of tokens. These tokens are



processed further to obtain token list 𝑇 along with their correspond-

ing associated attributes. Example of an associated attribute is the

frequency with which the token occurs in the input text. Now, the

featurization algorithm, F, operating on 𝑥 ′, the associated attributes,
and 𝐷 is as follows: for an index 𝑖 ∈ [𝑛0], if 𝐷 [𝑖] ∈ 𝑇 , it sets 𝑥 [𝑖]
to be the associated attribute, else it records 0.

Phishing Detection. With an aim to obtain sensitive informa-

tion from end-users, phishing attacks are typically carried out by

presenting a web-page that looks nearly identical to an authentic

web-page that the user intended to access [13]. Machine learn-

ing techniques are a popular method to build phishing detection

algorithms in order to offer phishing detection as a service to end-
users [10, 18, 26, 28, 53]. In this, the server S trains an appropriate

ML model,𝑀 , to obtain model weights𝑤 and a dictionary 𝐷 . The

input of the end-user C is the information of the accessed web-page,

𝑥 ′ = (URL, Title, Body). The goal of a secure phishing detection

system is to then allow C to learn output 𝑀 (𝑤, F(𝐷, 𝑥 ′)), with-
out revealing any other information to either participant. Prior

works [10] have attempted to solve this problem by weakening the

security requirements, and in particular allow C to learn 𝐷 in the

clear. This weakening of security can have disastrous consequences

- malicious C entities can use 𝐷 to build phishing websites that can

go undetected by the phishing detection system.

1.1 Our Contributions
In this work, we initiate the formal study of secure featurization.

Motivated by efficiency in real-time machine learning systems,

apart from the standard one-server threat model, we also consider

and formalize other threat models as well. In these threat models,

client privacy is provided in multi-server setting with the assump-

tion that the servers do not collude among themselves. Protocols

that satisfy our definitions, can be used in conjunction with existing

efficient secure inference protocols in order to obtain an end-to-end

secure inference protocol for use-cases that involve featurization.

We make the following main contributions.

• We build secure featurization protocols in the one/two/three-

server settings that provide various security vs. efficiency trade-

offs. The one-server protocol provides the strongest security

for C, whereas the two/three-server protocols provide a weaker
security for C as the security relies on non-collusion assump-

tion of the servers. However, on the flip side, two/three-server

protocols perform more than an order of magnitude better than

the one-server protocol both in end-to-end latency as well as

communication. For instance, for a dictionary of size ≈ 21, 000

and token list of size ≈ 70, our one-server, two-server and three-

server secure featurization protocols take 3.66s, 0.26s and 0.05s

respectively. The communication of C in these settings is 146590

KB, 180KB and 2.8 KB respectively. (See Section 5 for communi-

cation of servers and other details.)

• We evaluate our protocols on models that are commonly used

for phishing detection in realistic scenarios such as web browser

protection. More specifically, we build an end-to-end secure

phishing detection system using our secure featurization pro-

tocols and existing secure inference protocols. The one-server,

two-server and three-server protocols took 10.48s, 0.45s, and

0.08s respectively and require the client to communicate 1301

MB, 0.18MB, and 2.8 KB, respectively. The end-to-end latency

and performance of two-server and three-server protocols meet

the performance requirement for production level environment

in practice. Additionally, the three-server protocol has the prop-

erty of being extremely lightweight from the client’s perspective,

an important criteria in production systems.

1.2 Techniques
We first give a very high level description of our protocols for se-

cure featurization and then briefly discuss how we use it to build a

secure phishing detection system.

One server setting. Our first observation is that the process of

featurization is very similar to that of computing the private set

intersection [17, 23, 39, 42] between the client C’s token list 𝑇 and

the server S’s dictionary 𝐷 . Now, since the featurized input must

not be revealed in the clear to any of the parties (and must be used

as input to a secure inference algorithm), one must obtain secret

shares of the intersection and not the intersection itself. Such a

problem has been studied under the name of circuit private set

intersection (circuit PSI) [40, 41]. Hence, one can potentially make

use of a 2-party circuit PSI protocol followed by a 2-party secure

inference protocol [44] to construct the secure phishing detection

protocol. However, this is not completely true. In circuit PSI pro-

tocols [9, 40, 41], while the 2 parties do learn secret shares of the

set intersection (i.e., for every element in the larger set, they learn

shares of 1 if the element is also present in the smaller set and

shares of 0 otherwise), these shares could be permuted in a random

order known only to one of the parties. Hence, to allow for the

use of such circuit PSI protocols as a preface to secure inference

protocols, we do 2 things: first, we define a functionality that takes

this random order as a parameter and show how existing protocols

realize this functionality. Next, we modify the 2-party secure infer-

ence protocol [44] to compute the inverse permutation as the first

step before proceeding to execute the secure inference protocol.

While this protocol provides the client with a high level of se-

curity, we observe that the performance of circuit PSI protocols

do not satisfy the latency requirements to be used in real-world

phishing detection systems. Hence, we consider both two and three

server settings, where client privacy is only provided against non-

colluding servers. Such a non-collusion assumption has been widely

used in a variety of secure computation protocols where perfor-

mance is of paramount importance [2, 30, 32, 51]. More recently,

this assumption has seen adoption to provide real world privacy

guarantees to users of web browsers [1, 12, 14], a setting relevant

to our problem of secure phishing detection.

Two server setting. In the two-server setting, we use techniques

from the recent line of work on Function Secret-Sharing (FSS) [4], to

build a secure featurization protocol. An FSS scheme [4, 5] for a func-

tion 𝑓 , splits 𝑓 into 𝑓0 and 𝑓1 s.t. for all inputs 𝑥 , 𝑓0 (𝑥)+ 𝑓1 (𝑥) = 𝑓 (𝑥)
and each 𝑓𝑏 computationally hides 𝑓 . For each token 𝑡𝑖 in token

list 𝑇 , C considers the point function 𝑓𝑡𝑖 ,𝑎𝑖 : 𝑓𝑡𝑖 ,𝑎𝑖 (𝑡𝑖 ) = 𝑎𝑖 and

𝑓𝑡𝑖 ,𝑎𝑖 (𝑥) = 0 for any 𝑥 ≠ 𝑡𝑖 . (Here, 𝑎𝑖 is the attribute associated with



token 𝑡𝑖 .) Now, using the FSS scheme, C obtains shares of function

𝑓𝑡𝑖 ,𝑎𝑖 , call this 𝑔0,𝑖 and 𝑔1,𝑖 . It sends 𝑔0,𝑖 and 𝑔1,𝑖 to servers S0 and S1
respectively. For each keyword 𝑤 𝑗 in dictionary 𝐷 , S𝑏 computes∑
𝑖 𝑔𝑏,𝑖 (𝑤 𝑗 ), where 𝑏 ∈ {0, 1}. Correctness of FSS scheme ensures

that if𝑤 𝑗 is in 𝑇 , then the servers obtain shares of the associated

attribute, else they obtain shares of 0. The security property of FSS

ensures that servers don’t learn any information about C’s inputs.
However, this naïve technique results in a computation overhead

of 𝑂 (𝑛0𝑛1) at server’s end, where 𝑛0 is the size of the dictionary
and 𝑛1 is the size of tokens list. To reduce this, we deploy cuckoo

hashing techniques[38], to bring the server’s computation overhead

down to 𝑂 (𝑛0). The protocol obtained involves only light-weight

AES computations and hence, it is an order of magnitude faster

than the one-server protocol. Unlike our one-server protocol, this

two-server protocol outputs shares of associated attribute in order

of elements in dictionary 𝐷 , thus, no inverse permutation is needed

and hence a 2-party secure inference protocol can be directly com-

puted on outputs of the two-server secure featurization protocol.

An additional benefit of this protocol is that the C performs no

computation in the inference computation.

Three server setting. In certain real-time applications, end-to-

end performance of secure inference is critical and a response time

of less than 100 ms is desirable. For such cases, we propose a secure

featurization protocol in the three-server setting. Here, there are 3

servers: S0, S1 and S2, where S2 is a server with no inputs. S0 and
C deterministically encrypt and then permute the dictionary 𝐷 and

token list𝑇 respectively and send them toS2.S2 then computes the

intersection of 𝐷 and 𝑇 1
. In this process, S2 only learns the cardi-

nality of intersection and does not get any other information about

the dictionary or the token list. Building on this technique, we con-

struct a secure protocol using light-weight symmetric primitives

only that outputs shares of featurized input vector to serversS0 and
S1. Combining the constructed secure featurization protocol with

3-party secure inference protocols [25] gives us our end-to-end

secure inference protocol.

2 PRELIMINARIES
Notation. The computational and statistical security parameters

are denoted by 𝜆 and 𝜎 respectively. The function neg(𝛾) denotes
a negligible function in 𝛾 . Operator ∥ denotes concatenation and

log (resp. ln) denotes logarithms with base 2 (resp. 𝑒). For a positive

interger ℓ , [ℓ] denotes the set of integers {1, . . . , ℓ}. For a finite

set 𝑋 , 𝑥
$←− 𝑋 denotes that 𝑥 is uniformly sampled from 𝑋 and

|𝑋 | denotes the cardinality of set 𝑋 . We consider ordered sets or

lists, and use 𝑋 [𝑖] to denote 𝑖𝑡ℎ element of 𝑋 . For a permutation

𝜋 : [𝑛] → [𝑛] and a list 𝑋 of size 𝑛, 𝑌 ← 𝜋 (𝑋 ) is a permuted list of

element in 𝑋 where 𝑌 [𝑖] = 𝑋 [𝜋 (𝑖)], for all 𝑖 ∈ [𝑛] and 𝜋−1 denotes
the inverse permutation. For two lists 𝑋 and 𝑌 of same size, −𝑋
and 𝑋 · 𝑌 denote element-wise negation of list 𝑋 and element-wise

product of lists 𝑋 and 𝑌 , respectively. Similarly, for a function 𝑓 ,

and a set 𝑋 , we write 𝑓 (𝑋 ) to denote {𝑓 (𝑋 [𝑖])}𝑖∈ |𝑋 | .

1
The work of [20] explore PSI protocols in the server aided setting. However, their

work does not obtain circuit PSI protocols where sets have associated payloads list, a

necessary feature needed by our protocol.

