
New self-orthogonal codes from weakly regular

plateaued functions and their application in LCD

codes
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Abstract

A linear code with few weights is a significant code family in coding theory. A
linear code is considered self-orthogonal if contained within its dual code. Self-
orthogonal codes have applications in linear complementary dual codes, quantum
codes, etc. The construction of linear codes is an interesting research problem.
There are various methods to construct linear codes, and one approach involves
utilizing cryptographic functions defined over finite fields. The construction of
linear codes (in particular, self-orthogonal codes) from functions has been studied
in the literature. In this paper, we generalize the construction method given by
Heng et al. in [Des. Codes Cryptogr. 91(12), 2023] to weakly regular plateaued
functions. We first construct several families of p-ary linear codes with few weights
from weakly regular plateaued unbalanced (resp. balanced) functions over the
finite fields of odd characteristics. We observe that the constructed codes are
self-orthogonal codes when p = 3. Then, we use the constructed ternary self-
orthogonal codes to build new families of ternary LCD codes. Consequently, we
obtain (almost) optimal ternary self-orthogonal codes and LCD codes.

Keywords: Linear code, Self-orthogonal code, LCD code, Weakly regular plateaued
function
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1 Introduction

Linear codes have been an attractive research topic in both practice and theory for the
last two decades. They have diverse applications in secure communication [1], secret
sharing schemes [2], [3], [4], [5], [6], [7], authentication codes [8] and secure two-party
computation [9], [10]. A linear code is considered self-orthogonal if contained within
its dual code. Self-orthogonal codes have applications in linear complementary dual
codes, quantum codes, etc. A linear code C is called a linear complementary dual
code (LCD code) if C ∩ C⊥ = 0. LCD codes also have diverse applications in certain
communication systems. Carlet and Guilley [11] demonstrated their significance in
information protection and defence against side-channel attacks and fault non-invasive
attacks. After these observations, the importance of LCD code applications has begun
to be revitalized. Massey [12] introduced the LCD codes and showed that they pro-
vide an optimum linear coding solution to the two-user binary adder channel. Now,
it is known that asymptotically good LCD codes exist and the necessary and suffi-
cient condition for a length n cyclic code to be an LCD code is known. Hence, the
construction of linear codes is an interesting research problem. Various methods exist
for constructing linear codes and one approach involves utilizing functions defined
over finite fields (e.g. [3], [6], [9], [13], [14], [15], [16]). Linear codes derived from cryp-
tographic functions have desirable algebraic structures that are significant from the
application point of view. Two generic constructions, referred to as the first and second
generic constructions, for generating linear codes from functions have been identified
in the literature. Several linear codes with good parameters have been constructed
using the second generic construction method (e.g., [6], [13], [17]). Recently, Heng et
al. [18] have constructed ternary self-orthogonal codes from weakly regular bent func-
tions based on the second generic construction method. This observation motivates us
to construct linear codes from weakly regular plateaued functions over finite fields with
odd characteristics. In this paper, we employed weakly regular plateaued functions in
the second construction method to obtain new families of p-ary linear codes (in partic-
ular, ternary self-orthogonal codes) with few weights. Then, we used the constructed
ternary self-orthogonal codes to construct infinite families of ternary LCD codes. We
finally observed that some constructed LCD codes are at least almost optimal codes
according to the sphere-packing bound.

The paper is organized as follows. Section 2 establishes the primary notation and
reviews fundamental concepts in finite fields and coding theory. Section 3 gives some
useful results related to weakly regular plateaued functions. In Sections 4 and 5,
we construct several families of linear codes with few weights from weakly regular
plateaued functions over the odd characteristic finite fields. In particular, we present
several families of ternary self-orthogonal codes. Moreover, we introduce the dual codes
of the constructed codes over the odd characteristic finite fields. In Section 6, we con-
sider an application of ternary self-orthogonal codes in ternary LCD codes. Section 7
concludes the paper.
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2 Preliminaries

Throughout this paper, we fix the following notation. For an odd prime p and a positive
integer m, q = pm denotes the prime power, and Fq is the finite field with q elements.

The trace of β ∈ Fpm over Fp is defined as Trp
m

p (β) = β + βp + βp2

+ · · ·+ βpm−1

. Let
ξp denote the complex primitive p-th root of unity. SQ and NSQ denote all squares
and non-squares in F∗

p. Finally, η0 denotes the quadratic characters of F∗
p and p∗

denotes η0(−1)p.

Cyclotomic Field Q(ξp). Let Z be the rational integer ring and Q be the rational
field. Then, we have the following fact about p-th cyclotomic field Q(ξp).

Lemma 1. [19] The following results on Q(ξp) hold.

1. The ring of integers in K := Q(ξp) is OK = Z(ξp) and {ξip : 1 ≤ i ≤ p − 1} is an
integral basis of OK .

2. The field extension K/Q is a Galois extension of degree p − 1 with Galois group
Gal(K/Q) = {σa : a ∈ F∗

p}, where the automorphism σa of K is defined by σa(ξp) =
ξap .

3. The field K has a unique quadratic subfield Q(
√
p∗). For 1 ≤ a ≤ p−1, σa(

√
p∗) =

η0(a)
√
p∗. Thus, the Galois group Gal(K/Q) is {1, σγ}, where γ is a non-square in

F∗
p.

From Lemma 1, for any a ∈ F∗
p and b ∈ Fp, one can directly write

σa(ξ
b
p) = ξabp and σa(

√
p∗

m
) = ηm0 (a)

√
p∗

m
.

Characters over finite fields. Given a ∈ Fq, the function

ϕa(x) = ξ
Trp

m

p (ax)
p , x ∈ Fq

defines an additive character of Fq. The orthogonality relation of additive characters
[20] is given by ∑

x∈Fq

ϕ1(ax) =

{
q, if a = 0,
0, if a ∈ F∗

q .

Let α be a primitive element of Fq. Then, for k = 0, 1, . . . , q− 2, where 0 ≤ j ≤ q− 2,

ψj(α
k) = ξjkq−1 denotes the multiplicative character of Fq. The orthogonality relation

of multiplicative characters [20] is given by

∑
x∈F∗

q

ψj(x) =

{
q − 1, if j = 0,
0, if j ̸= 0.

2.1 Weakly regular plateaued functions

Let f be a p-ary function from Fq to Fp, where q = pm for a prime p and positive
integer m. If f takes every element of Fp with the same number pm−1 of pre-images,
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then f is called a balanced function over Fp; otherwise, it is unbalanced. The Walsh
transform of f is defined as

Wf (β) =
∑

x∈Fpm

ξ
f(x)−Trp

m

p (βx)
p , β ∈ Fpm .

A function f can be classified in terms of its Walsh transform. A function f is
balanced if and only if Wf (0) = 0. A function f is bent if its Walsh coefficients
satisfy |Wf (β)|2 = pm for every β ∈ Fpm . A function f is called s-plateaued if
|Wf (β)|2 ∈ {0, pm+s} for every β ∈ Fpm , where 0 ≤ s ≤ m. The Walsh support of an
s-plateaued function f is defined as

Supp(Wf ) = {β ∈ Fpm : |Wf (β)|2 = pm+s}

and #Supp(Wf ) = pm−s. The Walsh distribution of an s-plateaued p-ary function f
follows from the Parseval identity.

Lemma 2. Let f : Fpm → Fp be an s-plateaued function. Then,

#{β ∈ Fpm : |Wf (β)|2 = pm+s} = pm−s,

#{β ∈ Fpm : |Wf (β)|2 = 0} = pm − pm−s.

Definition 1. [21] Let f be a p-ary s-plateaued function from Fq to Fp with 0 ≤ s ≤ m.
Then, f is called weakly regular s-plateaued if there exists a complex number u with
|u| = 1 such that

Wf (β) ∈ { 0, up
m+s

2 ξg(β)p }
for all β ∈ Fq, where g is a p-ary function over Fq and g(β) = 0 for all β ∈
Fq\Supp(Wf ). Otherwise, f is called a non-weakly regular p-ary s-plateaued function.

Lemma 3. [21] Let f be a p-ary s-plateaued function from Fq to Fp and let β ∈ Fq.
Then, for all β ∈Supp(Wf ), we have the following

Wf (β) = ϵ
√
p∗

m+s
ξg(β)p ,

where ϵ ∈ { −1, 1} is the sign of Wf and g is a p-ary function over Fq with g(β) = 0
for all β ∈ Fq\Supp(Wf ).

Lemma 4. [17] Let f be a p-ary s-plateaued function from Fq to Fp and let β ∈ Fpm .
Then, for x ∈ Fpm , we have

∑
β∈Supp(Wf )

ξ
g(β)+Trp

m

p (βx)
p = ϵηm0 (−1)

√
p∗

m−s
ξf(x)p ,

where ϵ ∈ { −1, 1} is the sign of Wf and g is a p-ary function over Fq with g(β) = 0
for all β ∈ Fq\Supp(Wf ).
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Recently, two subsets of the set of weakly regular plateaued functions have been
introduced in [17] and [22]. Let WRP (resp. WRPB) be the set of p-ary weakly
regular s-plateaued unbalanced (resp. balanced) functions with 0 ≤ s ≤ m satisfying
the following two conditions:

1. f(0) = 0
2. There exists an even positive integer l such that gcd(l− 1, p− 1) = 1 and f(ax) =
alf(x) for any a ∈ F∗

p and x ∈ Fq.

Note that every bent function is the 0-plateaued function. Then, the set WRP is
particularly denoted by RF when s = 0.

Lemma 5. [17, 22] Let f ∈ WRP or f ∈ WRPB with Wf (β) = ϵ
√
p∗

m+s
ξ
g(β)
p for all

β ∈Supp(Wf ). Then, there exists an even positive integer h such that gcd(h−1, p−1) =
1 and g(aβ) = ahg(β) for any a ∈ F∗

p and β ∈Supp(Wf ).

