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The essential parameters of a resource-based carrying capacity assessment 1 

model: an Australian case study 2 

Abstract 3 

Carrying capacity assessments model a population’s potential self-sufficiency. A 4 

crucial first step in the development of such modelling is to examine the basic 5 

resource-based parameters defining the population’s production and consumption 6 

habits. These parameters include basic human needs such as food, water, shelter and 7 

energy together with climatic, environmental and behavioural characteristics. Each of 8 

these parameters imparts land-usage requirements in different ways and varied 9 

degrees so their incorporation into carrying capacity modelling also differs. Given that 10 

the availability and values of production parameters may differ between locations, no 11 

two carrying capacity models are likely to be exactly alike. However, the essential 12 

parameters themselves can remain consistent so one example, the Carrying Capacity 13 

Dashboard, is offered as a case study to highlight one way in which these parameters 14 

are utilised. While examples exist of findings made from carrying capacity assessment 15 

modelling, to date, guidelines for replication of such studies in other regions and 16 

scales have largely been overlooked. This paper addresses such shortcomings by 17 

describing a process for the inclusion and calibration of the most important resource-18 

based parameters in a way that could be repeated elsewhere. 19 
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1. Introduction 27 

Carrying capacity assessment, as a modelling tool for localised human resource self-28 

sufficiency, has generally been overshadowed by its global variant, Ecological 29 

Footprint analysis. Given the globalised nature of modern trade, proponents of the 30 

Ecological Footprint approach argue that this analysis is a more accurate 31 

representation of existing circumstances (Wackernagel, 1994) where the geographic 32 

scale of consumption is variable while the global scale of production is usually fixed 33 

(Global Footprint Network, 2012). Recent community-led resurgence in the relevance 34 

of localised self-sufficiency (Holmgren, 2002; Peters et al., 2009; Hopkins, 2011) has 35 

seen some response from academia and government departments with recent studies 36 

including a report on the self-sufficiency of Hawaii County (Melrose and Delepart, 37 

2012) and a comprehensive modelling of the agricultural carrying capacity of New 38 

York State (Peters et al., 2007). Adding to this renewed interest in carrying capacity 39 

modelling is the release of an online assessment tool for the Australian context, the 40 

Carrying Capacity Dashboard (http://dashboard.carryingcapacity.com.au/) (Lane, 41 

2012). 42 

The current global system of trade makes estimates of localised carrying capacity 43 

more complicated when production and/or consumption of any particular resource 44 

occur outside any localised boundary (Whyte and Beuret, 2004). Trade between 45 

different locations is actually an anathema to carrying capacity assessment at a 46 

theoretical level, given that carrying capacity estimates the productive potential of the 47 

landscape within a certain border at the exclusion of the land outside the border 48 
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(Fearnside, 1986). However, from a practical perspective, populations have 49 

historically been inclined to trade a certain amount of material goods with others as a 50 

way of sharing any internal surplus and making up for shortfalls (Cohen, 1995). As 51 

such, even though the focus of carrying capacity models is generally local, it is also 52 

important that they address the issue of trade by finding ways to incorporate the extent 53 

and impact of imports and exports between otherwise notionally self-sufficient 54 

regions. 55 

Carrying capacity models are the primary vehicle for the estimation of a population’s 56 

self-sufficiency. From a resource perspective, the most important parameters 57 

determining carrying capacity are basic human needs essential for a population’s 58 

physical survival including food (Hopfenberg and Pimentel, 2001), water, shelter and 59 

energy. Each of these parameters imparts land-usage requirements in different ways 60 

so their incorporation into carrying capacity modelling also differs. Additionally, the 61 

integration of these parameters is dependent on data availability – a factor which may 62 

differ from one location to the next. Consequently, while the basic structure of 63 

resource-based carrying capacity models may remain consistent between studies, no 64 

two approaches are likely to be exactly alike. A case study approach to the question of 65 

optimum parameter integration is thus a useful way in which to highlight parameter 66 

integration as it provides a contextualised example of the essential concepts. This 67 

paper describes a process for the inclusion and calibration of the most important 68 

resource-based parameters in a way that could potentially be replicated by other 69 

researchers in other locations. 70 

1.1 Why resource-based? 71 

Carrying capacity parameters are determined by the constraints by which populations 72 

are limited. These constraints may potentially be biophysically orientated such as 73 

resource needs and environmental impacts, or can also be societally-focused (Lane, 74 
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2010). Viewed in isolation, the potential determinants of human carrying capacity 75 

could be analogous to Liebig’s Law of the Minimum (Cohen, 1995). Liebig asserted 76 

that in agriculture, under steady-state conditions, a species’ population size is 77 

constrained not by the total quantity of resources available, but by the scarcest 78 

resource. Relying solely on one factor is likely to offer only limited reliability as 79 

Liebig’s Law does not adequately accommodate fluctuating environments, 80 

interactions amongst inputs, proportional relationships between populations and 81 

resources, and differing requirements of various populations (Cohen, 1995). 82 

Consequently, the determination of human carrying capacity necessitates the inclusion 83 

of an array of parameters (Fearnside, 1986). If all potential resources, impacts and 84 

societal constraints are to be incorporated into a carrying capacity model, the sheer 85 

size and complexity of the enterprise may render it beyond the scope of most projects. 86 

Consequently, a strategy for the prioritisation of some parameters over others is 87 

required. 88 

One way by which to ascertain priority in the importance of carrying capacity 89 

modelling parameters is to ascribe them a chronological ordering. The pursuit of 90 

cultural endeavours described by Hardin (1986) is dependent on favourable 91 

biophysical conditions because without a healthy environment and adequate basic 92 

resources such as food and water, the inevitable poor-health of the population is likely 93 

to preclude such activity. Thus, it is possible to deduce that biophysical constraints 94 

have a higher chronological priority than societal aspirations. There are two forms of 95 

biophysical constraints: resource requirements and environmental impacts (Lane, 96 

2010). The set of parameters related to resource requirements takes precedence over 97 

impacts because the degree of impact is often dictated by the amount of resources 98 

utilised. In a closed system (which carrying capacity assessment implies) there is a 99 

linear progression from resource production to resource usage (consumption) to 100 
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resource assimilation (impacts and waste). Notwithstanding extreme environmentally 101 

destructive behaviour, the amount of resource assimilation is dictated by the amount 102 

of resources produced. The primary focus in this paper is placed on resource-based 103 

carrying capacity assessment modelling, with the majority of the parameters of 104 

Carrying Capacity Dashboard reflecting this bias. 105 

2. Method 106 

This paper will describe the parameters necessary for the development of Australian 107 

resource-based carrying capacity assessment tools by using the example of the 108 

Carrying Capacity Dashboard. Despite limiting the scope of this analysis to a 109 

resource-orientation, the breadth of potential parameters for subsequent modelling is 110 

still significant. To simplify a complex array of components, modelling for the 111 

Dashboard is categorised under five main headings: scalar, land-use, resource-use, 112 

temporal and population. The scalar and land-use categories are both spatially 113 

derived, the resource and population parameters relate to societal characteristics and 114 

the temporal parameters affect potential future time-frames. 115 

2.1 Scalar parameters 116 

Carrying capacity assessment, by definition, necessitates the delineation of 117 

geographic boundaries within which the population is relatively self-reliant for their 118 

resources. Politically-dictated delineation is a common method of achieving such 119 

small-scale boundaries, with the carrying capacity modelling of the Douglas 120 

(Banfield, 2000) and Noosa Shires (Summers, 2004) highlighting this approach. 121 

Politically defined boundaries are susceptible to alteration, complicating future 122 

analysis (Lane, 2010) and may not define areas of land best suited to supporting a 123 

relatively self-sufficient population. Consequently, topographically defined 124 
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boundaries are more likely to offer long-term and practical landscape delineation. In 125 