2.1 Security Model
We consider protocols in the multi-party setting with𝑚 ⩾ 2 par-

ties and security against static probabilistic polynomial time (PPT)
semi-honest adversaries that corrupts one of the parties. We argue

security in the standard the real/ideal simulation paradigm [16, 27].

That is, a protocolΠ is said to securely realize a functionalityF if for

every real-word adversary A there exists an ideal-world adversary

Sim such that the following two distributions are computationally

indistinguishable:

• REALΠ,A,Z : The parties execute protocol Π in the presence

of A and the environment Z. Output the binary distribution

ensemble describingZ′𝑠 output in this interaction.

• IDEALF,Sim,Z : The parties send their inputs to a trusted func-

tionality F that performs the computation faithfully. Let Sim be

the adversary in this interaction. Output the binary distribution

ensemble describingZ′𝑠 output in this interaction.

Moreover, we consider semi-honest security in a hybrid model [6]

in which the parties additionally have access to an ideal function-

ality. By the universal composition theorem [6], if there exists a

semi-honest secure protocol Π realizing functionality F in the F1-
hybrid model, then protocol Π′ that realizes functionality F can

be constructed in the standard model by replacing call to F1 with
the protocol Φ that securely realizes functionality F1.

2.2 Cryptographic Primitives
2.2.1 Pseudorandom Permutations and Symmetric Key Encryption.
A pseudorandom permutation (PRP)𝐺 : {0, 1}𝜆×{0, 1}𝜇 → {0, 1}𝜇
is a polynomial-time (in 𝜆) computable function and is computa-

tionally indistinguishable from a truly random permutation for any

PPT adversary [21].

A symmetric key encryption scheme E [21] for message space

M and ciphertext space C comprises of a) Gen(1𝜆), that outputs
a secret-key 𝑘 ; b) Enc(𝑘,𝑚), that, encrypts the message 𝑚 ∈ M
using the secret key 𝑘 to produce ciphertext 𝑐 ∈ C; and c) Dec(𝑘, 𝑐)
that using 𝑘 and a ciphertext 𝑐 , outputs a message𝑚 ∈ M or ⊥.
Correctness holds if for all 𝑘 ← Gen(1𝜆) and for all messages𝑚 ∈
M, Dec(𝑘, Enc(𝑘,𝑚)) = 𝑚. We require E to satisfy the standard

notion of RCPA security [7] (refer Appendix A.1 for details).

2.2.2 Secret Sharing. We use 2-out-of-2 additive secret sharing

scheme [49] over rings Z2 and Z𝐿 , where 𝐿 = 2
ℓ
, for some integer

ℓ > 1. For (𝑊,R) ∈ {(𝐵,Z2), (𝐴,Z𝐿)}, a secret sharing scheme

comprises of two algorithms: (1) Share𝑊 takes as input an ele-

ment 𝑥 ∈ R and outputs random shares over R denoted by ⟨𝑥⟩𝑊
0

and ⟨𝑥⟩𝑊
1
, with the only constraint that ⟨𝑥⟩𝑊

0
+ ⟨𝑥⟩𝑊

1
= 𝑥 . (2)

Reconstruct𝑊 takes shares ⟨𝑥⟩𝑊
0
, ⟨𝑥⟩𝑊

1
∈ R as input and outputs

the reconstructed value 𝑥 = ⟨𝑥⟩𝑊
0
+ ⟨𝑥⟩𝑊

1
. We refer to shares over

Z2 and Z𝐿 as boolean shares and arithmetic shares respectively.

2.2.3 Hashing. Simple hashing uses 𝑑 many universal hash func-

tions, ℎ1, . . . , ℎ𝑑 : {0, 1}∗ ↦→ [𝛽], to map elements to bins in HT,
where HT is a hash table comprising of 𝛽 bins. An element 𝑥 is

inserted into bins ℎ1 (𝑥), . . . , ℎ𝑑 (𝑥) in HT. Notice that a bin in hash

table HT built using simple hashing can have more than one ele-

ment. In contrast, cuckoo hashing [38] uses 𝑑 > 1 many universal

hash functions, ℎ1, . . . , ℎ𝑑 : {0, 1}∗ ↦→ [𝛽] to map 𝑛ℎ elements to 𝛽



bins in hash tableHT, where 𝛽 = 𝑂 (𝑛ℎ). The procedure to insert an
element 𝑥 to a bin in HT is as follows: If there exists an empty bin

among HT[ℎ1 (𝑥)], . . . ,HT[ℎ𝑑 (𝑥)] then insert 𝑥 in the lexicograph-

ically first empty bin. Otherwise, pick a random 𝑖 ∈ [𝑑], evict the
element present inHT[ℎ𝑖 (𝑥)], insert 𝑥 in binHT[ℎ𝑖 (𝑥)], and recur-
sively try to insert the evicted element. If the number of evictions

reach a certain threshold, the last evicted element is placed in a

special bin called the stash that can hold multiple elements. Observe

that, after cuckoo hashing, an element 𝑥 can be found in one of the

following bins: ℎ1 (𝑥), . . . ℎ𝑑 (𝑥) or the stash, and each bin except

the stash accommodates at most one element. For a discussion on

the probability of stash overflow (i.e. insertion of 𝑠 + 1 elements

into a stash of size 𝑠), refer Appendix A.2.

2.3 Two-party Functionalities
2.3.1 Multiplexer. The functionality FMUX takes as input arith-

metic shares of 𝑥 over Z𝐿 , where 𝐿 = 2
ℓ
, and boolean shares of

choice bit 𝑏 from 𝑃0 and 𝑃1. FMUX returns shares of 𝑥 if 𝑏 = 1, else

it returns shares of 0 over Z𝐿 . We use the protocol of [44] that has

a communication of 2(𝜆 + 2𝐿). We abuse notation and overload this

functionality to also operate element wise over input vectors of

equal size (over Z2 and Z𝐿 respectively).

Parameters. A function 𝑔 (possibly randomized) that takes

as input a list of size 𝑛 and outputs a map 𝑓 : [𝑛] → [𝑐𝑛], for
a some constant 𝑐 ⩾ 1. If 𝑔 is randomized then it also takes

random tape 𝑅 as input. Let SS𝐴 = (Share𝐴 , Reconstruct𝐴) be
a secret-sharing scheme over ring Z𝐿 and SS𝐵 = (Share𝐵 ,
Reconstruct𝐵 ) be a boolean secret-sharing scheme.

Inputs of 𝑃0. Input set 𝑋 = {𝑥1, . . . , 𝑥𝑛0
}, where 𝑥𝑖 ∈ {0, 1}∗,

for all 𝑖 ∈ [𝑛0] and random tape 𝑅𝑃0 .

Inputs of 𝑃1. Input set 𝑌 = {𝑦1, . . . , 𝑦𝑛1
} , where 𝑦𝑖 ∈ {0, 1}∗,

for all 𝑖 ∈ [𝑛1] and list of associated payloads 𝑉 , where

𝑉 [𝑖] ∈ Z𝐿 is the payload associated with element 𝑦𝑖 ∈ 𝑌 .
The functionality does the following:

1. 𝑓 ← 𝑔(𝑋, 𝑅S).
2. Create lists I, 𝑄 of size 𝑐𝑛0. Set I[𝑖] ← 0 and

𝑄 [𝑖] $←− Z𝐿 , ∀𝑖 ∈ [𝑐𝑛0].
3. for 𝑖 ∈ 𝑛0 do
4. if ∃𝑦 𝑗 ∈ 𝑌 s.t. 𝑥𝑖 = 𝑦 𝑗 then
5. I[𝑓 (𝑖)] ← 1 and 𝑄 [𝑓 (𝑖)] ← 𝑉 [ 𝑗].
6. end
7. end
8. Compute (⟨I⟩𝐵

0
, ⟨I⟩𝐵

1
) ← SS𝐵 .Share𝐵 (I) and

(⟨𝑄⟩𝐴
0
, ⟨𝑄⟩𝐴

1
) ← SS𝐴 .Share𝐴 (𝑄).

9. Send ⟨I⟩𝐵
𝑏
and ⟨𝑄⟩𝐴

𝑏
to 𝑃𝑏 , for 𝑏 ∈ {0, 1}.

Fig. 1: Circuit-PSI Functionality FCPSI

2.3.2 Circuit-PSI. FCPSI [9, 17, 39–41, 47] is a two-party function-

ality that at a high level outputs secret shares of intersection of

private sets of two parties. More formally, the functionality takes as

input set𝑋 of size 𝑛0 from 𝑃0, and set 𝑌 of size 𝑛1 and its associated

payloads 𝑉 from 𝑃1. Existing protocols of circuit-PSI [9, 39–41, 47]

that use Cuckoo hashing, consider a permutation, represented as

an injective function 𝑓 , that is known to 𝑃0 and is function of 𝑋

and 𝑃0’s randomness. 𝑃0 uses cuckoo hashing scheme that maps

elements in 𝑋 to hash table HT of size (1 + 𝜀)𝑛0, where 𝜀 ∈ (0, 1).
The injective function 𝑓 : [𝑛0] → [𝑐𝑛0], where 𝑐 = (1 + 𝜀), is

defined as follows: 𝑖
𝑓
↦−→ 𝑗 s.t. element HT[ 𝑗] = 𝑥𝑖 , where 𝑖 ∈ [𝑛0]

and 𝑗 ∈ [𝑐𝑛0]. Now the FCPSI gives two secret shared vectors 𝐼 ,𝑄

of length 𝑐𝑛0 as output to two parties, where 𝐼 is a boolean vector

(that stores 1 corresponding to elements in intersection) and 𝑄 is a

arithmetic vector (that stores the shares of correponding payload).

Formally, if 𝑋 [𝑖] = 𝑌 [ 𝑗], it sets 𝐼 [𝑓 (𝑖)] = 1 and 𝑄 [𝑓 (𝑖)] = 𝑉 [ 𝑗].
Other indices in 𝐼 and𝑄 that do not correspond to elements in inter-

section, are set to 0 and uniformly random, respectively. We define

the functionality formally in Fig. 1. Here, 𝑔 outputs the injective

map using 𝑋 and randomness of 𝑃0.