2.2 Linear codes and LCD codes from self-orthogonal codes

Let Fp be a finite field with p elements and Fn
p be a vector space over Fp for a positive

integer n. A linear code C over Fp with parameters [n, k, d] is a k-dimensional linear
subspace of a vector space Fn

p , where d denotes the minimum Hamming distance of C.
Let a be a vector in Fn

p and its support is defined as supp(a)= {0 ≤ i ≤ n−1 : ai ̸= 0}.
The cardinality of supp(a) is called the Hamming weight of a vector a. Let c be a
codeword of C. The minimum Hamming distance d in C is the minimum Hamming
weight of c ∈ C. Let Ai := |{c ∈ C : wt(c) = i for 0 ≤ i ≤ n}| for a linear code C.
Define the weight enumerator of C by the polynomial 1 +A1y + ...+Any

n. The dual
code C⊥ of an [n, k] linear code C is defined by

C⊥ = {c⊥ ∈ Fn
p : c⊥ · c for all c ∈ C},

where “ · ” is the standard inner product over Fn
p , and C⊥ is an [n, n− k] linear code

over Fn
p . If a linear code C satisfies C ⊂ C⊥, then C is referred to as a self-orthogonal

code. In particular, if C = C⊥, then C is called sef-dual code. If all codewords of C are
divisible by some integer k > 1, then the code is said to be divisible by k. For a p-ary
linear code C, there is a relation between the self-orthogonality and divisibility of C.

Lemma 6. [1] Let C be a ternary linear code over F3. Then, C is a self-orthogonal
ternary code if and only if every codeword of C has weight divisible by three.

By looking at the weight distribution of a code, one can decide whether a ternary
code is self-orthogonal or not.

There are several methods to construct linear codes over finite fields. In this paper,
we use the second generic construction method based on the set of the pre-image of
the special function. Let D = {d1, d2, ..., dn} ⊆ Fpm . Define

CD = {(Trp
m

p (bd1),Tr
pm

p (bd2), ...,Tr
pm

p (bdn)) : b ∈ Fpm}.
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Then, CD is a linear code over Fp with length n and dimension at most m. The set D is
called the defining set of CD. In the literature, many linear codes with few weights have
been constructed from the suitable defining sets [6, 17, 22]. Moreover, the augmented
code of CD is defined by

CD = {(Trp
m

p (bd1),Tr
pm

p (bd2), ...,Tr
pm

p (bdn)) + c1 : b ∈ Fpm and c ∈ Fp}, (1)

where 1 = (1, 1, ..., 1) ∈ Fn
p . Very recently, Heng et. al. [18] have constructed several

ternary self-orthogonal codes from weakly regular bent functions. We in this paper
construct further a number of p-ary linear codes and ternary self-orthogonal codes
based on this construction method.

For a linear code C, if C ∩ C⊥ = 0, where 0 is the zero vector in C, then it is called
a Linear Complementary Dual code (LCD code). Note that the dual of an LCD code
is also an LCD code. The necessary and sufficient conditions for a linear code to be
an LCD code were defined in terms of the generator matrix [12]. Besides, LCD codes
were shown to give an optimum solution to the two-user binary adder channel [12].

A matrix G is said to be row-orthogonal if GG⊥ = I , where I is an identity matrix,
and it is called row-self-orthogonal if GG⊥ = 0. A linear code C is self-orthogonal if
and only if its generator matrix is row-self-orthogonal [23]. If G is a generator matrix
for [n, k] linear code C, then it can be transformed to the standard form G = [I : A],
where I is an identity matrix and it is called the systematic generator matrix of the
code. Then, C is called leading-systematic. The following lemma provides a relation
between LCD codes and self-orthogonal codes.

Lemma 7. [23] A leading-systematic linear code C is an LCD code if its systematic
generator matrix G = [I : A] is row-orthogonal.

The Pless power moment. For a linear [n, k, d] code C over Fp, we denote the
weight distribution of C and C⊥ by (1, A1, . . . , An) and (1, A⊥

1 , . . . , A
⊥
n ), respectively.

The first four Pless power moments are given as:

n∑
i=0

Ai = pk, (2)

n∑
i=0

iAi = pk−1
(
pn− n−A⊥

1

)
,

n∑
i=0

i2Ai = pk−2
(
(p− 1)n(pn− n+ 1)− (2pn− p− 2n+ 2)A⊥

1 + 2A⊥
2

)
,

n∑
i=0

i3Ai = pk−3[(p− 1)n(p2n2 − 2pn2 + 3pn− p+ n2 − 3n+ 2)

−(3p2n2 − 3p2n− 6pn2 + 12pn+ p2 − 6p+ 3n2 − 9n+ 6)A⊥
1

+6(pn− p− n+ 2)A⊥
2 − 6A⊥

3 ].

Augmented code of a linear code. Let C be an [n, k, d] linear code over Fp with a
generator matrix G. The augmented code C of C is a linear code over Fp with generator
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matrix [
G
1

]
where 1 = (1, 1, ..., 1) ∈ Fn

p . Note that if 1 is not a codeword in C, then the augmented

code C has length n and dimension k+1. Determining the weight distribution of a code
is a hard problem and finding the minimum distance of C requires the complete weight
distribution of the original code C. There are some methods to determine whether the
given augmented code is self-orthogonal. In this paper, we use Lemma 6 to prove the
self-orthogonality of a linear code.

3 Character sums for weakly regular plateaued
functions

In this section, we present several useful results on the character sums for weakly
regular plateaued functions.

Lemma 8. [20] Let p be an odd prime, p∗ = η0(−1)p and a ∈ F∗
pm . Then,

∑
x∈Fpm

ξ
Trp

m

p (ax2)
p = (−1)m−1η(a)

√
p∗

m
.

In particular, if m = 1 and a = 1, then
∑
x∈Fp

ξx
2

p =
√
p∗.

Lemma 9. [20] Let p be an odd prime and p∗ = η0(−1)p. Then

1.
∑
c∈F∗

p

η0(c) = 0;

2.
∑
c∈F∗

p

ξcap = −1 for every a ∈ F∗
p;

3.
∑
c∈F∗

p

η0(c)ξ
c
p =

√
p∗.

Lemma 10. [20] Let b ∈ Fpm and c ∈ Fp. Define

B =
∑
z∈F∗

p

∑
x∈Fpm

ξ
z(Trp

m

p (bx)+c)
p .

Then, we have

B =

 0, if c ∈ F, b ̸= 0,
pm(p− 1), if c = 0, b = 0,
−pm, if c ̸= 0, b = 0.

The following two lemmas will be used to find the Hamming weights and weight
distributions of the proposed linear codes. Lemma 11 and Lemma 12 are direct
consequences of [17, Lemma 9] and [17, Lemma 10], respectively.
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Lemma 11. Let f : Fpm → Fp be an unbalanced p-ary function with Wf (0) =

ϵ
√
p∗

m+s
, where ϵ ∈ {−1, 1} is the sign of Wf and p∗ = η0(−1)p. Define

N0 := #{b ∈ Fpm : f(b) = 0},
Nsq := #{b ∈ Fpm : f(b) ∈ SQ},
Nnsq := #{b ∈ Fpm : f(b) ∈ NSQ}.

Then, we have

N0 =

{
pm−1 + ϵη0(−1)(p− 1)

√
p∗

m+s−2
, if m+ s is even,

pm−1, if m+ s is odd,

Nsq =

 (p−1
2 )

(
pm−1 − ϵη0(−1)

√
p∗

m+s−2
)
, if m+ s is even,

(p−1
2 )

(
pm−1 + ϵ

√
p∗

m+s−1
)
, if m+ s is odd,

Nnsq =

 (p−1
2 )

(
pm−1 − ϵη0(−1)

√
p∗

m+s−2
)
, if m+ s is even,

(p−1
2 )

(
pm−1 − ϵ

√
p∗

m+s−1
)
, if m+ s is odd.

Lemma 12. Let f be a weakly regular s-plateaued function with Wf (β) =

ϵ
√
p∗

m+s
ξg(β), where g is a p-ary function over Fq and g(β) = 0 for all β ∈

Fq\Supp(Wf ). Define

Ng,0 := #{b ∈ Supp(Wf ) : g(b) = 0},
Ng,sq := #{b ∈ Supp(Wf ) : g(b) ∈ SQ},
Ng,nsq := #{b ∈ Supp(Wf ) : g(b) ∈ NSQ}.

Then, we have

Ng,0 =

{
pm−s−1 + ϵηm+1

0 (−1)(p− 1)
√
p∗

m−s−2
, if m− s is even,

pm−s−1, if m− s is odd,

Ng,sq =


p−1
2

(
pm−s−1 − ϵηm+1

0 (−1)
√
p∗

m−s−2
)
, if m− s is even,

p−1
2

(
pm−s−1 + ϵηm0 (−1)

√
p∗

m−s−1
)
, if m− s is odd,

Ng,nsq =


p−1
2

(
pm−s−1 − ϵηm+1

0 (−1)
√
p∗

m−s−2
)
, if m− s is even,

p−1
2

(
pm−s−1 − ϵηm0 (−1)

√
p∗

m−s−1
)
, if m− s is odd.

4 Linear codes from weakly regular plateaued
functions based on the set Df

In this section, we construct the augmented code CDf
based on the defining set

Df = {x ∈ Fpm : f(x) = 0}.
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Let m + s be a positive integer with 0 ≤ s ≤ m. The length of the code CDf
is the

size of the set Df .

� When f ∈ WRP, the length of the code CDf
is equal to n = #Df = N0, which

follows from Lemma 11.
� When f ∈ WRPB, it is clear that n = #Df = pm−1.

The following lemma is a combination of [17, Lemma 12] and [24, Lemma 6].
Lemma 13. Let b ∈ Fpm , c ∈ Fp and f ∈ WRP. Denote by

S =
∑
y∈F∗

p

∑
z∈F∗

p

∑
x∈Fpm

ξ
yf(x)+z(Trp

m

p (bx)+c)
p .