Australia, catchment areas defined by watersheds are being recognized as useful 126 

divisions of the landscape, particularly in addressing land degradation problems 127 

(Williams and Walcott, 1998). 128 

While aiming to provide modelling at a number of concurrent geographic scales, 129 

ultimately, the key determinant for landscape boundary delineation for the Dashboard 130 

model was the availability of Australian Bureau of Statistics (ABS) agricultural yield 131 

data (Australian Bureau of Statistics, 2006b). Given that this data is pivotal in the 132 

estimation of carrying capacity, the Dashboard’s scale of analysis was matched to that 133 

of the ABS datasets. Currently ABS agricultural production data is collected by a 134 

nation-wide census (Australian Bureau of Statistics, 2008a) every five years (e.g. 135 

2001, 2006, and 2011) while representative sample surveys (Australian Bureau of 136 

Statistics, 2011b) are used on a yearly basis between censuses. Regional Natural 137 

Resource Management Area (NRM) data is a recent addition to ABS’s datasets. 138 

Although state and territory boundaries influence NRM delineation, they are generally 139 

based on catchments or bioregions, so are well suited to carrying capacity analysis. 140 

The 52 NRMs, together with seven states and Australia as a whole make up the 60 141 

zones incorporated into Dashboard modelling (Figure 1). 142 

In accord with Peters et al. (2007) who utilised five years of agricultural data for their 143 

carrying capacity assessment of New York State (1999 – 2003), modelling for the 144 

Dashboard used five years of ABS agricultural data (2006-2010) in order to derive 145 

average yield values for each crop. Given that yield data can fluctuate from year to 146 

year, the approach of Peters et al. (2007) to average a number of years of production 147 

provided a reliable methodology for accommodating such variability. However, it is 148 

important that the years used to gauge this average are in fact indicative of likely 149 

future yields. Given that climatic conditions, particularly rainfall, are key 150 
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determinants of agricultural production (Wimalasuriya et al., 2008), an analysis of 151 

climatic data was undertaken for the years 2006 to 2010 to ascertain if they were 152 

typical. Records from the Australian Bureau of Meteorology (Table 1) show that this 153 

period was in fact reasonably representative of the long-term average national rainfall. 154 

The array of yield data, primarily from ABS sources, for the 60 zones and 134 155 

resource commodities (e.g. apples, wheat, peanuts) resulted in a corresponding 8,040 156 

pieces of 5-year average yield data, all calibrated to a common measure (tonnes per 157 

hectare). 158 

2.2 Land-use parameters 159 

Land availability according to its usage type is a key determinant of a region’s 160 

carrying capacity. The Dashboard modelling accommodates five types of land-use: 161 

cropping, pasture, non-agricultural,1 infrastructure and nature reserve. These land 162 

types are generally in accord with Peters’ et al. (2007) approach which relies on three 163 

categories: land usable for any crop, land limited to perennial crops / pasture and land 164 

limited to pasture. Recent versions of Ecological Footprint models (Borucke et al., 165 

2011) also use a similar categorisation of land-usage. For instance the Global 166 

Footprint Network (2012) incorporates five land-use categories: cropland, grazing 167 

land, fishing grounds, forest land, carbon footprint and built-up land. Compared to the 168 

Dashboard, these land-types generally align with cropping, pasture, non-agricultural 169 

and infrastructure land. At present the Dashboard includes only farmed rather than 170 

oceanic fish-grounds and land ascribed to carbon footprint by the Global Footprint 171 

Network would fall under one of the other Dashboard categories such as cropping 172 

land (in the case of biofuel production) or non-agricultural land (for timber 173 

                                                 
1 Non-agricultural land was considered to be the land remaining after other categories were allocated so 
includes unprotected bushland and forestry areas.  
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production). While the Dashboard provides default land area amounts according to the 174 

five types of usage for all 60 zones, users can also adjust these values manually. 175 

The data used to inform the Dashboard land-use parameters was largely drawn from 176 

ABS sources (2008b; c; 2010a; 2011a). While ABS agricultural commodity datasets 177 

provided sufficient information for cropping and pasture land, data for areas of nature 178 

reserve and infrastructure land were not included in this dataset so had to be derived 179 

from elsewhere. For instance, nature reserve areas were sourced from the Australian 180 

Collaborative Land Use and Management Program (2009) (ACLUMP) NRM datasets  181 

while land used for infrastructure was derived from ACLUMP (2010) national land-182 

use datasets. The infrastructure land area amounts were derived only from national 183 

data because insufficient detail was given in the regional data. A total national figure 184 

was achieved through summation of the data for manufacturing, industrial, residential, 185 

services, utilities, transport, communication, mining and waste treatment. This value 186 

was then divided by the Australian population for a per person infrastructural land-use 187 

figure of 1606m2. This value includes all residential land (963m2 per person2) even 188 

though much of this land could potentially serve a productive purpose. To calculate 189 

the amount of residential land that could have productive potential we replaced the 190 

infrastructural residential land value with an estimate of the building footprint. Of the 191 

17 Australian suburbs assessed by Hall (2008), an estimate of 223m2 was made for 192 

the average residential dwelling footprint. According to Moroney and Jones (2006) 193 

the average paved area within residential lots is about 49m2, giving a total of 272m2 194 

for the average residential land per lot alienated from productive usage. The ABS 195 

housing data (Australian Bureau of Statistics, 2008d) reports that (on average) 2.5 196 

people live in each dwelling. By apportioning the amount of single storey and 197 

multistorey dwellings according to the same data, a total residential footprint of 89m2 198 

                                                 
2 This 963m2 per person (residential land-use) reflects a large amount of land held in rural or semi-rural 
properties which are not considered farmland. 
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per person was derived, which, when combined with the other infrastructure data  199 

(Table 2) generates a total land-use area for infrastructure of 732m2. 200 

Based on Dashboard modelling, the land-use categories which significantly affect 201 

population carrying capacity are cropping and pasture land.  However, an analysis of 202 

the two main sources of data (Australian Bureau of Statistics, 2008b; c; 2009a; 203 

Australian Collaborative Land Use and Management Program, 2009; Australian 204 

Bureau of Statistics, 2010a; 2011a), reveal discrepancies between these two sets 205 

which are largely attributed to differing methodologies for the collection of this data 206 

(Brough, 2012). For instance, the ABS data is based on surveys of only some areas for 207 

four out of five years and then a census of the entire nation on the fifth year, whereby 208 

ACLUMP's data are derived every few years by combining land tenure and other 209 

types of land-use data, fine-scale satellite data and field data (ABARES, 2011b). 210 

Essentially, this means that the ABS relies on land-users themselves to self-report 211 

while the ACLUMP data is based on expert opinion. 212 

Comparisons of the land-use mapping systems reveal that both cropping land and 213 

pasture land are smaller in the ABS at the national scale (Table 3) and also generally 214 

in most NRM scales. Reasons for evident discrepancies between the ACLUMP and 215 

ABS datasets include changes in land-use over time, changes in boundaries and 216 

rotation of land-use between pasture, cropping and fallow. Ultimately the ABS set 217 

was integrated into Dashboard modelling in order to maintain consistency with the 218 

yield data because both datasets were sourced from the same Agricultural 219 

Commodities database.  220 

2.3 Resource-use parameters 221 

The Dashboard incorporates 17 different resource-usage parameters (Table 4), each 222 

affecting the population carrying capacity in different ways. The unit of measurement 223 
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is given as a percentage of an overall amount. This approach was employed to allow 224 

users to most easily understand the parameter amounts. For instance, it is anticipated 225 

that few people might be aware of the amount of red meat that any one diet might 226 

contain, but that it is much easier to understand that of all the meat eaten, a proportion 227 

could be either red or white. Generally, data is sourced for the parameters 228 

representing consumption habits (such as diet, activity levels and textile usage) at a 229 

national scale reflecting an Australia-wide cultural consistency. Alternatively, data for 230 

parameters with direct impact on a particular landscape such as climate variability and 231 

irrigation use, are sourced from as small a scale as possible, for maximum regional 232 

accuracy. In the case of biofuel and organic production, small-scale data was not 233 

available so a national and international scale was subsequently utilised. 234 

2.3.1 Climate variability 235 

A methodology for the incorporation of long-term climate variability was developed 236 

for the Dashboard which relies on historic yield variance for a selection of staple 237 

crops. The ABS (2009b) has recorded yields for wheat, oats and barley since 1861. 238 