2.4 Function Secret Sharing
Function Secret Sharing (FSS) [4, 5] scheme for a function 𝑓 : 𝐼 → G,
where 𝐼 is the input domain and (G, +) is an abelian group which is

the output domain, splits 𝑓 into 𝑓0 and 𝑓1 s.t. ∀𝑥 ∈ 𝐼 , 𝑓0 (𝑥) + 𝑓1 (𝑥) =
𝑓 (𝑥) and each 𝑓𝑏 computationally hides 𝑓 . FSS is formally described

in Definition 1.

Definition 1. Function secret sharing (FSS) scheme 𝐹 for func-
tions in F = {𝑓 : 𝐼 → G} is a pair of PPT algorithms (Gen, Eval)
described below:

• Gen(1𝜆, 𝑓 ) takes as input the description of function 𝑓 and
outputs two keys 𝑘0, 𝑘1.
• Eval(𝑏, 𝑘𝑏 , 𝑥) takes as input the party index 𝑏 ∈ {0, 1}, key 𝑘𝑏
and input 𝑥 ∈ 𝐼 and it outputs 𝑦𝑏 ∈ G.

Let Leak : {0, 1}∗ → {0, 1}∗ denote allowable leakage function that
takes as input the description of function 𝑓 and outputs the description
of allowed leakage.
Correctness: For all 𝑓 ∈ F and 𝑥 ∈ 𝐼 , if (𝑘0, 𝑘1) ← 𝐹 .Gen(1𝜆, 𝑓 )
then Pr[𝐹 .Eval(0, 𝑘0, 𝑥) +𝐹 .Eval(1, 𝑘1, 𝑥) = 𝑓 (𝑥)] = 1.
Security: For any 𝑏 ∈ {0, 1}, there exists a PPT simulator Sim s.t.
for every polynomial-size function sequence (𝑓𝜆)𝜆∈N from F , the two
distributions given below are computationally indistinguishable:

• {𝑘0, 𝑘1 ← 𝐹 .Gen(1𝜆, 𝑓𝜆). Output 𝑘𝑏 }.
• {Output Sim(1𝜆, Leak(𝑓𝜆)}.

In this work, we make use of Distributed Point Functions (DPF)

which is an FSS scheme for point functions 𝑓𝑎,𝑏 : {0, 1}ℓ → G
s.t. 𝑓𝑎,𝑏 (𝑎) = 𝑏 and 𝑓𝑎,𝑏 (𝑥) = 0 for any 𝑥 ≠ 𝑎. We use the DPF

scheme from [5]. This DPF scheme leaks only the description of

input domain and output group of the underlying point functions.

Gen(·) algorithm of this scheme requires 4ℓ AES evaluations and

the keys 𝑘0 and 𝑘1 are each of size ℓ (𝜆+2). Eval(·) algorithm makes

2ℓ AES evaluations.

3 SECURE FEATURIZATION
In this section, we first give a formal description of secure featur-

ization functionality FSF. Next, we present our secure featurization
protocols in the one, two and three-server settings.



3.1 Functionality FSF
We assume that both the server as well as the client have performed

the tokenization process on their respective inputs (see Section 1).

Thus, in the problem of secure featurization, the server (S0) has
dictionary, i.e., a list of keywords, 𝐷 of size 𝑛0 and the client (C) has
a list of tokens 𝑇 of size 𝑛1 with associated attributes 𝐸. Server and

client must learn shares of a vector 𝑄 of size 𝑛0 such that 𝑄 [𝑖] =
𝐸 [ 𝑗] if 𝐷 [𝑖] = 𝑇 [ 𝑗], and 0 otherwise. Similar to the functionality of

circuit-PSI (Section 2.3.2), we allow parties to learn these shares in

a permuted order and allow length of 𝑄 to be larger than 𝑛0 due to

the use of Cuckoo Hashing. We define our functionality formally

in Fig. 2.

Extending this to themulti-server setting, we consider a modified

version of the FSF functionality. The multi-server setting comprises

of𝑚-servers S0, . . . ,S𝑚−1 and a client C. In this modified version,

the inputs of S0 and S1 are the same as S0 in Fig. 2, the input of

C remains the same and the remaining servers have no inputs. FSF
outputs the shares of the associated attributes, i.e., ⟨𝑄⟩𝐴

0
and ⟨𝑄⟩𝐴

1

to servers S0 and S1 respectively. The other parties (including C)
do not receive any output.

Remark. The nuances of permutation and larger size 𝑄 is only

needed for the one-server protocol that builds on circuit-PSI proto-

cols. For our protocols in two/three-server setting, 𝑐 = 1 and there

is no permutation 𝑓 . That is, parties learn the shares of (simplified)

vector 𝑄 described above in intuitive description.

Remark. In our protocols for two/three-server setting, parties addi-
tionally learn size of input of other parties, apart from just the final

shares. We spell out these details in respective protocol descriptions

and theorems. For ease of exposition, we avoid cluttering the func-

tionality description with these details, as the main functionality is

to learn shares of featurized input, and it is standard for protocols

to reveal the size of honest party inputs (for efficiency).

3.2 One-Server Protocol
We present our secure featurization protocol in the one-server set-

ting. Our protocol makes use of functionalities FCPSI and FMUX.

This protocol provides the strongest privacy guarantee for the client

but has the highest computational/communication overhead for

the client compared to the protocols in two/three-server settings.

Protocol Overview. Recall that FCPSI outputs boolean shares of

intersection and arithmetic shares of the associated payloads in

some permuted order. Note that the only difference in function-

alities of secure featurization and circuit-PSI is that for elements

not in intersection, secure featurization requires the value to be

0 whereas it is a uniformly random value in circuit-PSI. However,

the boolean vector in circuit-PSI captures exactly the information

whether the index is in intersection or not. Hence, a protocol for

FSF can be constructed using FCPSI and FMUX functionalities in a

straight-forward manner. The boolean shares of intersection and

the arithmetic shares of associated payloads returned by FCPSI act
as the boolean shares of the choice bits and the input arithmetic

shares in the call to FMUX. The protocol is described in Fig. 3.

Parameters. A function 𝑔 (possibly randomized) that takes

as input a list of size 𝑛 and outputs a map 𝑓 : [𝑛] → [𝑐𝑛], for
a some constant 𝑐 ⩾ 1. If 𝑔 is randomized then it also takes

random tape 𝑅 as input. Let SS = (Share𝐴 , Reconstruct𝐴) be a
secret-sharing scheme over ring Z𝐿 .
Inputs of S0. A dictionary 𝐷 of size 𝑛0, where 𝐷 [𝑖] ∈ {0, 1}∗,
for all 𝑖 ∈ [𝑛0] and an optional random tape 𝑅S .
Inputs of C. A tokens list 𝑇 of size 𝑛1, where 𝑇 [𝑖] ∈ {0, 1}∗,
for all 𝑖 ∈ [𝑛1] and a list E of corresponding associated

attributes in ring Z𝐿 .

The functionality does the following:

1. 𝑓 ← 𝑔(𝐷, 𝑅S).
2. Create list 𝑄 of size 𝑐𝑛0. Set 𝑄 [𝑖] ← 0, ∀𝑖 ∈ [𝑐𝑛0].
3. for 𝑖 ∈ 𝑛0 do
4. if ∃ 𝑗 ∈ [𝑛1] s.t. 𝐷 [𝑖] = 𝑇 [ 𝑗] then
5. 𝑄 [𝑓 (𝑖)] ← E[ 𝑗].
6. end
7. end
8. Compute (⟨𝑄⟩𝐴

0
, ⟨𝑄⟩𝐴

1
) ← SS.Share𝐴 (𝑄). Send ⟨𝑄⟩𝐴

0
to

S0 and ⟨𝑄⟩𝐴
1
to C.

Fig. 2: Secure Featurization Functionality FSF

Parameters. Circuit-PSI Functionality FCPSI and multiplexer

functionality FMUX.

Inputs of S0. A dictionary 𝐷 of size 𝑛0, where

𝐷 [𝑖] ∈ {0, 1}∗, for all 𝑖 ∈ [𝑛0] and a random tape 𝑅S .
Inputs of C. A tokens list 𝑇 of size 𝑛1, where 𝑇 [𝑖] ∈ {0, 1}∗,
for all 𝑖 ∈ [𝑛1] and a list E of corresponding associated

attributes in ring Z𝐿 .

1. S0 and C invoke FCPSI functionality where S0 plays the
role of 𝑃0 with inputs 𝐷 and 𝑅S , and C plays the role of

𝑃1 with inputs 𝑇 and E. S receives I0, 𝑄0 and C receives

I1, 𝑄1 from FCPSI functionality.
2. S0 and C invoke the functionality FMUX where the input

of S0 is I0 and 𝑄0 and the input of C is I1 and 𝑄1. Let𝑈0

and𝑈1 denote the output received by S0 and C from

FMUX functionality .

3. S0 and C output the lists𝑈0 and𝑈1 respectively.

Fig. 3: One-Server Secure Featurization Protocol

Complexity. The complexity of the proposed protocol is the sum

of the complexities of Circuit-PSI protocol [9] and Multiplexer pro-

tocol [44] for appropriate size inputs.

We give the correctness and security proof of our protocol in Fig. 3

in Appendix B that formally proves the theorem below.

Theorem 1. The protocol in Fig. 3 securely realizes FSF in the
F -hybrid model, where F = (FCPSI, FMUX), against semi-honest
corruption of one party 𝑃 ∈ {S0, C}.

3.3 Two-Server Protocol
While one-server featurization protocol provides the strongest se-

curity guarantee, it may not satisfy the efficiency requirements of



many real-time applications. Moreover, the computation time of C
in our one-server protocol is𝑂 (𝑛0). Typically, the size of tokens list
(𝑛1) is orders of magnitude less than the size of the dictionary (𝑛0).

Inmany applications, the client machine is of low configuration, e.g.,

settings where the inference protocol is run on hand-held devices

by C. For such applications, it is ideal to have C’s computation time

to be dependent on its input size only and should be independent

of the dictionary size. In this section, we propose a secure featur-

ization protocol in two-server setting which is orders of magnitude

more efficient than our protocol in one-server setting. Further, the

computation time of C in our two-server protocol is independent

of the dictionary size. However, the two-server setting provides

weaker client privacy guarantees than the one-server setting as

client’s input privacy is guaranteed only when the two servers S0
and S1 are non-colluding. Our two-server protocol makes use of

FSS for point functions, i.e., DPF scheme, and cuckoo hashing.