For every b ∈ Fpm\Supp(Wf ), we get S = 0. For every b ∈Supp(Wf ),

� if m+ s is even,

S =


ϵ(p− 1)2

√
p∗

m+s
, if c = 0, g(b) = 0,

−ϵ(p− 1)
√
p∗

m+s
, if c = 0, g(b) ̸= 0 or c ̸= 0, g(b) = 0,

ϵ
√
p∗

m+s
, if c ̸= 0, g(b) ̸= 0,

� if m+ s is odd,

S =



0, if g(b) = 0,

ϵ(p− 1)
√
p∗

m+s+1
, if c = 0, g(b) ∈ SQ,

−ϵ(p− 1)
√
p∗

m+s+1
, if c = 0, g(b) ∈ NSQ,

−ϵ
√
p∗

m+s+1
, if c ̸= 0, g(b) ∈ SQ,

ϵ
√
p∗

m+s+1
, if c ̸= 0, g(b) ∈ NSQ.

The following lemma is used to find the Hamming weights of CDf
when f ∈ WRP.

Lemma 14. Let f ∈ WRP. Define

Nf (b, c) := #{x ∈ Fpm : Trp
m

p (bx) + c = 0 and f(x) = 0}

for b ∈ Fpm and c ∈ Fp. For every b ∈ Fpm\Supp(Wf ), we have

Nf (b, c) =

{
pm−2, if m+ s is odd,

pm−2 + ϵ(p− 1)
√
p∗

m+s−4
, if m+ s is even.

For every b ∈Supp(Wf ),
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� if m+ s is even,

Nf (b, c) =



pm−1 + ϵ(p− 1)η0(−1)
√
p∗

m+s−2
, if c = 0, b = 0,

0, if c ̸= 0, b = 0,

pm−2 + ϵ(p− 1)η0(−1)
√
p∗

m+s−2
, if c = 0, b ̸= 0, g(b) = 0,

pm−2, if c = 0, b ̸= 0, g(b) ̸= 0 or
c ̸= 0, b ̸= 0, g(b) = 0,

pm−2 + ϵη0(−1)
√
p∗

m+s−2
, if c ̸= 0, b ̸= 0, g(b) ̸= 0,

� if m+ s is odd,

Nf (b, c) =



pm−1, if c = 0, b = 0,
0, if c ̸= 0, b = 0,
pm−2, if c = 0, b ̸= 0, g(b) = 0 or

c ̸= 0, b ̸= 0, g(b) = 0,

pm−2 − ϵ(p− 1)
√
p∗

m+s−3
, if b ̸= 0, c = 0, g(b) ∈ NSQ,

pm−2 + ϵ(p− 1)
√
p∗

m+s−3
, if b ̸= 0, c = 0, g(b) ∈ SQ,

pm−2 − ϵ
√
p∗

m+s−3
, if b ̸= 0, c ̸= 0, g(b) ∈ SQ,

pm−2 + ϵ
√
p∗

m+s−3
, if b ̸= 0, c ̸= 0, g(b) ∈ NSQ.

Proof. By the definition of Nf (b, c), we have

Nf (b, c) =
1

p2

∑
x∈Fpm

∑
y∈Fp

∑
z∈Fp

ξ
yf(x)+z(Trp

m

p (bx)+c)
p

= pm−2 +
1

p2

∑
y∈F∗

p

∑
x∈Fpm

ξyf(x)p +
1

p2

∑
z∈F∗

p

∑
x∈Fpm

ξ
z(Trp

m

p (bx)+c)
p

+
1

p2

∑
x∈Fpm

∑
y∈F∗

p

∑
z∈F∗

p

ξy(f(x))p ξ
z(Trp

m

p (bx)+c)
p

= pm−2 +
1

p2

∑
y∈F∗

p

∑
x∈Fpm

ξyf(x)p +
B

p2
+
S

p2
,

where B and S are defined in Lemma 10 and Lemma 13. One can observe that∑
y∈F∗

p

∑
x∈Fpm

ξyf(x)p =

{
ϵ(p− 1)

√
p∗

m+s
, if m+ s is even,

0, if m+ s is odd.

Hence, the desired results can be obtained from the above.

The following lemma follows from [22, Lemma 7] and [25, Lemma 7] and it will be
used to find the Hamming weights of CDf

when f ∈ WRPB.
Lemma 15. Let f ∈ WRPB. Define

Nf (b, c) = #{x ∈ Fpm : Trp
m

p (bx) + c = 0 and f(x) = 0}

10



for b ∈ Fpm and c ∈ Fp. Then, for every b ∈ Fpm \ Supp(Wf ) we have

Nf (b, c) =

 pm−2, if c ∈ Fp, b ̸= 0,
pm−1, if c = 0, b = 0,
0, if c ̸= 0, b = 0.

For every b ∈ Supp(Wf ), if m+ s is even,

Nf (b, c) =


pm−2 + ϵ(p− 1)2

√
p∗

m+s−4
, if c = 0, g(b) = 0,

pm−2 − ϵ(p− 1)
√
p∗

m+s−4
, if c = 0, g(b) ̸= 0 or c ̸= 0, g(b) = 0,

pm−2 + ϵ
√
p∗

m+s−4
, if c ̸= 0, g(b) ̸= 0,

and if m+ s is odd,

Nf (b, c) =



pm−2, if c ∈ Fp, g(b) = 0,

pm−2 + ϵ(p− 1)
√
p∗

m+s−3
, if c = 0, g(b) ∈ SQ,

pm−2 − ϵ(p− 1)
√
p∗

m+s−3
, if c = 0, g(b) ∈ NSQ,

pm−2 − ϵ
√
p∗

m+s−3
, if c ̸= 0, g(b) ∈ SQ,

pm−2 + ϵ
√
p∗

m+s−3
, if c ̸= 0, g(b) ∈ NSQ.

Theorem 1. Let m+ s ≥ 4 be even with 0 ≤ s ≤ m− 2. Let f ∈ WRP and ϵ be the
sign of the Walsh transform of f . Let Df = {x ∈ Fpm : f(x) = 0}. Then, CDf

is a five-

weight linear [ 1p (p
m + ϵ(p− 1)

√
p∗

m+s
),m+ 1, d] code with parameters listed in Table

1. In particular, CDf
is a ternary self-orthogonal code when p = 3 and m+ s ≥ 6.

Proof. From the definition of the code, its length n = #Df = N0 follows from Lemma
11. For a codeword c of CDf

, write

c =
(
Trp

m

p (bx)
)
x∈Df

+ c1

with b ∈ Fpm and c ∈ Fp. The Hamming weight of a codeword c in CDf
is obtained as

wt(c) = n−Nf (b, c),

which follows from Lemmas 11 and 14. For every b ∈ Fpm\Supp(Wf ), we have

wt(c) = (p− 1)
(
pm−2 + ϵ(p− 1)

√
p∗

m+s−4
)
,

11



and the number of such codewords can be obtained from Lemma 2. For every
b ∈Supp(Wf ), we obtain

wt(c) =



(p− 1)pm−2, if c = 0, b ̸= 0, g(b) = 0
p−1
p

(
pm−1 + ϵ

√
p∗

m+s
)
, if c = 0, b ̸= 0, g(b) ̸= 0 or

c ̸= 0, b ̸= 0, g(b) = 0,
1
p

(
pm + ϵ(p− 1)

√
p∗

m+s
)
, if c ̸= 0, b = 0,

1
p

(
(p− 1)pm−1 + ϵ(p− 2)

√
p∗

m+s
)
, if c ̸= 0, b ̸= 0, g(b) ̸= 0,

and the number of such codewords c can be obtained from Lemma 12. The dimension
of CDf

follows from its weight distribution. By Lemma 6, CDf
is a ternary self-

orthogonal code for m+ s ≥ 6 and p = 3 since all codewords have weights divisible by
3.

Example 1. Let f(x) = Tr3
5

3 (ζ19x4 + ζ238x2), where ζ is a generator of F∗
35 = ⟨ζ⟩

for ζ5 + 2ζ + 1 = 0. Then, f is a quadratic 1-plateaued unbalanced function in the
set WRP and for all β ∈ F35 , we have Wf (β) ∈ {0,−27,−27ξ3,−27ξ23} with ϵ = 1.
Then, the code CDf

in Theorem 1 is a self-orthogonal ternary code with parameters
[63, 6, 36] and weight enumerator 1 + 100y36 + 486y42 + 120y45 + 20y54 + 2y63. It is
verified by the Sage program.

Table 1 The code CDf
in Theorem 1 when m+ s is even.

Hamming weight ω Multiplicity Aω

0 1

(p− 1)pm−2 1
p

(
pm−s + ϵηm0 (−1)(p− 1)

√
p∗ m−s

)
− 1

p−1
p

(
pm−1 + ϵ

√
p∗ m+s

)
p−1
p

(
2 · pm−s + ϵηm0 (−1)(p− 2)

√
p∗ m−s − p

)
1
p

(
pm + ϵ(p− 1)

√
p∗ m+s

)
p− 1

1
p

(
(p− 1)pm−1 + ϵ(p− 2)

√
p∗ m+s

)
(p−1)2

p

(
pm−s − ϵηm0 (−1)

√
p∗ m−s

)
(p− 1)

(
pm−2 + ϵ(p− 1)

√
p∗ m+s−4

)
pm+1 − pm−s+1

Theorem 2. Let m+ s ≥ 4 be even with 0 ≤ s ≤ m− 2. Let f ∈ WRPB and ϵ be the
sign of the Walsh transform of f . Let Df = {x ∈ Fpm : f(x) = 0}. Then, CDf

is a
five-weight linear [pm−1,m + 1] code with parameters listed in Table 2. In particular,
CDf

is a ternary self-orthogonal code when p = 3 and m+ s ≥ 6.

Proof. From the definition of the code, the length of any codeword c of CDf
is n =

#Df = pm−1. The Hamming weight wt(c) = #Df − Nf (b, c) can be derived from
Lemma 15. For every b ∈ Fpm\Supp(Wf ), we have

wt(c) =

{
(p− 1)pm−2, if c ∈ Fp, b ̸= 0,
pm−1, if c ̸= 0, b = 0.