Based on this historic data, an estimate of long-term production was made for likely 239 

timeframes ranging from 1 to 150 years (Figure 2). Consequently, the Dashboard’s 240 

Climate Variability parameter reduces carrying capacity by the percentage of 241 

anticipated production of the worst year within a given timeframe. For example, the 242 

lowest yields in 100 years for Queensland were 65% less than average, so the carrying 243 

capacity would reflect this lesser productivity. In this instance, it could be said that the 244 

carrying capacity estimate is anticipating a one in one hundred year event. The 245 

original data was only collected on a state-wide basis so all smaller NRM regions are 246 

estimates only, based on the state-based data. This extrapolation potentially limits the 247 

accuracy of results at the regional scale but was deemed necessary due to the lack of 248 

small-scale data. 249 



11 

2.3.2 Food - amount 250 

While carrying capacity modelling implies complete resource self-reliance within any 251 

one region, this ideal does not always occur in a real-world setting because a 252 

population is rarely likely to be completely isolated from its neighbours suggesting 253 

that some form of trading may occur. For this reason, the Dashboard gives users the 254 

ability to account for some degree of importing and exporting of resources. In the case 255 

of food, first an anticipated amount of food consumption for the population is 256 

established and then users can stipulate whether they anticipate the population to 257 

produce more of less of this consumed amount. A choice of 0% thus suggests that all 258 

food is imported while 100% indicates that all food produced is consumed (complete 259 

self-sufficiency) and 500% (the maximum allowable in the Dashboard) suggests that 260 

the majority of food produced within the region is exported. 261 

Modelling for the dietary components of the Dashboard was based on a recent study 262 

by the National Health and Medical Research Council (NHMRC) which developed a 263 

series of ideal diets for the Australian population to guide healthy, culturally and 264 

environmentally acceptable eating patterns (Byron et al., 2011). While Dashboard 265 

modelling aspires to similar aims, some aspects of the NHMRC data needed to be 266 

altered in order for it to be utilised effectively within a new context. For example, 267 

their diet modelling presented a variety of serving sizes for various age-groups where 268 

Dashboard modelling required a dietary structure for the entire population. 269 

Consequently, ABS demographic data (Australian Bureau of Statistics, 2010b) was 270 

used to match the amounts of foods suggested for each NHMRC age group against the 271 

proportion of people in that age group within the national population to derive a 272 

particular diet for the whole Australian demographic profile (Appendix A). Another 273 

mismatch between NHMRC modelling and Dashboard aims is its entire reliance on 274 

ideal diets rather than existing Australian eating habits, so it was necessary to source 275 
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further data from an ABS study which examined the Australian diet (Australian 276 

Bureau of Statistics, 1995). In total, over 700 different food items such as six types of 277 

apples, 40 cuts of beef and over 150 types of vegetables were included in the 278 

Dashboard modelling. 279 

2.3.3 Meat-eggs 280 

Carrying capacity assessment models conducted by other researchers (Peters et al., 281 

2007; Fairlie, 2010) have consistently found that animal products generally have a 282 

significant impact on carrying capacity outcomes so it was deemed important to 283 

address this aspect in a detailed manner.  284 

The Meat-eggs parameter adjusts dietary protein sources from animal-based products 285 

to plant-based products while maintaining a similar level of both calories and protein 286 

throughout. This parameter alters the proportion of meat and eggs consumption in the 287 

population’s diet from 0% to 15% with zero representing a meat product-free vegan 288 

diet and 15% representing a high meat-content diet. The other key points in this range 289 

are 13% representing an estimate of current meat-egg consumption, 7.5% representing 290 

a healthy diet as modelled by the NHMRC (Byron et al., 2011), 2.5% representing a 291 

lacto-ovo vegetarian diet (vegetarian diet with no meat but including eggs and dairy) 292 

(Byron et al., 2011) and 1.5% representing a ovo-vegetarian diet (no meat or dairy but 293 

including eggs). A different study, the ABS National Nutrition Survey (Australian 294 

Bureau of Statistics, 1995), was utilised to reflect standard Australian dietary 295 

consumption patterns (13% meat-eggs diet). All other diets in the meat-eggs 296 

parameter range were extrapolated from the NHMRC and ABS research. This was 297 

achieved by first determining the percentage of meat and eggs that each of these three 298 

diets possessed, then adding or reducing the meat and eggs in alternate diets to arrive 299 

at the remaining 28 diets (there are 31 diets in total – a range of 0% to 15% with 0.5% 300 
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increments). In order to achieve a balanced dietary intake across all diets a similar 301 

amount of calories, protein, carbohydrates and fat (Food Standards Australia and New 302 

Zealand, 2008) was maintained throughout all diets considered healthy by adjusting 303 

various food components, predominantly the higher protein foods such as legumes, 304 

nuts and seeds, dairy and cereals. For diets with more than 7.5% meat and eggs, the 305 

levels of protein, carbohydrates and fat may not be considered as healthy because they 306 

reflect average Australian consumption patterns rather than recommended intake. In 307 

order to balance the diet, the amount of dairy varies considerably, in accord with 308 

extrapolations from the NHMRC diets. It should also be noted that as meat, eggs and 309 

dairy decrease in the diet, nuts and legumes increase considerably while vegetables 310 

and grains increase to a lesser extent (Figure 3). 311 

2.3.4 Red meat 312 

The Red meat category allows Dashboard users to regulate the proportion of red and 313 

white meat in the average diet of the population. Regardless of choices of red or white 314 

meat, the amount of meat remains the same (the amount of meat is altered in the 315 

meat-eggs parameter), only the proportion of the source of meat changes. Key points 316 

in this range are the 64% amount, marking current red meat consumption (Australian 317 

Bureau of Statistics, 1995) as well and the 48% amount, representing the consumption 318 

level recommended by the NHMRC (Byron et al., 2011). 319 

2.3.5 Activity levels 320 

The activity level of the population affects the amount of food that the population 321 

needs to consume because higher levels of activity require more energy and more 322 

calories (Byron et al., 2011). This parameter thus reflects the average level of physical 323 

activity for the population. It is based on three diets developed by the NHMRC 324 
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(Byron et al., 2011) for sedentary, moderate and high physical activity levels ranging 325 

from 1828 to 2760 kilocalories per person per day. The high level of physical activity 326 

is equated with more than 90 minutes of daily strenuous activity; the moderate level 327 

of physical activity is the equivalent of 30-90 minutes of daily strenuous activity; and 328 

a sedentary level of physical activity is less than 30 minutes of daily strenuous activity 329 

(Tontisirin and Haen, 2004). 330 

The calculation of a population’s caloric intake is a common carrying capacity 331 

assessment method in determining overall food demand (Gutteridge, 2005) and varies 332 

not only across diets and activity levels but also due to cultural expectations. Kendall 333 

and Pimentel (1994) estimated that in 1994 an average American ate 771kg of food 334 

per year while the equivalent individual in China consumed only 479kg per year. 335 