Protocol Overview. In the two-server setting, both servers S0
and S1 hold the same dictionary 𝐷 . Recall that, DPF scheme 𝐹 =

(Gen, Eval) is an FSS scheme for point functions in family F =

{𝑓𝑎,𝑏 (·) |𝑓𝑎,𝑏 : {0, 1}𝜇 → Z𝐿 with 𝑓𝑎,𝑏 (𝑎) = 𝑏 and 𝑓𝑎,𝑏 (𝑥) = 0 for 𝑥 ≠

𝑎}. We first describe a basic scheme that requires each server to per-

form 𝑛0𝑛1 DPF evaluations and then show how to reduce this to be

independent of 𝑛1. For each token-attribute pair (𝑇 [ 𝑗],E[ 𝑗]), where
𝑗 ∈ 𝑛1, C generates DPF keys 𝐾0 [ 𝑗] and 𝐾1 [ 𝑗] for point function
𝑓𝑇 [ 𝑗 ],E[ 𝑗 ] and then sends list of keys 𝐾𝑏 to S𝑏 , where 𝑏 ∈ {0, 1}.
For each keyword 𝐷 [𝑖], where 𝑖 ∈ 𝑛0, S𝑏 computes the sum of eval-

uations of DPF scheme on 𝐷 [𝑖] using each key 𝐾𝑏 [ 𝑗]. For keyword
𝐷 [𝑖] in tokens list 𝑇 such that 𝐷 [𝑖] = 𝑇 [ 𝑗], the DPF evaluations

using key-pair 𝐾0 [ 𝑗] and 𝐾1 [ 𝑗] output shares of attribute E[ 𝑗],
whereas for the remaining key-pairs, the DPF evaluations output

shares of 0. Hence, the sum of shares of all DPF evaluations on

keyword 𝐷 [𝑖] is shares of attribute E[ 𝑗]. Analogously, for keyword
𝐷 [𝑖] not in𝑇 , the DPF evaluations on all key-pairs output shares of

0. As a result, the sum of shares of all DPF evaluations on keyword

𝐷 [𝑖] in this case is shares of 0. The limitation of using this simple

approach is that each server has to perform 𝑛0𝑛1 DPF evaluations.

We now show how to use cuckoo hashing to reduce the number

of DPF evaluations to 𝑑𝑛0, where 𝑑 denotes the number of hash

functions in cuckoo hashing scheme
2
. The complete two-server

secure featurization protocol is described in Fig. 4.

Observe that in this protocol, servers additionally learn the size

of tokens list, i.e., 𝑛1 (from the size of lists 𝐾𝑏 and output length 𝜇

of hash function ℎ). Similarly, the client learns the dictionary size

𝑛0 again from the output length of hash function
3
.

Complexity. We make use of the single-point DPF scheme pro-

posed in [5] to instantiate our protocol in Fig. 4. The only com-

munication that takes place in our two-server secure featurization

protocol is in step 14. Hence, the communication complexity of C
is 2(1 + 𝜀) (𝜆 + 2)𝑛1𝜇. Whereas, the communication cost incurred

2
Our use of single point DPFs with hashing techniques to obtain shares of associated

attributes for elements in intersection of the two lists is similar to the approach used

in construction of multi-point DPFs in [48].

3
The output length of the hash function, ℎ, is chosen such that the probability of

collision for two elements is negligible in statistical security parameter, and hence,

depends on the total number of elements in dictionary and token list.

Parameters. Let ℎ: {0, 1}∗ → {0, 1}𝜇 be a universal hash

function, where 𝜇 = 𝜎 + log(𝑛0) + log(𝑛1) + 1; let ℎ1, ℎ2 and
ℎ3: {0, 1}𝜇 ↦→ [𝛽] be three universal hash functions, where

𝛽 = (1 + 𝜀)𝑛1 and 𝜀 ∈ (0, 1); let 𝐹 = (Gen, Eval) be a DPF
scheme for point functions whose inputs are of length 𝜇 and

its output domain is Z𝐿 .
Inputs of S0 and S1. A dictionary 𝐷 of size 𝑛0, where

𝐷 [𝑖] ∈ {0, 1}∗, for all 𝑖 ∈ [𝑛0].
Inputs of C. A tokens list 𝑇 of size 𝑛1, where 𝑇 [𝑖] ∈ {0, 1}∗,
for all 𝑖 ∈ [𝑛1] and a list E of corresponding associated

attributes in ring Z𝐿 .

1. Servers S0 and S1 create list 𝐴 of length 𝑛0 such that

𝐴[𝑖] = ℎ(𝐷 [𝑖]), for all 𝑖 ∈ [𝑛0].
2. C creates list 𝐵 of length 𝑛1 such that 𝐵 [𝑖] = ℎ(𝑇 [𝑖]), for
all 𝑖 ∈ [𝑛1].

3. C builds hash table HT𝐶 with 𝛽 bins by mapping

elements in 𝐵 to HT𝐶 using Cuckoo hashing with hash

functions ℎ1, ℎ2, ℎ3. Since 𝛽 > 𝑛1, C fills the empty bins in

HT𝐶 with a dummy value.

4. C creates list of DPF keys 𝐾0 and 𝐾1 as follows:

5. for 𝑗 ∈ [𝛽] do
6. if HT𝐶 [ 𝑗] ∈ 𝑇 then
7. Let 𝑖 ∈ [𝑛1] be the index s.t. HT𝐶 [ 𝑗] = ℎ(𝑇 [𝑖]).
8. (𝑘0, 𝑘1) ← 𝐹 .Gen(1𝜆,HT𝐶 [ 𝑗], E[𝑖],Z𝐿).
9. else
10. (𝑘0, 𝑘1) ← 𝐹 .Gen(1𝜆,HT𝐶 [ 𝑗], 0,Z𝐿).
11. end
12. Set 𝐾0 [ 𝑗] ← 𝑘0 and 𝐾1 [ 𝑗] ← 𝑘1.

13. end
14. C sends 𝐾𝑏 to S𝑏 , for all 𝑏 ∈ {0, 1}.
15. For 𝑏 ∈ {0, 1}, S𝑏 computes list FS𝑏 of size 𝑛0 as follows:

16. Create list FS𝑏 of size 𝑛0. For all 𝑖 ∈ [𝑛0], set FS𝑏 [𝑖] to 0.

17. for 𝑡 ∈ [𝑛0] do
18. PSet = {ℎ1 (𝐴[𝑡]), ℎ2 (𝐴[𝑡]), ℎ3 (𝐴[𝑡])}.
19. for pos ∈ PSet do
20. FS𝑏 [𝑡] ← FS𝑏 [𝑡] + 𝐹 .Eval(𝑏, 𝐾𝑏 [pos], 𝐴[𝑡]).
21. end
22. end
23. For 𝑏 ∈ {0, 1}, S𝑏 outputs FS𝑏 .

Fig. 4: Two-Server Secure Featurization Protocol

at S0’s and S1’s end is (1 + 𝜀) (𝜆 + 2)𝑛1𝜇. C does 4(1 + 𝜀)𝑛1𝜇 AES
evaluations whereas each server does 6𝑛0𝜇 AES evaluations.

We give complete correctness and security proof of our protocol in

Fig. 4 in Appendix C. Formally, we prove the theorem below.

Theorem 2. Given a secure DPF scheme, the protocol in Fig. 4 se-
curely realizes FSF in the two-server setting, where FSF parameterized
with a constant function 𝑔 that outputs identity map 𝑓 : [𝑛0] → [𝑛0].
Moreover, along with secret shares of featurized input, the servers learn
the size of client’s token list and client learns the size of the dictionary
as additional outputs.



3.4 Three-Server Protocol
Although our two-server protocol provides drastic performance

improvement over our one-server protocol, the overhead for the

client in this protocol is still higher than that desired by many ap-

plications. This is because the client generates and communicates

DPF keys whose number is proportional to the size of its token list.

We address this bottleneck by considering the three-server setting.

This three-server protocol has very low latency and C is super-light

weight, albeit the protocol provides a weaker privacy guarantee for

the client. In particular, the privacy of the client requires that no

two servers collude.

Protocol Overview. In the three-server setting, there are 3 servers,
S0, S1 and S2 such that S0 and S1 holds the dictionary 𝐷 and

S2 has no input. S0 applies pseudorandom permutation 𝐺 to all

keywords in the dictionary𝐷 and permutes the obtained list using a

random permutation. S0 then sends this processed dictionary to S2.
C processes its token list 𝑇 in a similar way using 𝐺 and same key,

and sends the processed tokens list to S2. As a result, S2 can easily

identify indices of entries in the processed dictionary that belong in

the intersection of dictionary𝐷 and tokens list𝑇 . Observe that, only

the cardinality of intersection is leaked to S2 in this computation

as S2 learns no information about individual entries in either of

the processed list (from PRP security) or the order of entries in the

processed list (due to the application of random permutation).

Now, client C handles the attributes of the tokens as follows:

First, C generates secret-shares of the attributes E associated with

tokens in 𝑇 , 𝐸0 and 𝐸1. It encrypts 𝐸0. C sends a permuted list of

𝐸1 and a permuted list of encryption of 𝐸0, using the same ran-

dom permutation used to permute entries in 𝑇 , to S2. C sends the

encryption key to S0 and S1. S2 first computes the share of featur-

ized input vector for S1 by using the values in 𝐸1 for elements in

intersection and a random value for indices not in intersection. It

sends these to S1. Next, S1 encrypts the additive inverse of shares
obtained from S2 and sends it back to S2. Finally, S2 creates share
of featurized input for S0 as follows: For elements in intersection,

it uses the encryption of 𝐸0 obtained from C. For elements not

in intersection, it uses the encyption obtained from S1 (this gives
additive shares of 0). S0 decrypts its share using the key obtained

from the client. The protocol is formally described in Fig. 5.

In this protocol, setting the optimal output length of the hash

function results in S0 learning the size of token list and C learning

the size of the dictionary. Moreover, the server S2 also learns the

size of token list from the message received from C and also the

size of the intersection.