12



For every b ∈Supp(Wf ), we obtain

wt(c) =


(p− 1)

(
pm−2 − ϵ(p− 1)

√
p∗

m+s−4
)
, if c = 0, b ̸= 0, g(b) = 0

p− 1)
(
pm−2 + ϵ

√
p∗

m+s−4
)
, if c = 0, b ̸= 0, g(b) ̸= 0 or

c ̸= 0, b ̸= 0, g(b) = 0,

(p− 1)pm−2 − ϵ
√
p∗

m+s−4
, if c ̸= 0, b ̸= 0, g(b) ̸= 0.

The weight distribution follows from Lemmas 2 and 12. The dimension of CDf
is

obtained as m + 1 by using the first Pless power moment given in Equation 2. By
Lemma 6, CDf

is a ternary self-orthogonal code for m+ s ≥ 6 and p = 3. Hence, the
proof is complete.

Example 2. Let p = 5 and m = 5. Let f ∈ WRPB with s = 1 and ϵ = 1. Then, the
code CDf

in Theorem 2 is a five-weight [625, 6, 420] linear code over F5 with weight
enumerator 1 + 145y420 + 1920y495 + 12495y500 + 1060y520 + 4y625, which is verified
by the Sage program.

Table 2 The code CDf
in Theorem 2 when m+ s is even.

Hamming weight ω Multiplicity Aω

0 1

pm−1 p− 1

(p− 1)pm−2 p(pm − pm−s − 1)

(p− 1)
(
pm−2 − ϵ(p− 1)

√
p∗m+s−4

)
pm−s−1 + ϵηm+1

0 (−1)(p− 1)
√
p∗m−s−2

(p− 1)
(
pm−2 + ϵ

√
p∗m+s−4

)
(p− 1)

(
2pm−s−1 + ϵηm+1

0 (−1)(p− 2)
√
p∗m−s−2

)
(p− 1)pm−2 − ϵ

√
p∗m+s−4

(p− 1)2
(
pm−s−1 − ϵηm+1

0 (−1)
√
p∗m−s−2

)

Theorem 3. Let m+ s ≥ 3 be odd and 0 ≤ s ≤ m− 1. Let f ∈ WRP or f ∈ WRPB
and ϵ be the sign of Walsh transform of f . Let Df = {x ∈ Fpm : f(x) = 0}. Then,
CDf

is a six-weight linear [pm−1,m + 1] code with parameters listed in Table 3. In

particular, CDf
is a ternary self-orthogonal code for m+ s ≥ 5 and p = 3.

Proof. The proof is similar to the proof of Theorem 1. The Hamming weights and the
frequency of each weight can be obtained from Lemmas 2, 11, 12 and 14. Furthermore,
CDf

is a ternary self-orthogonal code when p = 3 by Lemma 6.

Example 3. Let f(x) = Tr3
6

3 (ζx4 + ζ27x2), where ζ is a generator of F∗
36 = ⟨ζ⟩ for

ζ6+2ζ4+ζ2+2ζ+2 = 0. Then, f is a quadratic 1-plateaued unbalanced function in the
set WRP and for all β ∈ F36 , we have Wf (β) ∈ {0, 54ξ3+27,−27ξ3−54,−27ξ3+27}
with ϵ = −1. Then, the code CDf

in Theorem 3 is a ternary self-orthogonal code
with parameters [243, 7, 144] and weight enumerator 1+90y144+144y153+1698y162+
180y171 + 72y180 + 2y243. It is verified by the Sage program.

13



Table 3 The code CDf
in Theorem 3 when m+ s is odd.

Hamming weight ω Multiplicity Aω

0 1

pm−1 p− 1

(p− 1)pm−2 pm+1 − p− pm−s(p− 1)
p−1
p2

(
pm + ϵ

√
p∗ m+s+1

)
p−1
2

(
pm−s−1 − ϵηm0 (−1)

√
p∗ m−s−1

)
p−1
p2

(
pm − ϵ

√
p∗ m+s+1

)
p−1
2

(
pm−s−1 + ϵηm0 (−1)

√
p∗ m−s−1

)
1
p2

(
(p− 1)pm + ϵ

√
p∗ m+s+1

)
(p−1)2

2

(
pm−s−1 + ϵηm0 (−1)

√
p∗ m−s−1

)
1
p2

(
(p− 1)pm − ϵ

√
p∗ m+s+1

)
(p−1)2

2

(
pm−s−1 − ϵηm0 (−1)

√
p∗ m−s−1

)

Theorem 4. Let m and s be two integers with 0 ≤ s ≤ m. Let f : Fpm → Fp and ϵ
be the sign of the Walsh transform of f .

� Let m+ s ≥ 4 be even with 0 ≤ s ≤ m− 2 and f ∈ WRP. Then, the dual code C
⊥
Df

has the parameters [ 1p (p
m + ϵ(p− 1)

√
p∗

m+s
), 1p (p

m + ϵ(p− 1)
√
p∗

m+s
)−m− 1, 3].

� Let m + s ≥ 4 be even with 0 ≤ s ≤ m − 2 and f ∈ WRPB. Then, the dual code

C
⊥
Df

has the parameters [pm−1, pm−1 −m− 1, 2].
� Let m+ s ≥ 3 be odd with 0 ≤ s ≤ m− 1 and f ∈ WRP or f ∈ WRPB. Then, the

dual code C
⊥
Df

has the parameters [pm−1, pm−1 −m− 1, 3].

Proof. Denote by d⊥ the minimum distance of C
⊥
Df

. From the definition of CDf
,

we deduce that d⊥ ≥ 2. Denote by (1, A1, . . . , An) and (1, A⊥
1 , . . . , A

⊥
n ) the weight

distributions of CDf
and C

⊥
Df

, respectively. Let m + s > 4 be even and f ∈ WRP.
By using the second and third Pless power moments and Theorem 1, we derive

A⊥
1 = 0 and A⊥

2 = 0.

By the fourth Pless power moment,

n∑
i=0

i3Ai = pk−3[(p− 1)n(p2n2 − 2pn2 + 3pn− p+ n2 − 3n+ 2)− 6A⊥
3 ]. (3)

Combining Theorem 1 and Equation 3, we obtain that A⊥
3 > 0 and d⊥ = 3. By using

the second, third and fourth Pless power moments and Theorems 2 and 3, we obtain
the desired conclusions for the other cases.
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5 Linear codes from weakly regular plateaued
functions based on the sets Dsq and Dnsq

In this section, we construct the augmented codes CDsq
and CDnsq

based on the
following defining sets

Dsq = {x ∈ Fpm : f(x) ∈ SQ},
Dnsq = {x ∈ Fpm : f(x) ∈ NSQ}. (4)

The length of the augmented code is the size of the corresponding defining set.

� If f ∈ WRP, then the sizes of the sets Dsq and Dnsq follow from Lemma 11.
� If f ∈ WRPB, then it is clear that n = #Df = (p−1

2 )pm−1.

The following lemma follows from [17, Lemma 16] and [24, Lemma 9].
Lemma 16. Let f ∈ WRP. For b ∈ Fpm and c ∈ Fp, define

Nsq(b, c) = #{x ∈ Fpm : Trp
m

p (bx) + c = 0 and f(x) ∈ SQ},
Nnsq(b, c) = #{x ∈ Fpm : Trp

m

p (bx) + c = 0 and f(x) ∈ NSQ}.

For every b ∈ Fpm \ Supp(Wf ), we have

Nsq(b, c) =

 (p−1
2 )

(
pm−2 − ϵ

√
p∗

m+s−4
)
, if m+ s is even,

(p−1
2 )

(
pm−2 + ϵη0(−1)

√
p∗

m+s−3
)
, if m+ s is odd,

Nnsq(b, c) =

 (p−1
2 )

(
pm−2 − ϵ

√
p∗

m+s−4
)
, if m+ s is even,

(p−1
2 )

(
pm−2 − ϵη0(−1)

√
p∗

m+s−3
)
, if m+ s is odd.

For every b ∈ Supp(Wf ), if m+ s is even,

Nsq(b, c) =



(p−1
2 )

(
pm−1 − ϵη0(−1)

√
p∗

m+s−2
)
, if c = 0, b = 0,

0, if c ̸= 0, b = 0,

(p−1
2 )

(
pm−2 − ϵη0(−1)

√
p∗

m+s−2
)
, if c = 0, b ̸= 0, g(b) ∈ NSQ ∪ {0},

(p−1
2 )

(
pm−2 + ϵη0(−1)

√
p∗

m+s−2
)
, if c = 0, b ̸= 0, g(b) ∈ SQ,

(p−1
2 )pm−2, if c ̸= 0, b ̸= 0, g(b) ∈ NSQ ∪ {0},

(p−1
2 )pm−2 − ϵη0(−1)

√
p∗

m+s−2
, if c ̸= 0, b ̸= 0, g(b) ∈ SQ,
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Nnsq(b, c) =



(p−1
2 )

(
pm−1 − ϵη0(−1)

√
p∗

m+s−2
)
, if c = 0, b = 0,

0, if c ̸= 0, b = 0,

(p−1
2 )

(
pm−2 − ϵη0(−1)

√
p∗

m+s−2
)
, if c = 0, b ̸= 0, g(b) ∈ SQ ∪ {0},

(p−1
2 )

(
pm−2 + ϵη0(−1)

√
p∗

m+s−2
)
, if c = 0, b ̸= 0, g(b) ∈ NSQ,

(p−1
2 )pm−2, if c ̸= 0, b ̸= 0, g(b) ∈ SQ ∪ {0},

(p−1
2 )pm−2 − ϵη0(−1)

√
p∗

m+s−2
, if c ̸= 0, b ̸= 0, g(b) ∈ NSQ,

if m+ s is odd,

Nsq(b, c) =



(p−1
2 )

(
pm−1 + ϵ

√
p∗

m+s−1
)
, if c = 0, b = 0,

0, if c ̸= 0, b = 0,

(p−1
2 )

(
pm−2 + ϵ

√
p∗

m+s−1
)
, if c = 0, b ̸= 0, g(b) = 0,

(p−1
2 )