Given such discrepancies in caloric intake, it is suggested that carrying capacity 336 

modelling based on actual diets will offer more accurate results that those merely 337 

relying on an overall estimate of food weight or caloric value. 338 

2.3.6 Avoidable waste 339 

The Dashboard uses the same approach as Peters et al. (2005) and assesses six points 340 

in the food service system where wastage can occur and estimated the likely weight 341 

loss in all 746 food items. The six types of losses are (in chronological order from 342 

production to consumption) primary to retail loss, processing loss, retail loss, 343 

consumer loss, cooking loss and inedible portions loss. There is potentially another 344 

category that could be described as farming production loss, which would include all 345 

farm-based impacts on productive yield such as climate, pests, weeds, handling and 346 

storage losses. The yield data collected by agencies such as the ABS (Australian 347 

Bureau of Statistics, 2011a) already accounts for these losses in that agricultural 348 
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production is calculated at the farm gate (i.e. the amount of produce leaving the farm) 349 

rather than at the paddock level.  350 

Primary to retail losses refer to the reduction in produce that occurs between the farm 351 

gate and the retail outlet, including transportation, storage and handling losses. No 352 

detailed analysis of food losses within the Australian context was found for this part 353 

of the food chain. However, a UN study of food losses (Gustavsson, 2011) suggests 354 

that North America, Australia and New Zealand might have similar wastage patterns. 355 

The main source of data was therefore drawn from a United States Department of 356 

Agriculture (USDA) report (Buzby and Wells, 2010).   357 

The majority of the processing losses incorporated into the Dashboard modelling 358 

were calculated specifically for this research by referencing a wide variety of relevant 359 

sources (Appendix B). For example, for the calculation of losses in the processing of 360 

the six types of wheat produced in Australia, extraction rates were averaged across 361 

Graincorp’s seven grain refineries (Graincorp, 2010). Another example is the 67 types 362 

of breakfast cereal incorporated into the Dashboard. In this instance, each cereal was 363 

examined for their constituent components (e.g. wheat, corn, sugar etc.) and an 364 

estimate of both the proportion of each component and their processing yield was 365 

made. 366 

Retail losses refer to the food that is wasted between the arrival of products at retail 367 

outlets and its sale to customers. In the absence of detailed Australian data in this 368 

topic, Buzby’s U.S. research (Buzby and Wells, 2010) was again employed. Buzby 369 

found that losses could be expected for all retail foods but that, not surprisingly, the 370 

more fragile and perishable foods such as paw paw (with a loss of 55%) had higher 371 

rates of loss than the non-perishable items such as nuts (with a loss of 6%). The 372 

average loss across all foods incorporated into the Dashboard is 10%. 373 
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Consumer losses occur both in households and food-service establishments such as 374 

restaurants and is characterised by wastage in storage, preparation, and uneaten 375 

portions. In the absence of detailed Australian data, U.S. data was again used. The 376 

report by Muth et al. (2011) commissioned by the USDA informed most of the 377 

consumer losses for foods in the Dashboard. Findings ranged from a 50% loss for 378 

Swiss cheese to an 8% loss for parmesan cheese. The average consumer loss across 379 

all foods incorporated into the Dashboard is 22%. 380 

Cooking losses occur largely as a result of the reduction in the water content of foods 381 

once heated. Unlike consumer and retail losses, there is no tangible left-over portion 382 

that is discarded. Detailed data for cooking losses has been conducted in Australia by 383 

the Food Standards Australia and New Zealand so their Nutritional Database (Ausnut) 384 

(2008) was primarily used. Alternatively the U.S. studies by Kantor (1997) or 385 

Matthews and Garrison (1975) were also referenced. Examples of cooking losses 386 

include 39% for pork and 2% for eggs. 387 

The inedible portions loss represents a form of wastage that cannot be salvaged for 388 

human consumption, but reduces the weight of food items between production and 389 

consumption nevertheless. Examples include banana peel (35%), prawn heads and 390 

shells (57%) and apricot pips (6% loss).  391 

In total, the amount of avoidable waste currently generated in Australia as a 392 

proportion of all food produced is 12% but users have the ability to adjust this in a 393 

range from 0% to 20%.    394 

2.3.7 Recycling 395 

This parameter estimates resource usage when wastage from the avoidable waste 396 

parameter is recycled back into the food system, thus reducing overall food demand. 397 

It was identified that there are two ways in which to recycle this waste; as feed to 398 
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animals and as fertiliser (in the form of compost) for plants. Incorporating the 399 

recycling of food into fertiliser proved problematic because no data could be found 400 

directly linking food waste to compost quantities, nor compost fertiliser application 401 

amounts to crop yields. On the other hand, direct causal links between animal feed 402 

requirements and animal weight gain have been well documented as feed conversion 403 

ratios (FCR) (Westendorf, 2000). Consequently, only the aspect of animal feed was 404 

incorporated into the Dashboard, not compost.  405 

All edible waste including consumer, retail, processing and inedible portions are 406 

converted to FCRs in the recycling parameter under the assumption that it is evenly 407 

distributed to farm animals including pigs, chickens, ducks, turkeys, farmed fish and 408 

farmed seafood (Lane et al., 2013a). Consequently, an increase in this parameter 409 

generally improves carrying capacity by reducing the demand of other resources for 410 

the production of animal products.  411 

At present a negligible amount of food waste is recycled back into the Australian food 412 

system at a commercial level (Cozens, 2012) partly because of the health risks to 413 

animals (e.g. foot-and-mouth disease) and humans (e.g. mad cow disease) associated 414 

with recycling animal products. In the Dashboard, a range of 0% to 100% recycling is 415 

offered. The 100% figure represents the recycling of all the population’s scraps, 416 

offcuts and uneaten portions, as calculated in the avoidable waste parameter. 417 

2.3.8 Organic farming 418 

This parameter allows users to stipulate the percentage of organic farming carried out 419 

in any region as a proportion of all agricultural production. At present, just over 12 420 

million hectares of Australia’s agricultural land is under organic production 421 

(Kristiansen et al., 2010) (about 2%) slightly below the OECD average of 2.4% 422 

(Pillarisetti, 2002). While it was possible to find data on the prevalence of Australia-423 
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wide organic production, no data was available at smaller scales so for the purposes of 424 

the Dashboard, the national figure was assumed to also be representative of smaller 425 

areas.  426 

In the absence of locally available data, yield comparisons between organic and 427 

conventional agriculture from other countries was used to inform an estimate of 428 

Australian organic yields (Lane et al., 2013b). 429 

2.3.9 Irrigation 430 

This parameter allows users to adjust the percentage of irrigated farmland as a 431 

proportion of all farmland within a region. Irrigating crops can have a significant 432 

effect on production with Trewin and Banks (2006) estimating that irrigated farms 433 

generate, on average, 55% more output per farm than farms which do not irrigate. 434 

Ideally, the calculation of the effect of irrigation should occur on a crop by crop basis, 435 

but in the absence of such data an overall figure of 55% was applied to all regions. At 436 

present 0.5% of Australia’s farmland is irrigated (Australian Bureau of Statistics, 437 

2006a), but data for both state and NRM irrigated land areas are also publicly 438 

available so the Dashboard reflects regional variations in this regard. 439 

2.3.10 Liquid fuel 440 

The Liquid fuel and Biofuel parameters deal with a population’s consumption of 441 

energy. Energy is a master resource (Bradley and Fulmer, 2004) which underpins the 442 

effective production of other resources. While a full carrying capacity assessment 443 

might incorporate all aspects of a population’s energy production and consumption, 444 

the Dashboard only deals with liquid fuel (petroleum and biofuels) which is currently 445 

used predominantly for transportation (ABARES, 2010a) rather than the generation of 446 

electricity. This focus on liquid fuels has been driven by the fact that biofuels have a 447 
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direct impact on land usage which is the basis of carrying capacity modelling. On the 448 

other hand, the various current forms of electrical energy generation derived from 449 

coal, solar, wind and geothermal sources potentially have dual-use (e.g. wind turbines 450 

can be raised above farmland) and/or could have little influence on agricultural land 451 