Complexity. The communication complexity of C is 𝑛1 (𝜆+𝜇+ℓ) +
2𝜆, where ℓ = log(𝐿) and it performs 2𝑛1 many AES evaluations.

S0 has a communication complexity of 𝑛0 (𝜆 + 𝜇) + 2𝜆 and does

2𝑛0 many AES Evaluations. S1 incurs a communication cost of

𝑛0 (𝜆 + ℓ) + 𝜆 and makes 𝑛0 many AES Evaluations. The commu-

nication cost incurred by S2 is 𝑛0 (2𝜆 + 𝜇 + ℓ) + 𝑛1 (𝜆 + 𝜇 + ℓ) and
doesn’t perform any AES evaluations.

We give correctness and security proof of our protocol in Fig. 5 in

Appendix D. Formally, we prove the theorem below.

Parameters. Let ℎ: {0, 1}∗ → {0, 1}𝜇 be a universal hash

function, where 𝜇 = 𝜎 + log(𝑛0) + log(𝑛1); let
𝐺 : {0, 1}𝜆 × {0, 1}𝜇 → {0, 1}𝜇 be a PRP; let
E = (Gen, Enc,Dec) be an RCPA secure symmetric key

encryption scheme; and finally, let secret-sharing scheme SS
= (Share𝐴 , Reconstruct𝐴) over ring Z𝐿 .
Inputs of S0 and S1. A dictionary 𝐷 of size 𝑛0, which is a

keywords list where 𝐷 [𝑖] ∈ {0, 1}∗, for all 𝑖 ∈ [𝑛0].
Inputs of C. A tokens list 𝑇 of size 𝑛1, where 𝑇 [𝑖] ∈ {0, 1}∗,
for all 𝑖 ∈ [𝑛1] and a list E of corresponding associated

attributes in ring Z𝐿 .

1. Servers S0 create a list 𝐴 of length 𝑛0 such that

𝐴[𝑖] = ℎ(𝐷 [𝑖]), for all 𝑖 ∈ [𝑛0].
2. C creates list 𝐵 of length 𝑛1 such that 𝐵 [𝑖] = ℎ(𝑇 [𝑖]), for
all 𝑖 ∈ [𝑛1].

3. C generates 𝑘𝐺
$←− {0, 1}𝜆 and 𝑘E ← E .Gen(1𝜆). C

sends 𝑘𝐺 to S0 and sends 𝑘E to both S0 and S1.
4. S0 selects a random-permutation 𝜋𝐴 on [𝑛0] and sends

𝜋𝐴 to S1. S0 computes list 𝐴′ = 𝜋𝐴 (𝐺 (𝑘𝐺 , 𝐴)) and sends

𝐴′ to S2.
5. C selects a random-permutation 𝜋𝐵 on [𝑛1] and creates

list 𝐵′ = 𝜋𝐵 (𝐺 (𝑘𝐺 , 𝐵)) and sends 𝐵′ to S2.; C computes

(𝐸0, 𝐸1) ← SS.Share𝐴 (𝐸).
6. C creates two other lists 𝐸𝐹0 and 𝐹1 of size 𝑛1 as follows:

𝐸𝐹0 = 𝜋𝐵 (E .Enc(𝑘E , 𝐸0)) and 𝐹1 = 𝜋𝐵 (𝐸1). Finally, C
sends list 𝐸𝐹0 and 𝐹1 to S2.

7. S2 computes an indicator list I of size 𝑛0, where in,

I[𝑖] = 1 if 𝐴′[𝑖] ∈ 𝐵′ and I[𝑖] = 0 otherwise.

8. S2 creates list F1 of size 𝑛0 as described below and sends

it to S1.
9. for 𝑖 ∈ [𝑛0] do
10. if I[𝑖] = 1 then
11. Let 𝑗 ∈ [𝑛1] be an index s.t. 𝐴′[𝑖] = 𝐵′[ 𝑗]. Set

F1 [𝑖] ← 𝐹1 [ 𝑗].
12. else

13. Set F1 [𝑖]
$←− Z𝐿 .

14. end
15. end
16. S1 computes EF1 ← E .Enc(𝑘E ,−F1). S1 sends EF1 to S2.

17. S2 creates list EF0 of size 𝑛0 as described below and sends

it to S0.
18. for 𝑖 ∈ [𝑛0] do
19. if I[𝑖] = 1 then
20. Let 𝑗 ∈ [𝑛1] be an index s.t. 𝐴′[𝑖] = 𝐵′[ 𝑗]. Set

EF0 [𝑖] ← 𝐸𝐹0 [ 𝑗].
21. else
22. Set EF0 [𝑖] ← EF1 [𝑖].
23. end
24. end
25. S0 computes F0 ← E .Dec(𝑘E , EF0).
26. For 𝑏 ∈ {0, 1}, S𝑏 outputs F′

𝑏
← 𝜋−1

𝐴
(F𝑏 ).

Fig. 5: Three-Server Secure Featurization Protocol



Theorem 3. Given a pseudorandom permutation, an RCPA-secure
secret-key encryption scheme and a secret-sharing scheme over ring
Z𝐿 , the protocol in Fig. 5 securely realizes FSF in the three-server
setting where FSF parameterized with a constant function 𝑔 that
outputs identity map 𝑓 : [𝑛0] → [𝑛0]. Moreover, additionally, S0
andS2 learn the size of token list (𝑛1)S2 learns the size of intersection,
i.e., |𝐷 ∩𝑇 |, and C learns size of the dictionary (𝑛0).

4 END-TO-END SECURE INFERENCE
In this section, we discuss how to obtain end-to-end secure infer-

ence protocols using our secure featurization protocols and existing

secure inference protocols [25, 44, 51] that work on featurized in-

puts. Denote the end-to-end secure inference functionality by FGSI,
for general secure inference.

Problem Statement. In one-server setting, S0 sends model 𝑀

(with weights𝑤 ) and dictionary 𝐷 to FGSI, and C sends tokens list

𝑇 and the list of associated attributes E to FGSI. FGSI outputs the
inference output𝑀 (𝑤, 𝑥) to C, where 𝑥 is the featurized input (and

is the output of F(𝐷,𝑇 , E)).
Similar to secure featurization, we consider a modified version

of end-to-end secure inference for multi-server settings. In the

modified version, the inputs of S0 and S1 are the same as that

of S0 in one-server FGSI functionality, the input of C remains

the same and the remaining servers have no inputs. The output

of modified FGSI is same as that of one-server FGSI, i.e., only C
receives the inference output. As wewill discuss below, our protocol

in the multi-server setting provides stronger security for the server,

namely, hides the model description𝑀 as well from the client.

4.1 One-server
We first formalize the secure inference functionality F 2PC

SI that

operates on featurized inputs. F 2PC
SI takes as input Model𝑀 (with

model weights 𝑤 ) from 𝑃0 and shares of featurized input vector

𝑥 , i.e., ⟨𝑥⟩𝐴
0

and ⟨𝑥⟩𝐴
1

from 𝑃0 and 𝑃1 respectively and outputs

𝑀 (𝑤, 𝑥) to 𝑃1. There is a long line of work that focuses on the

problem of secure inference, given featurized inputs at the client’s

end [19, 29, 33, 44] (and references therein). These protocols can be

easily modified to work in settings where the client featurized input

is secret shared between 2-parties, as is the case for secure featuriza-

tion. Moreover, all these works assume that the model description,

i.e., is public or known to both parties running secure inference. In

our setting, this can be viewed as additional output of the client.

This additional information may or may not be acceptable depend-

ing on the application, and our protocols for multi-server settings,

described in next subsections, avoid this leakage to the client. Fi-

nally, in the one-server setting, our implementation makes use of

the state-of-the-art work for 2-party secure inference, CrypTFlow2

[44], to realize F 2PC
SI functionality as described below.

In end-to-end secure inference in one-server setting, S0 has

model𝑀 , model-weights𝑤 , and dictionary 𝐷 and C has tokens list

𝑇 and the list of associated attributes E. S0 samples randomness 𝑅S .
First, S0 and C invoke the one-server secure featurization protocol

(Fig. 3) with S’s input as 𝐷 and 𝑅S and C’s input as 𝑇 and E. The
secure featurization protocol outputs the shares of the associated

attribute, 𝑈0 and 𝑈1, in a permuted order defined by function 𝑓

of FCPSI functionality (see line 1 of Fig. 1). However, the obtained

shares of featurized inputs cannot be directly fed to F 2PC
SI as they

are permuted.

Using the description of function 𝑓 , S0 and C can re-order the

lists𝑈0 and𝑈1 to obtain lists of shares in the order of the dictionary

𝐷 . As 𝑓 is computed using S0’s input and random tape 𝑅S , S0 can
obtain function 𝑓 locally and it can then send 𝑓 to C. However, 𝑓
depends on the input of S0. Thus, the above approach is not secure.

Instead, S0 does the following: It prepends the model 𝑀 with a

linear layer of dimension 𝑛0 × 𝑐𝑛0 that un-permutes the feature

vector and removes the entries for dummy elements. The weights

of this layer are also kept secret with S0. In cases where the first

layer of 𝑀 is itself a fully connected linear layer (of dimension,

say,𝑚 × 𝑛0) we can perform the following optimization: server S0
multiplies the above additional layer with the first layer in 𝑀 to

obtain a fully connected layer of dimension𝑚 × 𝑐𝑛0. Denote the
modified weights vector by𝑤 ′.
S0 plays the role of 𝑃0 and C plays the role of 𝑃1 in call to F 2PC

SI
functionality. The inputs of S are𝑀 ,𝑤 ′ and𝑈0 from S and that of

C is𝑈1. C then obtains the inference output from F 2PC
SI .

The protocol provides strongest privacy guarantee from client’s

perspective. However, the privacy guarantee is not the strongest

from S0’s perspective. This is because apart from C learning the

dictionary size 𝑛0 on executing the one-server secure featurization

protocol, C also learns the description of model𝑀 in execution of

F 2PC
SI functionality.