(
pm−2 − ϵ

√
p∗

m+s−3
)
, if c = 0, b ̸= 0, g(b) ∈ SQ,

(p−1
2 )

(
pm−2 + ϵ

√
p∗

m+s−3
)
, if c = 0, b ̸= 0, g(b) ∈ NSQ,

(p−1
2 )pm−2, if c ̸= 0, b ̸= 0, g(b) = 0,

(p−1
2 )pm−2 + ϵ(p

∗+1
2p∗ )

√
p∗

m+s−1
, if c ̸= 0, b ̸= 0, g(b) ∈ SQ,

(p−1
2 )pm−2 + ϵ(p

∗−1
2p∗ )

√
p∗

m+s−1
, if c ̸= 0, b ̸= 0, g(b) ∈ NSQ,

Nnsq(b, c) =



(p−1
2 )

(
pm−1 − ϵ

√
p∗

m+s−1
)
, if c = 0, b = 0,

0, if c ̸= 0, b = 0,

(p−1
2 )

(
pm−2 − ϵ

√
p∗

m+s−1
)
, if c = 0, b ̸= 0, g(b) = 0,

(p−1
2 )

(
pm−2 − ϵ

√
p∗

m+s−3
)
, if c = 0, b ̸= 0, g(b) ∈ SQ,

(p−1
2 )

(
pm−2 + ϵ

√
p∗

m+s−3
)
, if c = 0, b ̸= 0, g(b) ∈ NSQ,

(p−1
2 )pm−2, if c ̸= 0, b ̸= 0, g(b) = 0,

(p−1
2 )pm−2 − ϵ(p

∗−1
2p∗ )

√
p∗

m+s−1
, if c ̸= 0, b ̸= 0, g(b) ∈ SQ,

(p−1
2 )pm−2 − ϵ(p

∗+1
2p∗ )

√
p∗

m+s−1
, if c ̸= 0, b ̸= 0, g(b) ∈ NSQ.

The following lemma follows from [22, Lemma 9] and [25, Lemma 9].

Lemma 17. Let f ∈ WRPB. For b ∈ Fpm and c ∈ Fp, define

Nsq(b, c) = #{x ∈ Fpm : Trp
m

p (bx) + c = 0 and f(x) ∈ SQ},
Nnsq(b, c) = #{x ∈ Fpm : Trp

m

p (bx) + c = 0 and f(x) ∈ NSQ}.

Then, for every b ∈ Fpm \ Supp(Wf ), we have

Nsq(b, c) = Nnsq(b, c) =

 (p−1
2 )pm−2, if c ∈ F, b ̸= 0,

(p−1
2 )pm−1, if c = 0, b = 0,

0, if c ̸= 0, b = 0,
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and for every b ∈ Supp(Wf ), if m+ s is even,

Nsq(b, c) =


(p−1

2 )
(
pm−2 − ϵ(p− 1)

√
p∗

m+s−4
)
, if c = 0, g(b) ∈ NSQ ∪ {0},

(p−1
2 )

(
pm−2 + ϵ(p+ 1)

√
p∗

m+s−4
)
, if c = 0, g(b) ∈ SQ,

(p−1
2 )

(
pm−2 + ϵ

√
p∗

m+s−4
)
, if c ̸= 0, g(b) ∈ NSQ ∪ {0},

(p−1
2 )pm−2 − ϵ(p+1

2 )
√
p∗

m+s−4
, if c ̸= 0, g(b) ∈ SQ,

Nnsq(b, c) =


(p−1

2 )
(
pm−2 − ϵ(p− 1)

√
p∗

m+s−4
)
, if c = 0, g(b) ∈ SQ ∪ {0},

(p−1
2 )

(
pm−2 + ϵ(p+ 1)

√
p∗

m+s−4
)
, if c = 0, g(b) ∈ NSQ,

(p−1
2 )

(
pm−2 + ϵ

√
p∗

m+s−4
)
, if c ̸= 0, g(b) ∈ SQ ∪ {0},

(p−1
2 )pm−2 − ϵ(p+1

2 )
√
p∗

m+s−4
, if c ̸= 0, g(b) ∈ NSQ,

if m+ s is odd,

Nsq(b, c) =



(p−1
2 )

(
pm−2 + ϵη0(−1)(p− 1)

√
p∗

m+s−3
)
, if c = 0, g(b) = 0,

(p−1
2 )

(
pm−2 − ϵ

√
p∗

m+s−3
(η0(−1) + 1)

)
, if c = 0, g(b) ∈ SQ,

(p−1
2 )

(
pm−2 − ϵ

√
p∗

m+s−3
(η0(−1)− 1)

)
, if c = 0, g(b) ∈ NSQ,

(p−1
2 )

(
pm−2 − ϵη0(−1)

√
p∗

m+s−3
)
, if c ̸= 0, g(b) = 0,

(p−1
2 )pm−2 + ϵ(η0(−1)+1

2 )
√
p∗

m+s−3
, if c ̸= 0, g(b) ∈ SQ,

(p−1
2 )pm−2 + ϵ(η0(−1)−1

2 )
√
p∗

m+s−3
, if c ̸= 0, g(b) ∈ NSQ,

Nnsq(b, c) =



(p−1
2 )

(
pm−2 − ϵη0(−1)(p− 1)

√
p∗

m+s−3
)
, if c = 0, g(b) = 0,

(p−1
2 )

(
pm−2 + ϵ

√
p∗

m+s−3
(η0(−1)− 1)

)
, if c = 0, g(b) ∈ SQ,

(p−1
2 )

(
pm−2 + ϵ

√
p∗

m+s−3
(η0(−1) + 1)

)
, if c = 0, g(b) ∈ NSQ,

(p−1
2 )

(
pm−2 + ϵη0(−1)

√
p∗

m+s−3
)
, if c ̸= 0, g(b) = 0,

(p−1
2 )pm−2 − ϵ(η0(−1)−1

2 )
√
p∗

m+s−3
, if c ̸= 0, g(b) ∈ SQ,

(p−1
2 )pm−2 − ϵ(η0(−1)+1

2 )
√
p∗

m+s−3
, if c ̸= 0, g(b) ∈ NSQ.

Theorem 5. Let m+ s ≥ 4 be even with 0 ≤ s ≤ m− 2. Let f ∈ WRP and ϵ be the
sign of the Walsh transform of f . Let Dsq be defined as in (4). Then,

� CDsq is a six-weight linear
[
(p−1

2 )
(
pm−1 − ϵη0(−1)

√
p∗

m+s−2
)
,m+ 1, d

]
code

with parameters listed in Table 4. In particular, CDsq
is a five-weight ternary

self-orthogonal code over F3 when m+ s ≥ 6 and p = 3.
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� The dual code C
⊥
Dsq

over Fp has the parameters [n, n−m− 1, 3], where n =

(p−1
2 )

(
pm−1 − ϵη0(−1)

√
p∗

m+s−2
)
.

Proof. The length of the code CDsq follows from Lemma 11. For any codeword c, the
Hamming weight wt(c) = #Dsq −Nsq(b, c) can be directly derived from Lemmas 11
and 16. For every b ∈ Fpm\Supp(Wf ), we have

wt(c) =
(p− 1)2

2

(
pm−2 − ϵ

√
p∗

m+s−4
)
.

For every b ∈Supp(Wf ), we obtain

wt(c) =



p−1
2

(
pm−1 − ϵη0(−1)

√
p∗

m+s−2
)
, if c ̸= 0, b = 0,

(p−1)2

2 pm−2, if c = 0, b ̸= 0, g(b) ∈ NSQ ∪ {0},
p−1
2

(
(p− 1)pm−2 − 2ϵη0(−1)

√
p∗

m+s−2
)
, if c = 0, b ̸= 0, g(b) ∈ SQ,

p−1
2

(
(p− 1)pm−2 − ϵη0(−1)

√
p∗

m+s−2
)
, if c ̸= 0, b ̸= 0, g(b) ∈ NSQ ∪ {0},

(p−1)2

2 pm−2 + ϵη0(−1)
√
p∗

m+s−2 3−p
2 , if c ̸= 0, b ̸= 0, g(b) ∈ SQ.

The weight distribution follows from Lemmas 2 and 12. The dimension of CDsq ism+1

as A0 = 1. Furthermore, from Lemma 6, CDsq
is a ternary self-orthogonal code when

p = 3 and m+ s ≥ 6 since all codewords have weights divisible by 3. Finally, one can
derive the minimum Hamming distance d⊥ = 3 from the Pless power moments.

Remark 1. In Theorem 5, when we replace the set Dsq with the set Dnsq, the code
CDnsq has the same parameters as the code CDsq .

Example 4. f(x) = Tr3
4

3 (2x92) is a ternary 2-plateaued unbalanced function in the

set WRP and for all β ∈ F34 , we have Wf (β) ∈ {0,−33ξ
g(β)
3 } with ϵ = 1. Then,

the code CDsq
in Theorem 5 is a self-orthogonal ternary linear code with parameters

[36, 5, 18] and weight enumerator 1+12y18+216y24+8y27+6y36. It is verified by the
Sage program.
Theorem 6. Let m + s ≥ 4 be even with 0 ≤ s ≤ m − 2. Let f ∈ WRPB and ϵ be
the sign of the Walsh transform of f . Let Dsq be defined as in (4). Then,

� CDsq is a six-weight linear [(p−1
2 )pm−1,m + 1, d] code with parameters listed in

Table 5. In particular, when p = 3 and m + s ≥ 6, CDsq
is a five-weight ternary

self-orthogonal code over F3.

� The dual code C
⊥
Dsq

over Fp has the parameters [(p−1
2 )pm−1, (p−1

2 )pm−1−m− 1, 2].

Proof. From the definition of CDsq , its length is equal to #Dsq = (p−1
2 )pm−1. Sim-

ilarly, for a codeword c ∈ CDsq , the Hamming weight is obtained as wt(c) =
#Dsq − Nsq(b, c), which follows from Lemma 17. For every b ∈ Fpm\Supp(Wf ), we
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Table 4 The code CDsq in Theorem 5 when m+ s is even.