(e.g. coal mines might be placed on poor-quality land), so are more difficult to assess. 452 

The Liquid fuel parameter allows Dashboard users to stipulate the amount of liquid 453 

fuel consumed by a population each year, calculated on a per person basis. A range of 454 

zero to 3000 litres is offered and users are informed that the current average 455 

Australian consumption rate is estimated to be 2520 litres per person (ABARES, 456 

2010a). This amount includes both personal usage (e.g. petrol used in individual’s 457 

cars) and industrial usage (e.g. diesel used in mining trucks but distributed over the 458 

entire population) and represents both petroleum and biofuels. This parameter gives 459 

users the ability to increase or decrease the societal-wide consumption of liquid fuels 460 

implying either a more profligate or energy-conservative approach. 461 

2.3.11 Biofuel 462 

This parameter allows users to alter the proportion of biofuel compared to petroleum 463 

used by the population. A user’s choice of 100% biofuel assumes that no conventional 464 

liquid fuel (petroleum) is consumed and users are informed that current Australian 465 

biofuel consumption is estimated to be 0.5% (ABARES, 2010a). While the previous 466 

parameter determines the amount of liquid fuel consumed, this parameter determines 467 

its source, thus offering users the ability to choose between renewable and non-468 

renewable transport fuels. As a user increases the proportion of biofuel in the model, 469 

more land is allocated to its production (e.g. from sugar cane, cereals and natural oils) 470 

rather than to human food production, thus generally reducing carrying capacity. 471 



20 

2.3.12 Textiles - amount 472 

The incorporation of textile usage into Dashboard modelling is similar in approach to 473 

that of liquid fuels: a per-person amount of resource consumption is established, then 474 

this amount is apportioned to various sources. The Textiles – amount parameter offers 475 

a range of zero to 30 kilograms, with 23 kilograms being the current average 476 

Australian consumption amount (Plastina, 2011). This amount includes both personal 477 

usage (e.g. clothing) and shared usage (e.g. office furnishings). 478 

Once the source of textile fibre is established (in the next two parameters), the amount 479 

of land required to produce the fibre (e.g. cotton from broadacre land-use and wool 480 

from pasture land) is then calculated based on yield data from ABS sources 481 

(Australian Bureau of Statistics, 2008b; c; 2009a; 2010a; 2011a). When incorporating 482 

the amount of fibre required for societal consumption, it was also necessary to 483 

account for wastage in the process of cleaning, spinning and manufacturing in much 484 

the same way as wastage is incorporated into the calculation of food consumption. 485 

2.3.13 Natural fibre 486 

This parameter gives users the opportunity to stipulate the degree to which the 487 

population’s textile usage is from natural or artificial sources. A user’s choice of 488 

100% natural fibre assumes that no synthetic fibre is consumed and users are 489 

informed that current Australian natural fibre consumption is estimated to be 50% 490 

(Plastina, 2011). 491 

2.3.14 Wool fibre 492 

This parameter separates the consumption of woollen textile consumption from cotton 493 

as a proportion of the natural fibre chosen by users in the previous parameter (Natural 494 

fibre). Even though flax (0.4%) and cellulose (4%) account for a minor proportion of 495 
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natural textile fibre (Plastina, 2011), the vast majority is either wool or cotton so this 496 

parameter just focuses on the proportion of wool and cotton in fibre consumption. 497 

Users are informed that current Australian wool consumption is estimated to be 12% 498 

of all natural fibre (Plastina, 2011). 499 

2.3.15 Timber 500 

The timber parameter accounts for the amount of timber consumed by the population 501 

each year, calculated on a per person basis. This amount includes both personal usage 502 

(e.g. timber-framed house, firewood (Driscoll et al., 2000)) and shared usage (e.g. 503 

commercial timber-framed buildings). Given the lack of regional data for timber 504 

production, national data is used for the Dashboard modelling. For instance, it was 505 

found that at present over 22 million cubic metres (ABARES, 2011a) of timber are 506 

consumed in Australia each year, representing about one cubic metre per person. 507 

Production (8.9 cubic metres per hectare of trees (West et al., 2008; ABARES, 508 

2011a)) and wastage (43% (ABARES, 2011a)) data are then applied to this 509 

consumption amount in order to determine a Dashboard land-usage figure for timber. 510 

The inclusion of timber into carrying capacity modelling presents certain challenges. 511 

For instance, timber offers a variety of different functions such as a material for 512 

construction, energy (firewood), stationary and various other household and industrial 513 

items, each with varied degrees of importance to human survival. For simplicity, 514 

modelling for the Dashboard did not separate any of these choices for users.  515 

Data availability was quite poor for timber production in Australia so in some cases 516 

local data was extrapolated to a national level (West et al., 2008).3 and in other cases, 517 

national data was also assumed to be indicative of regional conditions (ABARES, 518 

                                                 
3 An example of local data being extrapolated to a national level includes the firewood yield of 
Eucalyptus globulus plantations in the Murray-Darling basin. 
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2011a).4 Both of these assumptions leave a margin for error but until accurate 519 

localised data is collected for timber yields, this was the best compromise available. 520 

2.3.16 Infrastructure 521 

This parameter estimates the amount of land required for built infrastructure 522 

calculated on a per person basis. This amount includes both personal requirements 523 

(e.g. residential) and shared usage (e.g. land required for commercial, industrial, 524 

public service, recreational, defence, utilities, transportation-communication, mining, 525 

waste and water storage usage). The range offered in the infrastructure parameter is 526 

from zero to 2000 square metres and the model offers users two key options in this 527 

range: an estimated average Australian area for built-on private residential land of 730 528 

square metres (ABARES, 2010b) (excluding privately owned green space) and 1600 529 

square metres (ABARES, 2010b) as the average Australian estimate including all 530 

green space. 531 

2.3.17 Nature reserve 532 

This parameter allows Dashboard users to stipulate the percentage of protected land as 533 

a proportion of all land in any given region. Defaults are provided for all 60 regions as 534 

an indication of the existing amount of land set aside for conservation purposes 535 

(ABARES, 2010b). This is the only parameter that allows users to directly dictate the 536 

amount of land used for a particular purpose. All other parameters do so though the 537 

calculation of land requirements for certain activities such as a population’s diet or 538 

textile usage. The Nature reserve parameter, on the other hand, is not a reflection of 539 

societal need but rather of ecosystem requirements so no intermediate calculation is 540 

necessary. 541 

                                                 
4 An example of national data being used for regional conditions includes national sawn log production 
yields. 
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2.4 Temporal parameters 542 

A set of default resource parameter settings are offered to Dashboard users as a way 543 

to simplify initial choices and highlight short-term and potential long-term settings 544 

(Appendix C). The short-term defaults reflect current consumption and production 545 

estimates. However, the non-renewable resources that underpin our current lifestyle 546 

are by definition unsustainable so this configuration is titled short-term. Alternatively, 547 

another configuration of parameters reflecting potential resource constraints in the 548 

future is also offered as a long-term option. Each region has a different set of short-549 

term and long-term default figures but many individual figures are the same 550 

(reflecting a common Australian consumption pattern).  551 

While the estimation of short-term carrying capacity can be instructive for existing 552 

lifestyles, long-term carrying capacity assessments best predict sustainable societal 553 

behaviour. While Dashboard users can make their own predictions of potential future 554 

resource utilisation, it is anticipated that initially, they may be daunted by the number 555 

of parameters so a pre-determined set of choices are offered with a Long-term default 556 

option. These parameter settings aim to best predict a fossil-fuel free future but as 557 

with any future prediction, they are reliant on various assumptions (Lane et al., 558 