4.2 Two-server
At the end of two-server secure featurization, servers S0 and S1
learn the secret shares of the featurized input and will run the

subsequent secure inference protocol. In this setting, we consider

an alternate secure inference functionality F 2PC′
SI where the input

of 𝑃0 (resp. 𝑃1) is model 𝑀 , model weights𝑤 and 𝑃0’s (resp. 𝑃1’s)

share of featurized input vector ⟨𝑥⟩𝐴
0
(resp. ⟨𝑥⟩𝐴

1
). 𝑃0 and 𝑃1 receive

shares of inference result 𝑀 (𝑤, 𝑥) from F 2PC′
SI functionality. We

make use of CrypTFlow2 secure inference framework [44] to realize

F 2PC′
SI functionality. Compared to F 2PC

SI , F 2PC′
SI can be realized

more efficiently because now the weights of linear layers are known

to both the parties that allow the linear layers to be computed

without communication and at the same cost of computing the

linear layer on cleartext.

In end-to-end secure inference in two-server setting, the inputs of

S0 and S1 are the model𝑀 , model weights𝑤 and dictionary 𝐷 and

the inputs of C are tokens list𝑇 and the list of associated attributes

E. S0, S1 and C first invoke the two-server secure featurization

protocol (Fig. 4) with input of S0 and S1 as 𝐷 , and input of C as 𝑇

and E. S0 and S1 obtain shares of the featurized input FS0 and FS1
respectively. Unlike the one-server secure featurization protocol,

our two-server secure featurization protocol outputs the shares of

the associated attribute in the same order as that of the dictionary

𝐷 . S0 (resp. S1) with inputs model𝑀 with weights𝑤 and FS0 (resp.
FS1) play the role of 𝑃0 (resp. 𝑃1) in F 2PC′

SI functionality and obtain

secret shares of the inference output. S0 and S1 then relay these

shares to C, who can then reconstruct to learn the inference output.

The protocol provides weaker security for C as the security relies

on non-collusion assumption of the servers. However, it provides a



stronger security for the model owner as the description of model𝑀

is not revealed to C. The two-server protocol is orders of magnitude

faster than the one-server protocol due to faster secure featuriza-

tion as well as faster secure inference (as the model is known to

both parties performing the computation). Additionally, as C does

not take part in inference phase, its computation/communication

overhead is low and independent of machine learning model being

used.

4.3 Three-server
At the end of three-server secure featurization, servers S0 and S1
learn the secret shares of the featurized input, and S2 has no output
and all three servers will run the subsequent secure inference pro-

tocol. We consider a 3-party secure inference functionality F 3PC′
SI ,

where 𝑃0’s input are model 𝑀 , model weights 𝑤 and 𝑃0’s share

of featurized input vector ⟨𝑥⟩𝐴
0
, 𝑃1’s inputs are model 𝑀 , model

weights 𝑤 and 𝑃1’s share of featurized input vector ⟨𝑥⟩𝐴
1
, and 𝑃2

has no input. The functionality outputs shares of𝑀 (𝑥,𝑤) to 𝑃0 and
𝑃1 and 𝑃2 has no output. To realize this, we optimize the 3-party

protocol Porthos [25, 51] for the setting when weights of the model

are known to 𝑃0, 𝑃1. Overall, due to the use of helper party, i.e., 𝑃2,

this secure inference is much more efficient than the two-server

setting considered above.

In end-to-end secure inference in three-server setting, the inputs

of S0 and S1 are the model𝑀 , model weights𝑤 and dictionary 𝐷 ,

the inputs of C are tokens list𝑇 and the list of associated attributes E,
and S2 has no inputs. S0, S1, S2 and C first invoke the three-server

secure featurization protocol (Fig. 5) with input of S0 and S1 as 𝐷 ,
and input of C as𝑇 and E. S0 and S1 obtain shares of the featurized

input F′
0
and F′

1
respectively. Similar to our two-server featurization

protocol, our three-server secure featurization protocol outputs the

shares of the associated attribute in the same order as that of the

dictionary 𝐷 . S0 (resp. S1) with inputs model 𝑀 with weights 𝑤

and F′
0
(resp. F′

1
) play the role of 𝑃0 (resp. 𝑃1) and S2 plays the role

of 𝑃2 in F 3PC′
SI functionality. S0 and S1 obtain secret shares of the

inference output. S0 and S1 then relay these shares to C, who can

then reconstruct the inference output.

Though the protocol in this setting provides the weakest security

guarantee for the client among the settings we consider, it is the

most performant and C is very light-weight in this protocol. Similar

to two-server setting, the client does not participate in secure infer-

ence protocol and its complexity is independent of the complexity

of the machine learning model used. Furthermore, client learns

nothing about model structure as well.

5 IMPLEMENTATION AND EVALUATION
In this section, we discuss the performance of our secure featuriza-

tion protocols and end-to-end secure inference protocols obtained

using our secure featurization protocols. We consider the applica-

tion of secure phishing detection to demonstrate the performance

results. We set statistical security parameter 𝜎 = 40 and computa-

tional security parameter 𝜆 = 128.

Implementation Details. We implement our secure featurization

and end-to-end secure inference protocols in C++. We use the im-

plementation of circuit-PSI protocol [9] available at [35]. We make

use of the implementation of FMUX functionality [44] available

at [34]. For PRP 𝐺 and RCPA secure-SKE scheme E, we use the
implementation of AES function available in OpenSSL library [50].

We implement DPF scheme [5] using libOTe library [37]. We use

the implementation of Cuckoo Hashing [22, 38] available at [36].

Finally, we use the implementation of CrypTFlow2 framework [44]

and Porthos Protocols [25] available at [34].

Protocol Parameters. We instantiate circuit-PSI protocol of [9]

with appropriate parameters to achieve statistical security of 40

bits in our one-server secure featurization protocol. For two-server

secure featurization scheme, the parameters in cuckoo hashing are

set as discussed in Section 2.2 to obtain failure probability in no stash

setting to be at most 2
−41

and 𝜇 is set to 𝜎+log(𝑛0)+log(𝑛1)+1. This
ensures that our two-server secure featurization protocol achieves

statistical security of 40 bits. Finally, we set 𝜇 = 𝜎+log(𝑛0)+log(𝑛1)
to obtain statistical security of 40-bits in our three-server protocol.

Evaluation Setup. We use machines with commodity class hard-

ware: Intel Xeon E5 2.4GHz CPU with 16GBs of RAM for each party:

S0,S1,S2 and C. We ran our experiments in a network setting with

observed network bandwidth of 233 MBps and latency of 0.6 ms.

5.1 Description of Dataset and ML Models
To assess the performance of our proposed protocols, we build

two phishing detection ML models. The dataset we have access

to comprises of 10, 000 manually labeled records of which 1, 000

records are malicious (identified to be phishing attempts). The

dataset is split into 70% training and 30% test dataset. The split

is done in such a way that, the training dataset and test dataset

contain the same proportion of malicious records. We consider

the following raw texts from a dataset record: Webpage URL, Title

and Body. We apply bag-of-words featurization algorithm on the

aforementioned raw texts of the dataset and obtain a dictionary 𝐷

of size 21, 413.

On the training dataset, we build two different classification

models with significant model complexity differences: 1) Logistic

Regression (LR) (21,414 parameters). 2) A 4-layer deep Neural Net-

work (4NN) that comprises of 21,413 input nodes, 4 fully-connected

layers with 100, 50, 10 and 5 units respectively, each fully-connected

layer is followed with ReLU activation function, and a final softmax

output layer (2,147,021 parameters). These two ML Models repre-

sent two-ends of the class of production grade ML Models. While

LR Model is the simplest, 4NN Model is a complex multi-layered

neural network. Without performing any hyper-parameter tuning

and extensive feature selection, the LRModel has a positive recall of

80% on the training dataset; and it has a positive recall and precision

of 76% and 97% respectively on the test dataset. Similarly, the 4NN

Model has a positive recall of 99% on the training dataset; and it

has a positive recall and precision of 91% and 95% respectively on

the test dataset
4
.

4
Positive recall denotes the fraction of URLs that were classified as phish by the

algorithm out of all true phish URLs; while precision denotes the fraction of true phish

URLs out of all URLs that were classified as phish by the algorithm.



Protocol

CPU Execution Time (ms)

Runtime (ms)

Communication (MB)

Total Communication (MB)S0 S1 S2 C S0 S1 S2 C
1-server 3660 − − 3662 3662 146.59 − − 146.59 146.59

2-server 264 264 − 3 264 0.09 0.09 − 0.18 0.18

3-server 31 12 40 0.3 50 0.77 0.60 1.20 2.8 × 10−3 1.28

Table 1: Execution time (in ms) and Communication (in MB) of Secure Featurization Protocols.

Protocol

CPU Execution Time (ms)

Runtime (ms)

Communication (MB)

Total Communication (MB)S0 S1 S2 C S0 S1 S2 C
1-server 3842 − − 3836 3842 167.24 − − 167.24 167.24

2-server 264 264 − 3 264 0.13 0.13 − 0.18 0.22

3-server 34 17 40 0.4 57 0.77 0.60 1.20 2.8 × 10−3 1.29

Table 2: Execution time (in ms) and Communication (in MB) of end-to-end secure inference with LR Model.

Protocol

CPU Execution Time (ms)

Runtime (ms)

Communication (MB)

Total Communication (MB)S0 S1 S2 C S0 S1 S2 C
1-server 10477 − − 10472 10477 1301.36 − − 1301.36 1301.36

2-server 450 450 − 3 450 0.78 0.78 − 0.18 0.87

3-server 55 47 40 0.4 82 0.82 0.65 1.28 2.8 × 10−3 1.38

Table 3: Execution time (in ms) and Communication (in MB) of end-to-end secure inference with 4NN Model.

5.2 Secure Featurization
In this section, we report the performance of our secure featuriza-

tion protocols on dictionary 𝐷 of size 21, 413 and token list
5 𝑇 of

size 73. We report performance for only one dictionary size (𝑛0) and

token list size (𝑛1). As the performance of our one-server protocol is

linear in 𝑛0 and that of the two-server and three-server is linear in

𝑛0 + 𝑛1, one can estimate their performance for varying dictionary

and input sizes.