Hamming weight ω Multiplicity Aω

0 1

( p−1
2

)
(
pm−1 − ϵη0(−1)

√
p∗m+s−2

)
p− 1

(p−1)2

2
pm−2 ( p+1

2
)pm−s−1 − 1 + ϵ( p−1

2
)ηm+1

0 (−1)
√
p∗m−s−2

( p−1
2

)
(
(p− 1)pm−2 − 2ϵη0(−1)

√
p∗m+s−2

)
( p−1

2
)
(
pm−s−1 − ϵηm+1

0 (−1)
√
p∗m−s−2

)
( p−1

2
)
(
(p− 1)pm−2 − ϵη0(−1)

√
p∗m+s−2

)
( p−1

2
)
(
(p+ 1)pm−s−1 − 2 + ϵηm+1

0 (−1)(p− 1)
√
p∗m−s−2

)
(p−1)2

2
pm−2 + ϵη0(−1)

√
p∗m+s−2

( 3−p
2

)
(p−1)2

2

(
pm−s−1 − ϵηm+1

0 (−1)
√
p∗m−s−2

)
(p−1)2

2

(
pm−2 − ϵ

√
p∗m+s−4

)
p(pm − pm−s)

have

wt(c) =

{
(p−1)2

2 pm−2, if c ∈ Fp, b ̸= 0,
p−1
2 pm−1, if c ̸= 0, b = 0

and the number of such codewords can be determined by Lemma 2. For every
b ∈Supp(Wf ), we obtain

wt(c) =



(p−1)2

2

(
pm−2 + ϵ

√
p∗

m+s−4
)
, if c = 0, g(b) ∈ NSQ ∪ {0},

p−1
2

(
(p− 1)pm−2 − ϵ(p+ 1)

√
p∗

m+s−4
)
, if c = 0, g(b) ∈ SQ,

p−1
2

(
(p− 1)pm−2 − ϵ

√
p∗

m+s−4
)
, if c ̸= 0, g(b) ∈ NSQ ∪ {0},

(p−1)2

2 pm−2 + ϵ(p+1
2 )

√
p∗

m+s−4
, if c ̸= 0, g(b) ∈ SQ

and also the number of such codewords can be obtained from Lemma 12. The dimen-
sion of CDsq

follows from its weight distribution. Furthermore, from Lemma 6, CDsq

is a self-orthogonal code when p = 3 and m+ s ≥ 6 since all codewords have weights
divisible by 3. From the Pless power moments, one can obtain the minimum Hamming
distance d⊥ = 2. Hence, the proof is complete.

Remark 2. In Theorem 6, when we replace the set Dsq with the set Dnsq, the code
CDnsq has the same parameters as the code CDsq .

Example 5. Let p = 5 and m = 5. Let f ∈ WRPB with s = 1 and ϵ = 1. Then, the
code CDsq in Theorem 6 is a six-weight linear [1250, 6, 940] code over F5 with weight
enumerator 1+240y940+1540y990+12495y1000+960y1015+385y1040+4y1250, which
is verified by the Sage program.
Theorem 7. Let m+ s ≥ 3 be odd with 0 ≤ s ≤ m − 1. Let f ∈ WRP and ϵ be the
sign of the Walsh transform of f . Let Dsq be defined as in (4). Then,

� CDsq is a six-weight linear
[
(p−1

2 )
(
pm−1 + ϵ

√
p∗

m+s−1
)
,m+ 1, d

]
code with

parameters listed in Tables 6 and 7 when p ≡ 1 (mod 4) and p ≡ 3 (mod 4),
respectively. In particular, CDsq

is a ternary self-orthogonal code for p = 3 and
m+ s ≥ 5.
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Table 5 The code CDsq in Theorem 6 when m+ s is even.

Hamming weight ω Multiplicity Aω

0 1

( p−1
2

)pm−1 p− 1
(p−1)2

2
pm−2 p(pm − pm−s − 1)

(p−1)2

2

(
pm−2 + ϵ

√
p∗m+s−4

)
( p+1

2
)pm−s−1 + ϵηm+1

0 (−1)( p−1
2

)
√
p∗m−s−2

(p−1)
2

(
(p− 1)pm−2 − ϵ(p+ 1)

√
p∗m+s−4

)
( p−1

2
)
(
pm−s−1 − ϵηm+1

0 (−1)
√
p∗m−s−2

)
(p−1)

2

(
(p− 1)pm−2 − ϵ

√
p∗m+s−4

)
(p− 1)

(
pm−s−1( p+1

2
) + ϵηm+1

0 ( p−1
2

)
√
p∗m−s−2

)
(p−1)2

2
pm−2 + ϵ( p+1

2
)
√
p∗m+s−4 (p−1)2

2

(
pm−s−1 − ϵηm+1

0 (−1)
√
p∗m−s−2

)

� The dual code C
⊥
Dsq

over Fp has the parameters [n, n−m− 1, 3], where n =

(p−1
2 )(pm−1 + ϵ

√
p∗

m+s−1
).

Proof. As in the proof of Theorem 5, the length of CDsq
is a consequence of Lemma

11 and the Hamming weight of any codeword in CDsq
is obtained as

wt(c) = #Dsq −Nsq(b, c),

which follows from Lemmas 11 and 16. The weight distribution follows from Lemmas
2 and 12. By Lemma 6, the code CDsq is a self-orthogonal code when p = 3 and
m + s ≥ 6 since all codewords have weights divisible by 3. By using the Pless power

moments, one can find the minimum distance of C
⊥
Dsq

as 3.

Table 6 The code CDsq in Theorem 7 when m+ s is odd and p = 1 (mod 4).

Hamming weight ω Multiplicity Aω

0 1

( p−1
2

)
(
pm−1 + ϵ

√
p∗m+s−1

)
p− 1

(p−1)2

2
pm−2 pm−s−1 − 1

( p−1
2

)
(
(p− 1)pm−2 + ϵ

√
p∗m+s−3

(p+ 1)
)

( p−1
2

)
(
pm−s−1 + ϵ

√
p∗m−s−1

)
(p−1)2

2

(
pm−2 + ϵ

√
p∗m+s−3

)
p
(
pm − pm−s + p−1

2
(pm−s−1 − ϵ

√
p∗m−s−1

)
)

( p−1
2

)
(
(p− 1)pm−2 + ϵ

√
p∗m+s−1

)
(p− 1)(pm−s−1 − 1)

(p−1)2

2
pm−2 + ϵ 1

2p

√
p∗m+s−1 (

p2 − 2p− 1
) (p−1)2

2

(
pm−s−1 + ϵ

√
p∗m−s−1

)

Theorem 8. Let m+ s ≥ 3 be odd with 0 ≤ s ≤ m− 1. Let f ∈ WRPB and ϵ be the
sign of the Walsh transform of f . Let Dsq be defined as in (4). Then,

� CDsq is a six-weight linear [(p−1
2 )pm−1,m + 1, d] code with parameters listed in

Tables 8 and 9 when p ≡ 1 (mod 4) and p ≡ 3 (mod 4), respectively. In particular,
CDsq is a ternary self-orthogonal code when m+ s ≥ 5 and p = 3.
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Table 7 The code CDsq in Theorem 7 when m+ s is odd and p = 3 (mod 4).

Hamming weight ω Multiplicity Aω

0 1

( p−1
2

)
(
pm−1 + ϵ

√
p∗m+s−1

)
p− 1

(p−1)2

2
pm−2 pm−s−1 − 1

(p−1)2

2

(
pm−2 − ϵ

√
p∗m+s−3

)
p
(
pm − pm−s + p−1

2
(pm−s−1 + ϵ(−1)m

√
p∗m−s−1

)
)

( p−1
2

)
(
(p− 1)pm−2 − ϵ

√
p∗m+s−3

(p+ 1)
)

( p−1
2

)
(
pm−s−1 − ϵ(−1)m

√
p∗m−s−1

)
( p−1

2
)
(
(p− 1)pm−2 + ϵ

√
p∗m+s−1

)
(p− 1)(pm−s−1 − 1)

(p−1)2

2
pm−2 + ϵ 1

2p

√
p∗m+s−1 (

p2 − 2p− 1
) (p−1)2

2

(
pm−s−1 − ϵ(−1)m

√
p∗m−s−1

)

� The dual code C
⊥
Dsq

over Fp has the parameters [(p−1
2 )pm−1, (p−1

2 )pm−1−m− 1, 2].

Proof. Similar to the proof of Theorem 6, the Hamming weight wt(c) = #Dsq −
Nsq(b, c) can be directly derived from Lemma 17. The weight distribution follows from
Lemmas 2 and 12. Furthermore, from Lemma 6, the code CDsq

is self-orthogonal for
p = 3 and m + s ≥ 5. By using the Pless power moments, we obtain the minimum
distance of d⊥ = 2.

Table 8 The code CDsq in Theorem 8 when m+ s is odd and p ≡ 1 (mod 4).

Hamming weight ω Multiplicity Aω

0 1

( p−1
2

)pm−1 p− 1
(p−1)2

2
pm−2 p(pm − pm−s − 1 + ( p−1

2
)(pm−s−1 − ϵ

√
p∗m−s−1

)
(p−1)2

2

(
pm−2 − ϵ

√
p∗m+s−3

)
pm−s−1

(p−1)
2

(
(p− 1)pm−2 + 2ϵ

√
p∗m+s−3

)
( p−1

2
)
(
pm−s−1 + ϵ

√
p∗m−s−1

)
(p−1)

2

(
(p− 1)pm−2 + ϵ

√
p∗m+s−3

)
pm−s−1(p− 1)

(p−1)2

2
pm−2 − ϵ

√
p∗m+s−3 (p−1)2

2

(
pm−s−1 + ϵ

√
p∗m−s−1

)

Theorem 9. Let m+ s ≥ 3 be odd with 0 ≤ s ≤ m− 1. Let f ∈ WRP and ϵ be the
sign of the Walsh transform of f . Let Dnsq be defined as in (4). Then,

� CDnsq
is a six-weight linear [(p−1

2 )(pm−1−ϵ
√
p∗

m+s−1
),m+1] code with parameters

listed in Tables 10 and 11 when p ≡ 1 (mod 4) and p ≡ 3 (mod 4), respectively. In
particular, CDnsq

is a ternary self-orthogonal code when p = 3 and m+ s ≥ 5.