2013a), some of which could be seen as speculative. Consequently, the Dashboard 559 

also allows users to alter any of the long-term default figures to match their own 560 

expectations. 561 

2.5 Population parameters 562 

In Dashboard modelling, Australia’s population was not only re-apportioned 563 

according to its demographic profile (Appendix A), but also distributed into existing 564 

population numbers per zone. The national and state populations were readily sourced 565 

from ABS data (Australian Bureau of Statistics, 2011c), but the existing population 566 
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for each of the NRMs was predominantly sourced elsewhere (Robins and Dovers, 567 

2007). 568 

3. Results and discussion 569 

The Carrying Capacity Dashboard was released publicly online 570 

(http://dashboard.carryingcapacity.com.au/) on March 23, 2012 with an updated 571 

interface released on August 10, 2012 (Figure 4). Results from the short-term 572 

parameter settings show that according to the model, Australia at the national scale 573 

has a population carrying capacity of 40,450,144 people with the land required for 574 

food being 48.9%, biofuel 0.2%, textiles 2.2%, timber 1% and infrastructure 0.4% of 575 

all land. 576 

3.1 Critical analysis of Dashboard parameters 577 

A number of biophysical and societal constraints including water, food, energy, 578 

shelter, technology and trade have been incorporated into the Dashboard in a variety 579 

of ways. 580 

Dashboard modelling suggests that food production uses about half of all land under 581 

current Australian resource usage parameter settings, so represents the most important 582 

component of a carrying capacity model. An increase in food production, which 583 

involves a shifting of land use from other parameters to food production, will increase 584 

the carrying capacity, enabling population increases. The complexity of modern diets 585 

means that an array of foodstuffs are best incorporated into modelling and as Peters et 586 

al. (2007) point out, complete diets and food systems are preferable to analyses based 587 

merely on basic staples or caloric intake. Dashboard modelling initially analysed five 588 

key diets (Australian Bureau of Statistics, 1995; Byron et al., 2011) as anchor points 589 

for 93 complete diets with three levels of caloric intake. The Dashboard also builds on 590 
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Peters et al. (2007) work by incorporating new parameters such as recycling, animal 591 

products and red meat proportions and by offering user interaction in the choice of 592 

parameter settings. At present these food-related choices are limited to pre-determined 593 

diets but this feature has the potential to be further expanded in future.  594 

In Dashboard modelling, the irrigation parameter offers only a broad-brush approach 595 

with one Australia-wide estimate for maximum potential yield applied to all resource 596 

commodities. However, more detailed data highlighting differences in potential yield 597 

on a local food-by-food basis was not available at the time of modelling. Additionally, 598 

further research on the energy requirements of irrigation and subsequent knock-on 599 

carrying capacity impacts, would also improve this aspect of the modelling. For 600 

instance, if biofuel needed to be grown to fuel irrigation pumps, then this would 601 

reduce the amount of land available for crops, leading to a decrease in carrying 602 

capacity.  603 

In the Dashboard, the constraint of energy was restricted to liquid fuel and to a limited 604 

extent, firewood (as part of the timber parameter) because these aspects are directly 605 

affected by the availability of productive land within a carrying capacity model. The 606 

methodology for their inclusion, with one parameter representing the amount of fuel 607 

used and the other, a measure of the proportion of biofuel within the liquid fuel mix, 608 

successfully captured the degree to which renewable and non-renewable fuel usage 609 

affects carrying capacity. However, an effective method of including coal, gas, solar 610 

photo-voltaics, wind, geothermal and hydro-energy was not found at this stage, so 611 

could be something to consider for future models. Concerning the timber parameter, a 612 

potential improvement for a more detailed model might be to differentiate between 613 

timber for firewood and timber of other items because users may choose to adjust the 614 

consumption level of each of these aspects independently of the other. For instance, 615 

users may wish to assume that a future society may need to increase its energy use 616 
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from renewable sources such as timber, but decrease its use of construction materials. 617 

These materials such as concrete, steel, earth and brick are currently implicitly 618 

included in modelling by way of the land requirements for infrastructure (e.g. 619 

mining), but could potentially be made more explicit in the model. 620 

In a method similar to that of the biofuel parameter, the resources incorporated into 621 

Dashboard modelling for textile utilisation aims to highlight impacts of renewable and 622 

non-renewable resources. For instance, the first two textile parameters (amount and 623 

natural percentage) mirror the approach taken for biofuel – first a per person 624 

consumption level is established and then the proportion of natural and artificial 625 

components of that amount are given. The textiles category also offers a third choice 626 

which proportions amounts of wool and cotton within the natural fibre category. This 627 

is an important inclusion as these are the two most commonly used forms of natural 628 

fibre and because wool requires pasture land and cotton requires cropping land, they 629 

each affect carrying capacity in different ways depending on land availability within 630 

any region. The methodology used for this textile section thus successfully correlates 631 

consumption habits with land usage requirements not only in the overall amount of 632 

land required but also in the type of land (e.g. cropping and pasture). One potential 633 

improvement, however, could be the inclusion of other materials apart from wool and 634 

cotton. This could include hemp, bamboo and flax even though at present these form 635 

less than one percent of consumed textile resources in Australia (Plastina, 2011). 636 

The inter-connectedness of Dashboard parameters is another important carrying 637 

capacity assessment feature. For instance, when the adjustment of one parameter 638 

impacts another, an ideal model would accommodate such indirect responses. The 639 

Dashboard accommodates such inter-relationships in its dietary preferencing, wastage 640 

and recycling parameters. For instance, when a user chooses a region which is 641 

unsuited to particular crops, the dietary consumption components of the population 642 
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are automatically adjusted to suit local availability (Lane et al., 2013a). Likewise, 643 

when a user adjusts the diet or wastage rate for a certain population, the amount of 644 

potential recycling is automatically adjusted based on the anticipated availability of 645 

recyclable material. Additionally, when a user choses a consumption pattern which 646 

increases the land usage beyond land availability for that particular land type, the next 647 

best land type is automatically utilised instead. For example, if red meat consumption 648 

pushes pastoral land usage above pasture land availability, then cropping land will 649 

automatically also be utilised in the model. These automatic indirect adjustments are 650 

important in simulating real-life prioritisation processes. However, further 651 

improvements could be made in the incorporation of energy in this regard. At present, 652 

no indirect relationships between the energy intensiveness of certain activities and the 653 

land required to perform them have been established in the Dashboard. For example, 654 

adjustments to irrigation rates could potentially affect energy required for water 655 

pumping, having subsequent impacts on land usage particularly if the user has also 656 

chosen a high proportion of biofuel consumption (Lenzen, 2012). 657 

Lastly, trade between regions was successfully implied in the model but further work 658 

on this aspect could make it more prominent. For instance, at present, food imports 659 

and exports are incorporated into the food percentage parameter. If more than 100% is 660 

chosen, it is assumed that the additional portion is exported and if less than 100% is 661 

chosen, an importation of food is implied. This approach was possible for food where 662 

a minimum level of consumption can be assumed for a population (based on basic 663 

physiological requirements), but this is not the case for fuel, textiles or timber 664 

consumption where minimum levels are less clearly defined. Consequently, in these 665 

instances, users are able to adjust consumption levels by overall amounts (e.g. 666 

kilograms of textiles, cubic meters of timber and litres of fuel) on a per person basis 667 

and existing Australian consumption amounts were offered as benchmarks for users to 668 
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gauge any increase or decrease from current levels. This approach successfully allows 669 

each user to make informed choices but actual trading of materials is only implied. 670 