Along with end-to-end runtime and total communication, we

summarize the CPU execution time and communication of individ-

ual participating parties in our protocols in Table 1. The observed

runtime of one-server, two-server and three-server secure featur-

ization protocol is 3662 ms, 264 ms and 50 ms respectively. Runtime

of one-server protocol is orders of magnitude higher than the other

two protocols due to the use of relatively expensive FCPSI function-
ality. Whereas, our two-server and three-server protocols involve

light-weight AES computations. Though the dominant cost in both

the protocols is AES invocations, the runtime of two-server pro-

tocol is more than three-server protocol because the number of

AES computations in two-server protocol is𝑂 (𝜇 (𝑛0 +𝑛1)) and that
in three-server protocol is 𝑂 (𝑛0 + 𝑛1). However, the total commu-

nication of two-server protocol (0.18 MB) is lower than the total

communication of three-server protocol (1.28 MB) as the communi-

cation incurred in two-server protocol is independent of dictionary

size (𝑛0) unlike in the three-server protocol.

The majority of communication in the three-server protocol is in

server-to-server interaction as is clearly seen in Table 1. C in three-

server protocol is extremely light-weight as its CPU execution time

5
Token list size of 73 is the median of top 67% of input token lists in dataset, sorted by

size and is representational of typical token lists arising in practice.

is a mere 0.3 ms and incurs just 2.8 KB of communication. Thus, even

if we were to run C on a machine with poor system configuration

and poor network connectivity to servers (as is the case of common

browser environments), the performance of the protocol will almost

be unaffected. While C in the two-server protocol is also light-

weight but it has 10× more computation time and it incurs 64×
more communication than C in three-server protocol.

5.3 End-to-end Secure Inference Performance
Table 2 and Table 3 illustrate the performance of end-to-end secure

inference protocols in all the three settings for LR and 4NNmodel re-

spectively. The runtime of one-server, two-server and three-server

is 3,842 ms, 264 ms and 57 ms for LR model and 10,477 ms, 450 ms,

82 ms for 4NN model respectively. The cost of secure computation

of ML Models is significant for one-server protocol as it requires

interactive secure two-party computations for evaluation of linear

as well as non-linear layers. This is unlike the two-server protocol

that requires interaction only for the non-linear layers (see Sec-

tion 4.2). Moreover, the cost of secure computation of ML Models

in the three-server setting is even lower compared to that in the

two-server due to the presence of the additional server (S2) and
once again the need for interaction only for non-linear layers (see

Section 4.3).

As C is involved in the secure featurization phase only in two-

server and three-server protocols, the computation and perfor-

mance of C is independent of the ML Model. This can be observed

from performance numbers corresponding to C in Table 2 and

Table 3. These solutions also provide the flexibility in updating

ML Models when required without worrying about C’s system
configuration; an important practical consideration.



To summarize, if C’s input privacy is critical, then one-server

protocols can be used. However, the runtime of one-server protocol

is 3.8 − 10.5 s which is unreasonable for real-time systems such as

secure phishing detection. The two-server protocol provides accept-

able security-efficiency trade-off with runtimes of only 264 − 450
ms and security guarantee in non-colluding servers setting. Never-

theless, for applications of secure phishing detection that require

critical response time, an execution time > 100 ms is unreasonable.

In these cases, our three-server secure featurization protocol can be

used which has an execution time of only 82 ms even for complex

models like 4NN and still provides acceptable security guarantees

to the client.
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A ADDITIONAL PRELIMINARIES
A.1 RCPA Security of Symmetric Key

Encryption Scheme
A symmetric encryption scheme E=(Gen, Enc,Dec) is said to be

pseudorandom ciphertexts under chosen plaintext attack (RCPA)

[7] secure if no PPT adversary A can win the RCPAE,A game

(described in Fig. 6) (i.e.,𝑅𝐶𝑃𝐴E,A (1𝜆) = 1), except with probability

at most
1

2
+neg(𝜆). The advantage ofA in RCPAE,A , AdvRCPAE,A (𝜆),

is 2. Pr

[
𝑅𝐶𝑃𝐴E,A (1𝜆) = 1

]
− 1. For a list 𝑋 such that for all 𝑖 ∈ |𝑋 |,

𝑋 [𝑖] ∈ M, 𝑌 ← E .Enc(𝑘,𝑋 ) denotes encryption is performed

element-wise on list 𝑋 and it outputs a list of ciphertexts 𝑌 such

that 𝑌 [𝑖] = E .Enc(𝑘,𝑋 [𝑖]) for all 𝑖 ∈ |𝑋 |. We abuse the notation of

E .Dec(·) analogously.

Parameters: Symmetric Key Encryption Scheme

E = (Gen, Enc,Dec).
The game proceeds as follows:

1. Choose a uniform bit 𝑏. If 𝑏 = 0, 𝑘 ← E .Gen(1𝜆).
2. The adversaryA is given an oracle access to Enc(·). For a
message𝑚 ∈ M, if 𝑏 = 0 then Enc(·) oracle outputs
E .Enc(𝑘,𝑚) else it outputs 𝑐 $←− C.

3. The adversary A outputs bit 𝑏 ′.
4. The output of the game is defined to be 1 if 𝑏 ′ = 𝑏, and 0

otherwise. In the former case, A is adjudged to win the

game.

Fig. 6: RCPAE,A game

A.2 Stash overflow in Cuckoo Hashing
Stash overflow occurs on insertion of 𝑠 + 1 elements to a stash of

size 𝑠 and this event is termed as a hashing failure. The probability

(over the sampling of hash functions) that a stash overflows is called

the failure probability. It was shown in [22] that cuckoo hashing

of 𝑛ℎ elements into (1 + 𝜀)𝑛ℎ bins with 𝜀 ∈ (0, 1) for 𝑠 ⩾ 0 and 𝑑 ⩾

2(1+𝜀) ln( 1𝜀 ) has failure probability𝑂 (𝑛
1−𝑐 (𝑠+1)
ℎ

), for some constant

𝑐 > 0 as 𝑛ℎ ↦→ ∞. Pinkas et al. [42] empirically determined that in

order to achieve a concrete failure probability of less than 2
−40

for

stash size 𝑠 = 0 and 𝑑=3, 4 and 5, the number of bins (𝛽) required

are 1.27𝑛ℎ , 1.09𝑛ℎ and 1.05𝑛ℎ respectively. Empirical analysis to

bound the concrete failure probability in the no stash setting has

been widely considered in literature [9, 24, 31, 40, 42, 46, 48]. To

bound the overall failure probability of our protocols to 2
−40

, we

require the failure probability of Cuckoo hashing in no stash setting

to be at most 2
−41

. Extrapolating, similar to [42], we get 𝛽 = 1.28𝑛ℎ
to ensure that the failure probability of Cuckoo hashing in no stash

setting is at most 2
−41

.

B CORRECTNESS AND SECURITY PROOF OF
ONE-SERVER PROTOCOL

We now give a complete proof of Theorem 1, by proving the cor-

rectness and security of the protocol given in Fig. 3.

Proof. Correctness.Here, we prove that our protocol correctly
realizes FSF functionality parameterized by function 𝑔 of the under-

lying FCPSI functionality. We need to show that for all 𝑗 ∈ [𝑐𝑛0],
if there exists 𝑖, 𝑝 ∈ [𝑛1] s.t. 𝐷 [𝑖] = 𝑇 [𝑝] and 𝑓 (𝑖) = 𝑗 then

SS𝐴 .Reconstruct𝐴 (𝑈0 [ 𝑗],𝑈1 [ 𝑗]) = 𝐸 [𝑝], where 𝑓 : [𝑛0] → [𝑐𝑛0]
(𝑐 ⩾ 1) is an injective function output by 𝑔 on input 𝐷 and ran-

dom tape 𝑅S , else SS𝐴 .Reconstruct
𝐴 (𝑈0 [ 𝑗],𝑈1 [ 𝑗]) = 0. This can

be shown as follows. Firstly, from the correctness of FCPSI func-
tionality, we have shares of intersection I0,I1 and 𝑄0, 𝑄1 (step 1)

such that for all 𝑗 ∈ [𝑐𝑛0], if ∃𝑖, 𝑝 s.t. 𝑓 (𝑖) = 𝑗 and 𝐷 [𝑖] = 𝑇 [𝑝],

SS𝐵 .Reconstruct
𝐵 (I0 [ 𝑗],I1 [ 𝑗]) = 1 &

SS𝐴 .Reconstruct
𝐴 (𝑄0 [ 𝑗], 𝑄1 [ 𝑗]) = 𝐸 [𝑝],

else,

SS𝐵 .Reconstruct
𝐵 (I0 [ 𝑗],I1 [ 𝑗]) = 0 &

SS𝐴 .Reconstruct
𝐴 (𝑄0 [ 𝑗], 𝑄1 [ 𝑗]) = 𝑟 𝑗 ,

where 𝑟 𝑗 is a random value in Z𝐿 . Let 𝑖 𝑗 denote the boolean value

whose secret-shares are I0 [ 𝑗] and I1 [ 𝑗] and let 𝑞 𝑗 denote the value
whose secret shares are 𝑄0 [ 𝑗] and 𝑄1 [ 𝑗]. From the correctness of

FMUX (step 2), we have that 𝑈0 [ 𝑗] and 𝑈1 [ 𝑗] are secret-shares of
𝑞 𝑗 , if 𝑖 𝑗 = 1, else are secret-shares of 0. Thus, SS𝐴 .Reconstruct𝐴 (
𝑈0 [ 𝑗],𝑈1 [ 𝑗]) = E[𝑝], if ∃𝑖, 𝑝 s.t. 𝑓 (𝑖) = 𝑗 and 𝐷 [𝑖] = 𝑇 [𝑝], else
SS𝐴 .Reconstruct𝐴 (𝑈0 [ 𝑗],𝑈1 [ 𝑗]) = 0, which concludes our proof.

Security. The security of the protocol follows immediately from

security of FCPSI and FMUX functionalities. □

C CORRECTNESS AND SECURITY PROOF OF
TWO-SERVER PROTOCOL

We now give a complete proof of Theorem 2, by proving the cor-

rectness and security of the protocol given in Fig. 4.