� The dual code C
⊥
Dnsq

over Fp has the parameters [n, n − m − 1, 3], where n =

(p−1
2 )(pm−1 − ϵ

√
p∗

m+s−1
).

Proof. As in the proof of Theorem 5, the length of CDnsq
is given in Lemma 11

and the Hamming weight of c ∈ CDnsq is obtained as wt(c) = #Dnsq − Nnsq(b, c),
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Table 9 The code CDsq in Theorem 8 when m+ s is odd and p ≡ 3 (mod 4).

Hamming weight ω Multiplicity Aω

0 1

( p−1
2

)pm−1 p− 1
(p−1)2

2
pm−2 p(pm − pm−s − 1 + ( p−1

2
)(pm−s−1 + ϵ(−1)m

√
p∗m−s−1

)
(p−1)2

2

(
pm−2 + ϵ

√
p∗m+s−3

)
pm−s−1

(p−1)
2

(
(p− 1)pm−2 − 2ϵ

√
p∗m+s−3

)
( p−1

2
)
(
pm−s−1 − ϵ(−1)m

√
p∗m−s−1

)
(p−1)

2

(
(p− 1)pm−2 − ϵ

√
p∗m+s−3

)
pm−s−1(p− 1)

(p−1)2

2
pm−2 + ϵ

√
p∗m+s−3 (p−1)2

2

(
pm−s−1 − ϵ(−1)m

√
p∗m−s−1

)

which follows from Lemmas 11 and 16. We can determine the weight distribution from
Lemmas 2 and 12. Moreover, by Lemma 6, CDnsq is a ternary self-orthogonal code
for p = 3 and m + s ≥ 5. Finally, by using the Pless power moments, we obtain the

minimum distance of C
⊥
Dnsq

as 3.

Table 10 The code CDnsq in Theorem 9 when m+ s is odd and p = 1 (mod 4).

Hamming weight ω Multiplicity Aω

0 1

( p−1
2

)
(
pm−1 − ϵ

√
p∗m+s−1

)
p− 1

(p−1)2

2
pm−2 pm−s−1 − 1

(p−1)2

2

(
pm−2 − ϵ

√
p∗m+s−3

)
p
(
pm − pm−s + p−1

2
(pm−s−1 + ϵ

√
p∗m−s−1

)
)

( p−1
2

)
(
(p− 1)pm−2 − ϵ

√
p∗m+s−3

(1 + p)
)

( p−1
2

)
(
pm−s−1 − ϵ

√
p∗m−s−1

)
( p−1

2
)
(
(p− 1)pm−2 − ϵ

√
p∗m+s−1

)
(p− 1)(pm−s−1 − 1)

(p−1)2

2
pm−2 − ϵ 1

2p

√
p∗m+s−1 (

p2 − 2p− 1
) (p−1)2

2

(
pm−s−1 − ϵ

√
p∗m−s−1

)

Theorem 10. Let m + s ≥ 3 be odd with 0 ≤ s ≤ m − 1. Let f ∈ WRPB and ϵ be
the sign of the Walsh transform of f . Let Dnsq be defined as in (4). Then,

� CDnsq is a six-weight linear [(p−1
2 )pm−1,m+1] code with parameters listed in Tables

12 and 13 when p ≡ 1 (mod 4) and p ≡ 3 (mod 4), respectively. In particular,
CDnsq is a ternary self-orthogonal code for p = 3 and m+ s ≥ 5.

� The dual code C
⊥
Dnsq

has the parameters [(p−1
2 )pm−1, (p−1

2 )pm−1 −m− 1, 2].

Proof. As in the proof of Theorem 6, the Hamming weight wt(c) = #Dnsq−Nnsq(b, c)
follows from Lemma 17. The weight distribution follows from Lemmas 2 and 12. From
Lemma 6, CDnsq

is a ternary self-orthogonal code for p = 3 and m + s ≥ 5 since all
codewords have weights divisible by 3. Finally, we obtain the minimum distance of

C
⊥
Dnsq

as 2 from the Pless power moments.
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Table 11 The code CDnsq in Theorem 9 when m+ s is odd and p = 3 (mod 4).

Hamming weight ω Multiplicity Aω

0 1

( p−1
2

)
(
pm−1 − ϵ

√
p∗m+s−1

)
p− 1

(p−1)2

2
pm−2 pm−s−1 − 1

( p−1
2

)
(
(p− 1)pm−2 + ϵ

√
p∗m+s−3

(p+ 1)
)

( p−1
2

)
(
pm−s−1 + ϵ(−1)m

√
p∗m−s−1

)
(p−1)2

2

(
pm−2 + ϵ

√
p∗m+s−3

)
p
(
pm − pm−s + p−1

2
(pm−s−1 − ϵ(−1)m

√
p∗m−s−1

)
)

( p−1
2

)
(
(p− 1)pm−2 − ϵ

√
p∗m+s−1

)
(p− 1)(pm−s−1 − 1)

(p−1)2

2
pm−2 − ϵ 1

2p

√
p∗m+s−1 (

p2 − 2p− 1
) (p−1)2

2

(
pm−s−1 + ϵ(−1)m

√
p∗m−s−1

)

Table 12 The code CDnsq in Theorem 10 when m+ s is odd and p ≡ 1 (mod 4).

Hamming weight ω Multiplicity Aω

0 1

( p−1
2

)pm−1 p− 1
(p−1)2

2
pm−2 p(pm − pm−s − 1 + ( p−1

2
)(pm−s−1 + ϵ

√
p∗m−s−1

)
(p−1)2

2

(
pm−2 + ϵ

√
p∗m+s−3

)
pm−s−1

(p−1)
2

(
(p− 1)pm−2 − 2ϵ

√
p∗m+s−3

)
( p−1

2
)
(
pm−s−1 − ϵ

√
p∗m−s−1

)
(p−1)

2

(
(p− 1)pm−2 + ϵ

√
p∗m+s−3

)
pm−s−1(p− 1)

(p−1)2

2
pm−2 + ϵ

√
p∗m+s−3 (p−1)2

2

(
pm−s−1 − ϵ

√
p∗m−s−1

)

Table 13 The code CDnsq in Theorem 10 when m+ s is odd and p ≡ 3 (mod 4).

Hamming weight ω Multiplicity Aω

0 1

( p−1
2

)pm−1 p− 1
(p−1)2

2
pm−2 p(pm − pm−s − 1 + ( p−1

2
)(pm−s−1 − ϵ(−1)m

√
p∗m−s−1

)
(p−1)2

2

(
pm−2 − ϵ

√
p∗m+s−3

)
pm−s−1

(p−1)
2

(
(p− 1)pm−2 + 2ϵ

√
p∗m+s−3

)
( p−1

2
)
(
pm−s−1 + ϵ(−1)m

√
p∗m−s−1

)
(p−1)

2

(
(p− 1)pm−2 + ϵ

√
p∗m+s−3

)
pm−s−1(p− 1)

(p−1)2

2
pm−2 − ϵ

√
p∗m+s−3 (p−1)2

2

(
pm−s−1 + ϵ(−1)m

√
p∗m−s−1

)

Example 6. Let f(x) = Tr3
6

3 (ζx4 + ζ27x2), where ζ is a generator of F∗
36 = ⟨ζ⟩ for

ζ6+2ζ4+ζ2+2ζ+2 = 0. Then, f is a quadratic 1-plateaued unbalanced function in the
set WRP and for all β ∈ F36 , we have Wf (β) ∈ {0, 54ξ3+27,−27ξ3−54,−27ξ3+27}
with ϵ = −1. Then,
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� the code CDsq in Theorem 7 is a self-orthogonal ternary linear [270, 7, 162] code with
weight enumerator 1 + 80y162 + 180y171 + 1674y180 + 160y189 + 90y198 + 2y270,

� the code CDsq in Theorem 8 is a self-orthogonal ternary linear [243, 7, 144] code with
weight enumerator 1 + 81y144 + 180y153 + 1671y162 + 162y171 + 90y180 + 2y243,

� the code CDnsq in Theorem 9 is a self-orthogonal ternary linear [216, 7, 126] code
with weight enumerator 1+72y126 +160y135 +1728y144 +144y153 +80y162 +2y216,

� the code CDnsq in Theorem 10 is a self-orthogonal ternary linear [243, 7, 144] code
with weight enumerator 1+72y144 +162y153 +1725y162 +144y171 +81y180 +2y243.
They are verified by the Sage program.

In particular, when p = 3, we can obtain the following ternary five-weight and
six-weight linear codes from weakly regular plateaued ternary functions.
Corollary 1. Let p = 3 and m+ s be an integer. Let f ∈ WRP and ϵ be the sign of
the Walsh transform of f . Let Df = {x ∈ F3m : f(x) + a = 0} for a ∈ F∗

3. Then, we
have the following ternary codes over F3.

� If m + s ≥ 6 is even, then the code CDf
is a five-weight ternary self-orthogonal

[n,m + 1,min{2 · 3m−2, 2 · 3m−2 + 2ϵ
√
−3

m+s−2}] code, and C⊥
Df

is a dual [n, n −
m− 1, 3] code over F3, where n = 3m−1 + ϵ(−3)

m+s−2
2 . This code is a ternary case

of the code proposed in Theorem 5. The Hamming weights and weight distributions
follow directly from Table 4.

� If m+ s ≥ 5 is odd, then the code CDf
is a six-weight ternary

[n,m+ 1,min{2 · 3m−2, 2 · 3m−2 + 4ϵη0(a)
√
−3

m+s−3}]

self-orthogonal code, and C
⊥
Df

is a dual [n, n −m − 1, 3] code over F3, where n =

3m−1−η0(a)ϵ(−3)
m+s−1

2 . This code is a ternary case of the code proposed in Theorem
7 and Theorem 9 when a = −1 and a = 1, respectively. The Hamming weights and
weight distributions follow directly from Tables 7 and 11.