For instance, if a population intended to export half the timber in its zone, the user 671 

would currently need to calculate the amount of timber required per person and then 672 

double this amount. While this approach does allow for trade, an approach which 673 

mirrors the more overt food percentage parameter, would allow users to stipulate 674 

imports and exports directly. This methodology could potentially be applied to the 675 

fuel, textiles and timber parameters. 676 

3.2 Limitations of data availability 677 

Data availability is crucial to the successful incorporation of relevant and accurate 678 

carrying capacity modelling parameters. The availability of agricultural yield data is a 679 

fundamental constraint and the development of the Dashboard was limited to the 680 

scales at which such data has been published in Australia. Likewise, insufficient detail 681 

in land-use data, land suitability mapping and infrastructural requirements, all 682 

imposed constraints on the development of the model. 683 

This research discovered significant discrepancies between two reputable sources of 684 

land-use data in Australia (Australian Bureau of Statistics, 2008b; c; 2009a; 685 

Australian Collaborative Land Use and Management Program, 2009; Australian 686 

Bureau of Statistics, 2010a; 2011a) and ultimately the decision to utilise the ABS 687 

figures was made on the basis of consistency with other data-sources rather than 688 

evidence of accuracy, so a revalidation of this source may be required in the future. 689 

While the ABS dataset maps existing land-use areas, it was not possible to incorporate 690 

potential future land-usage into the Dashboard. This would have involved the 691 

inclusion of land suitability mapping highlighting which pieces of land might be able 692 

to be converted from existing uses to other uses such as from pasture to cropping land. 693 
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While some land suitability mapping has taken place in Australia, as yet, this data has 694 

not been converted into NRM regionally-focused land boundaries (van Gool et al., 695 

2005), is state based, classification systems are inconsistent (Australian Government, 696 

2011) and has not been conducted for all parts of Australia (Australian Government, 697 

2011). 698 

More accurate regional analysis would improve the methodology for the estimation of 699 

infrastructural land-usage, but as this data was unavailable, only indicative figures for 700 

various suburbs were used in the calculation of dwelling footprint rather than a 701 

nation-wide analysis. It was also assumed that these nation-wide statistics are 702 

indicative of dwelling sizes and densities for all regions. Additionally, even once it 703 

was established that only 89m2 of the estimated total per person residential land 704 

amount of 963m2 was alienated from agricultural production, the quality of the 705 

remaining 874m2 was not able to be determined as it appears that no research has 706 

been done on this topic. Consequently, for modelling purposes, this land was placed 707 

in the non-agricultural category which only allows the model to utilise it for timber 708 

production. Future detailed analysis of the quality of residential open-space could 709 

mean the transfer of this land portion to pasture or cropping land, thus increasing 710 

carrying capacities for each region. 711 

3.3 Components absent from model 712 

While the Dashboard incorporates the parameters deemed essential for a resource-713 

based carrying capacity assessment model, some resourcing needs have been given 714 

less emphasis, some have been incorporated into groupings which may obscure their 715 

relevance, while other parameters have not yet been introduced. For instance, while 716 

the Dashboard accounts for climate variability based on historic data, it does not yet 717 

address the potential impacts of future anticipated climate change and sea level rise. 718 

Alternatively, a resource which is integral but obscured in modelling is water. Rainfall 719 
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and water storage capacity play significant roles in determining the carrying capacity 720 

of any landscape (Chisholm, 1999). However, in most cases, water availability is 721 

masked somewhat by the yields evident in the food supply and the technology of 722 

water capture, storage and irrigation (Cohen, 1995). In a comparison of water 723 

requirements for drinking and agricultural purposes, it is the latter which is by far the 724 

thirstier. For instance, Cohen estimates that the amount of water required for the 725 

production of one kilogram of bread (one cubic metre of water) exceeds the amount of 726 

drinking water for one individual for an entire year (0.73 cubic metres) (Cohen, 727 

1995). It was thus considered that evidence of sufficient supplies of water for growing 728 

food is also likely to indicate sufficient supplies of water for drinking purposes, and as 729 

such the parameter of rainfall is only explicitly incorporated into Dashboard 730 

modelling in the irrigation parameter. Additionally, each zonally-attributed crop yield 731 

reflects inherent climatic and rainfall constraints and the infrastructure parameter also 732 

includes land used for water storage such as reservoirs. 733 

One significant food resource absent from the Dashboard modelling is wild-caught 734 

seafood. Currently, all seafood included in the modelled population’s diet is derived 735 

from farmed fish-stocks. This approach is reasonable for land-locked areas without 736 

access to marine resources. However, despite evidence of global marine fish-stocks 737 

declining (Dilworth, 2010), they are a renewable resource which coastal regions, in 738 

particular, could be expected to continue harvesting long-term, even if this is at lower 739 

levels than currently achieved. Consequently, a more detailed and comprehensive 740 

carrying capacity model might expand the boundary of coastal regions to also include 741 

a certain amount of marine area from which seafood could be harvested. 742 

Another omission from the Dashboard is energy sources other than liquid fuel and 743 

firewood such as solar photo-voltaics, wind and geothermal. The reasons for this 744 

omission include the difficulty of accurately calculating the energy they may generate 745 



31 

long-term in the absence of accompanying fossil-fuel energy as well as the potential 746 

for these energy sources to be used in tandem with other land-uses such as wind 747 

turbines over grazing land. However, it is envisaged that with further research, these 748 

difficulties may be overcome and other sources of energy may be incorporated into 749 

Dashboard modelling in future. 750 

A further omission from Dashboard modelling is that of alternate agricultural 751 

production systems other than conventional farming and organics. For instance, multi-752 

cropping systems such as permaculture were offered as an option in Fairlie’s (2007) 753 

carrying capacity model. However, Fairlie himself describes his calculation relating to 754 

the permacultural closed-loop nitrogen cycle as, complicated and broad-brush (Fairlie, 755 

2007). Whereas organic production was incorporated into Dashboard modelling by 756 

comparing conventional and organic yields, such comparisons are more difficult 757 

between intercrop and monoculture approaches because the total long-term yield over 758 

the whole system needs to be taken into consideration (Brown, 2003). Unfortunately, 759 

little research has been undertaken on the productivity of such systems in both 760 

Australia and other parts of the world so these alternate agricultural systems have 761 

currently been left out of Dashboard modelling (Lane et al., 2013b). 762 

4. Conclusion 763 

The Carrying Capacity Dashboard has incorporated the basic human resources 764 

essential for a population’s physical survival including food, water, shelter and 765 

energy. While in some instances constrained by the availability of relevant data, this 766 

model highlights how each basic resource can be accommodated in the Australian 767 

context.  768 

Carrying capacity assessment models have not yet gained the prominence of 769 

Ecological Footprint analyses such as the Global Footprint Network (2011). Part of 770 
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the impediment for a more widespread adoption is the fact that each location requires 771 

the development of individualised carrying capacity modelling incorporating specific 772 

localised production yields. While the collection and collation of such data requires 773 

significant investment of time and energy, the process of modelling itself need not 774 

differ significantly between models. The publication of not only the results drawn 775 

from carrying capacity assessments, but also discussion around the incorporation of 776 

parameters and methodological processes (Lane et al., 2013a) thus has much validity. 777 