Proof. Correctness. We need to prove that our protocol cor-

rectly outputs the output of FSF functionality parameterized with

a constant function 𝑔 that outputs identity map 𝑓 : [𝑛0] → [𝑛0].
Stated differently, we need to show that FS0 [𝑡] + FS1 [𝑡] = E[𝑝], if
𝐷 [𝑡] ∈ 𝑇 (𝐷 [𝑡] = 𝑇 [𝑝]), FS0 [𝑡] + FS1 [𝑡] = 0 otherwise. In steps 1

and 2, the collisions in hash digests of two distinct element pairs of

arbitrary length in 𝐷 and 𝑇 happens with
𝑛0 ·𝑛1

2
𝜇 probability. Hence,

setting 𝜇 = 𝜎 + log(𝑛0) + log(𝑛1) + 1 ensures that the probabilty
of collision is 2

−(𝜎+1)
. Moreover, we set the parameter 𝜀 in cuckoo

hashing scheme s.t. the probability of hashing failure in no stash

setting is 2
−(𝜎+1)

, where 𝜎 = 40 as discussed in Section 2.2. Hence,

the overall failure probability is at most 2
−40

.

Case 1 (𝐷 [𝑡] ∈ 𝑇 ). Let 𝑝 ∈ [𝑛1] be an index s.t. 𝐷 [𝑡] = 𝑇 [𝑝].
From the correctness of hashing and use of the same hash func-

tions by the client and the servers in steps 3 and 18, it holds

that for 𝑡 ∈ [𝑛0], if 𝐷 [𝑡] ∈ 𝑇 then there exists a unique 𝑗 ∈
PSet = {ℎ1 (𝐴[𝑡]), ℎ2 (𝐴[𝑡]), ℎ3 (𝐴[𝑡])} s.t. HT𝐶 [ 𝑗] = 𝐴[𝑡]. Hence,
𝐾0 [ 𝑗] and 𝐾1 [ 𝑗] are the DPF keys generated for point function

𝑓𝐴 [𝑡 ],E[𝑝 ] . For pos = 𝑗 in step 20, S𝑏 updates FS𝑏 [𝑡] by adding



𝐹 .Eval(𝑏, 𝐾𝑏 [ 𝑗], 𝐴[𝑡]) to the current value. From the correctness

of DPF scheme 𝐹 it holds that

∑
1

𝑏=0
𝐹 .Eval(𝑏, 𝐾𝑏 [ 𝑗], 𝐴[𝑡]) = E[𝑝].

And for ( 𝑗 ′ ∈ PSet) ≠ 𝑗 , the keys 𝐾0 [ 𝑗 ′] and 𝐾1 [ 𝑗 ′] are DPF keys
generated for point function 𝑓𝑎 𝑗′ ,𝑏 𝑗′ , where 𝑎 𝑗

′ ≠ 𝐴[𝑡] or 𝑎 𝑗 ′ is
dummy element and 𝑏 𝑗 ′ = 0. In this case too, S𝑏 updates FS𝑏 [𝑡]
by adding 𝐹 .Eval(𝑏, 𝐾𝑏 [ 𝑗 ′], 𝐴[𝑡]) to the current value. From the cor-

rectness of DPF scheme 𝐹 it holds that
∑
1

𝑏=0
𝐹 .Eval(𝑏, 𝐾𝑏 [ 𝑗 ′], 𝐴[𝑡]) =

0. Hence, FS0 [𝑡] and FS1 [𝑡] are shares of E[𝑝].
Case 2 (𝐷 [𝑡] ∉ 𝑇 ). As HT𝐶 [ 𝑗] ≠ 𝐴[𝑡] for all 𝑗 ∈ 𝛽 , it holds that
all pairs of DPF keys 𝐾0 [ 𝑗] and 𝐾1 [ 𝑗] correspond to point function

𝑓𝑎 𝑗 ,𝑏 𝑗
, where 𝑎 𝑗 ≠ 𝐴[𝑡] or 𝑎 𝑗 ′ is dummy element and 𝑏 𝑗 ′ = 0. For all

pos ∈ PSet, S𝑏 updates FS𝑏 [𝑡] by adding 𝐹 .Eval(𝑏, 𝐾𝑏 [pos], 𝐴[𝑡])
to the current value. And from the correctness of DPF scheme 𝐹

it holds that

∑
1

𝑏=0
𝐹 .Eval(𝑏, 𝐾𝑏 [pos], 𝐴[𝑡]) = 0. Hence, FS0 [𝑡] and

FS1 [𝑡] are shares of 0.

Security.
Case 1 (C is corrupt). The entire computation of C is local. Hence

all the steps in the protocol computed at client’s end can be executed

by the simulator using the inputs of corrupted client.

Case 2 (S0/S1 is corrupt). Observe that, except for step 14 in the

protocol all the computations of S𝑏 is done locally. Simulator for

corrupted serverS𝑏 can be constructed as follows: 1) Computations

in steps 1 can be executed by the simulator using input of corrupted

S𝑏 . 2) View of corrupted S𝑏 can be simulated by invoking Sim(·)
of the DPF scheme 𝐹 , 𝛽-many times. Sim(·) is invoked with 𝜇 and

description of Z𝐿 , i.e., the description of input domain and output

group of the underlying point function family F . 3) The rest of the
computation of S𝑏 can be simulated by the simulator in a straight-

forward fashion as it is all local. □

D CORRECTNESS AND SECURITY PROOF OF
THREE-SERVER PROTOCOL

We now give a complete proof of Theorem 3, by proving the cor-

rectness and security of the protocol given in Fig. 5.

Proof. Correctness. We need to prove that our protocol cor-

rectly outputs the output of FSF functionality parameterized with

a constant function 𝑔 that outputs identity map 𝑓 : [𝑛0] → [𝑛0].
Stated differently, we need to show that F′

0
[𝑡] + F′

1
[𝑡] = E[𝑝], if

𝐷 [𝑡] ∈ 𝑇 (𝐷 [𝑖] = 𝑇 [𝑝]), F′
0
[𝑡] + F′

1
[𝑡] = 0 otherwise. Based on the

analysis in proof of Theorem 2, we set 𝜇 = 𝜎 + log(𝑛0) + log(𝑛1)
to ensure that the probabilty of collision is 2

−𝜎
in steps 1 and 2. In

the rest of the proof, we will assume that there are no collisions in

hash digests of distinct elements.

Case 1 (𝐷 [𝑡] ∈ 𝑇 ). Let 𝑝 ∈ [𝑛1] be an index s.t. 𝐷 [𝑡] = 𝑇 [𝑝].
For 𝑖 = 𝜋𝐴 (𝑡) and 𝑗 = 𝜋𝐵 (𝑝), 𝐴′[𝑖] = 𝐺 (𝑘𝐺 , 𝐴[𝑡]) and 𝐵′[ 𝑗] =
𝐺 (𝑘𝐺 , 𝐵 [𝑝]). E0 [𝑝] and E1 [𝑝] are secret shares of E[𝑝]. Thus,𝐸𝐹0 [ 𝑗]
is encryption of share E0 [𝑝] and 𝐹1 [ 𝑗] = E1 [𝑝]. If 𝐷 [𝑡] = 𝑇 [𝑝],
then 𝐴[𝑡] = 𝐵 [𝑝] and 𝐴′[𝑖] = 𝐵′[ 𝑗]. Thus, in step 11, S2 sets

F1 [𝑖] = 𝐹1 [ 𝑗]. Similarly, in step 20, S2 sets EF0 [𝑖] = 𝐸𝐹0 [ 𝑗]. This
implies that, F𝑏 [𝑖] = E𝑏 [𝑝], for 𝑏 ∈ {0, 1}. Hence, F′𝑏 [𝑡] = E𝑏 [𝑝],
for 𝑏 ∈ {0, 1}.
Case 2 (𝐷 [𝑡] ∉ 𝑇 ). Let 𝑖 = 𝜋𝐴 (𝑡), then 𝐴′[𝑖] = 𝐺 (𝑘𝐺 , 𝐴[𝑡]). As
𝐷 [𝑡] ∉ 𝑇 , 𝐴[𝑡] ∉ 𝑇 and 𝐴′[𝑖] ∉ 𝐵′. Thus I[𝑖] = 0. In step 13,

S2 sets F1 [𝑖] with a uniformly random value in Z𝐿 . Observe that

in step 16, S1 sets EF1 [𝑖] = E .Enc(𝑘E ,−F1 [𝑖]). This implies that,

EF0 [𝑖] = E .Enc(𝑘E ,−F1 [𝑖]). Hence, F′0 [𝑡] and F
′
1
[𝑡] are shares of 0.

Security.
Case 1 (C is corrupt). Simulating the view in case of a corrupted

C is straight-forward as its entire computation in the protocol is

local.

Case 2 (S0 is corrupt).Once steps 3 and 17 are simulated correctly,

all the steps in the protocol that are computed at S0’s end can

be simulated using the inputs of corrupted S0 as the rest of the
computation at S0’s end is local. This can be done by sampling keys

𝑘𝐺
$←− {0, 1}𝜆 and 𝑘E ← E .Gen(1𝜆) (step 3) and by sending an

encrypted list (of size 𝑛0) of elements sampled uniformly at random

from Z𝐿 in step 17. This is indistinguishable from the view of S0 in
real execution because of the security of secret-sharing scheme.

Case 3 (S1 is corrupt). The view ofS1 can be simulated in a similar

way as the case when S0 is corrupt.
Case 4 (S2 is corrupt). In the protocol, S2 receives𝐴′ and 𝐵′ from
S0 and C which can be simulated by creating lists of appropriate

lengths that comprise of elements sampled uniformly at random

from {0, 1}𝜇 with the constraint that any 𝑞 elements in𝐴′ are equal
to any 𝑞 elements in 𝐵′. The simulation of these steps (4 and 5) is

indistinguishable from view of S2 in real interaction as 𝐺 is a PRP
and the lists 𝐴 and 𝐵 are permuted by random permutations. Step

6 can be simulated by sending two lists of size 𝑛1 to S2; in the first

list the elements are sampled uniformly at random from Z𝐿 and

in the second list the elements are sampled uniformly at random

from the ciphertext space C. The simulation is indistinguishable

from the view of S2 in real interaction due to the security of secret

sharing scheme and RCPA security of SKE scheme. Finally, step 16

can be simulated by sending a list of size 𝑛0 comprising ciphertexts

sampled uniformly at random from C. □
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