Corollary 2. Let p = 3 and m + s be an integer. Let f ∈ WRPB and ϵ be the sign
of the Walsh transform of f . Let Df = {x ∈ F3m : f(x) + a = 0} for a ∈ F∗

3. Then,
we have the following ternary codes over F3.

� If m+s ≥ 6 is even, then the code CDf
is a five-weight ternary [3m−1,m+1, d] self-

orthogonal code, where d = min{2 · 3m−2 − 4ϵ
√
−3

m+s−4
, 2 · 3m−2 +2ϵ

√
−3

m+s−4}.
This code is a ternary case of the code proposed in Theorem 6. Then, the Hamming

weights and weight distributions follow directly from Table 5. Moreover, C
⊥
Df

is a

dual [3m−1, 3m−1 −m− 1, 2] code over F3.
� If m+ s ≥ 5 is odd, then the code CDf

is a six-weight ternary [3m−1,m+1,min{2 ·
3m−2±ϵ

√
−3

m+s−3}] self-orthogonal code and C
⊥
Df

is a dual [3m−1, 3m−1−m−1, 2]
code over F3. This code is a ternary case of the code proposed in Theorem 8 and
Theorem 10 when a = −1 and a = 1, respectively. The Hamming weights and weight
distributions follow directly from Tables 9 and 13.
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Remark 3. Corollary 1 (resp. Corollary 2) is an extention of [18, Theorems 1 and
2] for weakly regular plateaued unbalanced (resp. balanced) ternary functions.

We now assume that f is a weakly regular bent function in the defining sets Dsq

and Dnsq. In the following corollary, we present new families of p-ary linear codes (and
also, ternary self-orthogonal codes) derived from weakly regular bent functions.
Corollary 3. Let f ∈ RF for s = 0.

� The code CDsq
in Theorem 5 is a six-weight linear [n,m+ 1] code and C

⊥
Dsq

is a

dual [n, n−m− 1, 3] code over Fp, where n = (p−1
2 )

(
pm−1 − ϵη0(−1)

√
p∗

m−2
)
. In

particular, CDsq is a five-weight ternary self-orthogonal code over F3. The Hamming
weights and weight distributions follow directly from Table 4 when s = 0.

� The code CDsq in Theorem 7 is a six-weight linear [n,m+ 1] code, and C
⊥
Dsq

is a dual

[n, n−m− 1, 3] code over Fp, where n = (p−1
2 )

(
pm−1 + ϵ

√
p∗

m−1
)
. In particular,

CDsq
is a five-weight ternary self-orthogonal code over F3. The Hamming weights

and weight distributions follow directly from Tables 6 and 7 when s = 0.

� The code CDnsq
in Theorem 9 is a six-weight linear [n,m+ 1]code, and C

⊥
Dnsq

is

a dual [n, n−m− 1, 3] code over Fp, where n = (p−1
2 )(pm−1 − ϵ

√
p∗

m−1
). In par-

ticular, CDnsq is a five-weight ternary self-orthogonal code over F3. The Hamming
weights and weight distributions follow directly from Tables 10 and 11 when s = 0.

6 Ternary LCD codes from self-orthogonal codes

In this section, we construct new families of ternary LCD codes from the constructed
self-orthogonal codes.

Let f : Fpm → Fp. For a ∈ Fp, define the following defining set

Df = {x ∈ Fpm : f(x) + a = 0},

where f ∈ WRP or f ∈ WRPB. Let Df = {d1, d2, ..., dn}. The generator matrix of
the code CDf

defined in (1) is given in the following lemma.

Lemma 18. Let CDf
be defined as in (1) and F∗

pm = ⟨α⟩. Then, a generator matrix

of CDf
is given by

G =



Trp
m

p (α0d1) Trp
m

p (α0d2) . . . Trp
m

p (α0dn)

Trp
m

p (α1d1) Trp
m

p (α1d2) . . . Trp
m

p (α1dn)
. . .
. . .
. . .

Trp
m

p (αm−1d1) Trp
m

p (αm−1d2) . . . Trp
m

p (αm−1dn)
1 1 . . . 1


.

Proof. We know that {α0, α1, ..., αm−1} form a basis of Fpm over Fp. Then, the
generator matrix G follows from the definition of the augmented code CDf

.
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Proposition 1. Let p = 3 and m + s ≥ 6 be even. Let f ∈ WRP and ϵ be the sign
of the Walsh transform of f . Let a ∈ F3 and Df = {x ∈ F3m : f(x) = a}. Let CDf

be
defined as in (1) and its generator matrix G is given in Lemma 18.

� If a = 0, then the matrix G = [I : G] generates a ternary LCD code C with param-
eters[
1
3

(
3m + 2ϵ

√
−3

m+s
)
+m+ 1,m+ 1, d ≥ 1 + min

{
2 · 3m−2, 23

(
3m−1 + ϵ(−3)

m+s
2

)}]
.

� If a ∈ F∗
3, then the matrix G = [I : G] generates a ternary LCD code C with

parameters[
3m−1 + ϵ(−3)

m+s−2
2 +m+ 1,m+ 1, d ≥ 1 +min{2 · 3m−2, 2 · (3m−2 + ϵ(−3)

m+s−2
2 )}

]
Besides, C⊥ is a ternary dual

[
3m−1 + ϵ(−3)

m+s−2
2 +m+ 1, 3m−1 + ϵ(−3)

m+s−2
2 , 3

]
LCD code which is at least almost optimal code according to the sphere-packing
bound.

Proof. The proof can proceed using the same argument given in the proof of [18,
Theorem 7]. The desired conclusion follows from Theorems 1 and 5.

Proposition 2. Let m + s ≥ 6 be even. Let f ∈ WRPB and ϵ be the sign of the
Walsh transform of f . Let a ∈ F3 and Df = {x ∈ F3m : f(x) = a}. Let CDf

be
defined as in (1) and its generator matrix G is given in Lemma 18. Then, the matrix
G = [I : G] generates a ternary LCD code C with parameters[
3m−1 +m+ 1,m+ 1, d ≥ 1 +min{2 · 3m−2 + 2ϵ(−3)

m+s−4
2 , 2 · (3m−2 − 2ϵ(−3)

m+s−4
2 )}

]
Proof. By considering Theorems 2 and 6, the proof can proceed using the same
argument given in the proof of [18, Theorem 7].

Proposition 3. Let m+s ≥ 5 be odd. Let f ∈ WRP or f ∈ WRPB and ϵ be the sign
of the Walsh transform of f . Let Df = {x ∈ F3m : f(x) = 0}. Let CDf

be defined as

in (1) and its generator matrix G is given in Lemma 18. Then, the matrix G = [I : G]
generates a ternary LCD code C with parameters[

3m−1 +m+ 1,m+ 1, d ≥ 1min

{
2

9

(
3m ± ϵ

√
−3

m+s+1
)}]

.

Proof. Because of Theorem 3, the proof can proceed using the same arguments given
in the proof of [18, Theorem 7].

Proposition 4. Let m+ s ≥ 5 be odd. Let f ∈ WRP and ϵ be the sign of the Walsh
transform of f .

� Let Dsq be defined as in (4) and CDsq be defined as in (1). The generator matrix

G of the code is given in Lemma 18. Then, the matrix G = [I : G] generates a
ternary LCD code C with parameters[
3m−1 + ϵ

√
−3

m+s−1
+m+ 1,m+ 1, d ≥ 1 + min

{
2 · 3m−2, 2 · 3m−2 − 4ϵ

√
−3

m+s−1
}]

.

� Let Dnsq be defined as in (4) and CDsq
be defined as in (1). The generator matrix

G of the code is given in Lemma 18. Then, the matrix G = [I : G] generates a
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ternary LCD code C with parameters[
3m−1 + ϵ

√
−3

m+s−1
+m+ 1,m+ 1, d ≥ 1 + min

{
2 · 3m−2, 2 · 3m−2 + 4ϵ

√
−3

m+s−1
}]

.

Proof. In view of Theorems 7 and 9, the proof can proceed using the same argument
given in the proof of [18, Theorem 7].

Proposition 5. Let m + s ≥ 5 be odd. Let f ∈ WRPB and ϵ be the sign of the
Walsh transform of f . Let Dsq and Dnsq be defined as in (4). Let CDf

be defined as

in (1) and its generator matrix G is given in Lemma 18. Then, the matrix G = [I : G]
generates a ternary LCD code C with parameters[

3m−1 +m+ 1,m+ 1, d ≥ 1 +min{2 · (3m−2 ± ϵ(−3)
m+s−3

2 )}
]
.

Proof. In view of Theorems 8 and 10, the proof can proceed using the same argument
given in the proof of [18, Theorem 7].

7 Concluding Remarks

We generalize the recent construction method introduced by Heng et al. [18] for weakly
regular plateaued unbalanced (resp. balanced) functions. We construct new families
of linear codes with a few weights from weakly regular plateaued and bent functions
over Fp for any odd prime p. The contributions of the paper are listed below.

� In Theorems 1, 2, 3, 5, 6, 7, 8, 9 and 10, we present new families of five-weight and six-
weight linear codes derived from weakly regular plateaued unbalanced and balanced
functions over Fp for any odd prime p. In particular, we provide new families of
ternary five-weight and six-weight self-orthogonal codes from these functions over
F3. Moreover, we introduce the parameters of the dual codes of the constructed
codes.

� In Corollaries 1 and 2, we extend [18, Theorems 1 and 2] given for weakly regular
bent ternary functions to weakly regular plateaued ternary functions.

� In Corollary 3, we present new families of six-weight p-ary linear codes derived from
weakly regular bent functions based on the defining sets Dsq and Dnsq. Moreover,
we present five-weight and six-weight ternary self-orthogonal codes derived from
weakly regular ternary bent functions over F3.

� In Propositions 1, 2, 3, 4 and 5, we construct infinite families of ternary LCD codes
from the constructed self-orthogonal codes. We observe that some constructed codes
are at least almost optimal codes according to the sphere-packing bound.
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