The Carrying Capacity Dashboard is one such example featuring replicable 778 

approaches for future carrying capacity assessment modelling in other regions and 779 

other scales of analysis.  780 

781 



33 

References 782 

 783 

ABARES, 2010a. Australian energy resource assessment. Commonwealth of Australia. 784 
ABARES, 2010b. Land use of Australia. Commonwealth of Australia, Canberra, pp. 2005-785 
2006 dataset. 786 
ABARES, 2011a. Australian forest and wood products statistics, September and December 787 
quarters 2010, Canberra. 788 
ABARES, 2011b. Guidelines for land use mapping in Australia: principles, procedures land 789 
definitions, Canberra. 790 
Australian Bureau of Statistics, 1995. National Nutrition Survey - Foods Eaten - Australia, 791 
Commonwealth of Australia. 792 
Australian Bureau of Statistics, 2006a. Characteristics of Australia's Irrigated Farms, 793 
Australian Government, Canberra. 794 
Australian Bureau of Statistics, 2006b. Survey Participant Information - Agricultural Surveys. 795 
Australian Government, Canberra. 796 
Australian Bureau of Statistics, 2008a. Agricultural Census. In: Australian Bureau of 797 
Statistics (Editor). Australian Government, Canberra. 798 
Australian Bureau of Statistics, 2008b. Agricultural Commodities: Small Area Data, 799 
Australia, 2005-06. Commonwealth of Australia, Canberra. 800 
Australian Bureau of Statistics, 2008c. Agricultural Commodities: Small Area Data, 801 
Australia, 2006-07. Commonwealth of Australia, Canberra. 802 
Australian Bureau of Statistics, 2008d. Australian social trends, Housing, Table 1 Housing 803 
National Summary, 1997-2007, Canberra. 804 
Australian Bureau of Statistics, 2009a. Agricultural Commodities Australia 2007-08. 805 
Commonwealth of Australia, Canberra. 806 
Australian Bureau of Statistics, 2009b. Historical Selected Agricultural Commodities, by 807 
State (1861 to Present), Commonwealth of Australia, Canberra. 808 
Australian Bureau of Statistics, 2010a. Agricultural Commodities Australia 2008-09. 809 
Commonwealth of Australia, Canberra. 810 
Australian Bureau of Statistics, 2010b. Australian Demographic Statistics, Commonwealth of 811 
Australia, Canberra. 812 
Australian Bureau of Statistics, 2011a. Agricultural Commodities Australia 2009-10. 813 
Commonwealth of Australia, Canberra. 814 
Australian Bureau of Statistics, 2011b. Agricultural Survey, Australian Government, 815 
Canberra. 816 
Australian Bureau of Statistics, 2011c. Australian Demographic Statistics, Commonwealth of 817 
Australia, Canberra. 818 
Australian Collaborative Land Use and Management Program, 2009. Land Use Reporting, 819 
Bureau of Rural Sciences, Canberra. 820 
Australian Collaborative Land Use and Management Program, 2010. Land Use of Australia, 821 
Version 4, 2005/2006, Bureau of Rural Sciences, Canberra. 822 
Australian Government, 2011. A stocktake of Australia’s current investment in soils research, 823 
development and extension: A snapshot for 2010-11. Department of Agriculture, Fisheries 824 
and Forestry, Canberra. 825 
Banfield, K., 2000. Recognising Ecological Obligations in Planning. RAPI Limits to Growth 826 
Forum. Institute for Sustainable Futures, Coffs Harbour. 827 
Borucke, M., Moore, D., Cranston, G., Gracey, K., Iha, K., Larson, J., Lazarus, E., Morales, 828 
J.C., Wackernagel, M. and Galli, A., 2011. Accounting for demand and supply of the 829 
Biosphere’s regenerative capacity: the National Footprint Accounts’ underlying methodology 830 
and framework, Global Footprint Network, Oakland, CA. 831 
Bradley, R.L. and Fulmer, R.W., 2004. Energy: The Master Resource. Kendall/Hunt 832 
Publishing Company, Dubuque. 833 
Brough, D., 2012. Discrepancy between ABS and ACLUMP land-use datasets. Brisbane. 834 



34 

Brown, A.D., 2003. Feed or feedback: agriculture, population dynamics and the state of the 835 
planet. International Books, Netherlands. 836 
Buzby, J.C. and Wells, H.F., 2010. Food Availability (Per Capita) Data System. US 837 
Department of Agriculture. 838 
Byron, A., Baghurst, K., Cobiac, L., Baghurst, P. and Magarey, A., 2011. A new food 839 
guidance system for Australia – Foundation and Total Diets. Revised draft report for public 840 
consultation, National Health and Medical Research Council. 841 
Chisholm, A., 1999. Land, resources and the idea of carrying capacity. Business Council of 842 
Australia Papers, 1:19-26. 843 
Cohen, J., 1995. How Many People Can the Earth Support? W. W. Norton, New York. 844 
Cozens, M., 2012. Disposal of food waste. Queensland Government, Brisbane. 845 
Dilworth, C., 2010. Too smart for our own good: the ecological predicament of humankind. 846 
Cambridge University Press, Cambridge. 847 
Driscoll, D., Milkovits, G. and Freudenberger, D., 2000. Impact and Use of Firewood in 848 
Australia, CSIRO Sustainable Ecosystems, Canberra. 849 
Fairlie, S., 2007. Can Britain Feed Itself? The Land, 4:18-26. 850 
Fairlie, S., 2010. Meat: A benign extravagance. Permanent Publications, East Meon, UK. 851 
Fearnside, P., 1986. Human carrying capacity of the Brazilian rainforest. Columbia 852 
University Press, New York. 853 
Food Standards Australia and New Zealand, 2008. AUSNUT07 Australian Food, Supplement 854 
& Nutrient Database, FSANZ, Canberra. 855 
Global Footprint Network, 2011. Footprint Calculator. Global Footprint Network, Oakland, 856 
CA. 857 
Global Footprint Network, 2012. Application Standards. Global Footprint Network, Oakland, 858 
CA. 859 
Graincorp, 2010. Graincorp Harvest Report 09/10, Sydney. 860 
Gustavsson, J., 2011. Global food losses and food waste, FAO, Dusseldorf. 861 
Gutteridge, M., 2005. Ecological footprint and carrying capacity studies of South East 862 
Queensland: a comparison and discussion of results. Department of Natural Resources and 863 
Mines, Queensland Government, Brisbane. 864 
Hall, T., 2008. Where Have All the Gardens Gone? Australian Planner, 45:30-37. 865 
Hardin, G., 1986. Cultural carrying capacity - a biological approach to human problems - 866 
AIBS News. BioScience, 36:599-606. 867 
Holmgren, D., 2002. Permaculture: principles & pathways beyond sustainability. Holmgren 868 
Design Services, Hepburn. 869 
Hopfenberg, R. and Pimentel, D., 2001. Human Population Numbers as a Function of Food 870 
Supply. Environment, Development and Sustainability, 3:1-15. 871 
Hopkins, R., 2011. The Transition Companion: Making Your Community More Resilient in 872 
Uncertain Times. Chelsea Green Publishing Company, Totnes. 873 
Kantor, L., Lipton, K., Manchester, A. and Oliveira, V., 1997. Estimating and Addressing 874 
America's Food Losses, US Department of Agriculture, Washington DC. 875 
Kendall, H.W. and Pimentel, D., 1994. Constraints on the Expansion of the Global Food 876 
Supply. Ambio, 23:198-205. 877 
Kristiansen, P., Bez, N., Mitchell, A. and Monk, A., 2010. Australian Organic Market Report 878 
2010, Biological Farmers of Australia, Chermside. 879 
Lane, M., 2010. The carrying capacity imperative: Assessing regional carrying capacity 880 
methodologies for sustainable land-use planning. Land Use Policy, 27:1038-1045. 881 
Lane, M., 2012. Carrying Capacity Dashboard - http://dashboard.carryingcapacity.com.au/. 882 
QUT, Brisbane. 883 
Lane, M., Dawes, L. and Grace, P., 2013a. Construction methodology of a resource-based 884 
carrying capacity assessment model: an Australian case study. Environmental Modelling and 885 
Software, Submitted. 886 
Lane, M., Dawes, L. and Grace, P., 2013b. Organic agriculture in human carrying capacity 887 
modelling. Renewable Agriculture and Food Systems, To be submitted. 888 
Lenzen, M., 2012. Carrying capacity dashboard. In: M. Lane (Editor). Personal 889 
communication, Brisbane. 890 
Matthews, R. and Garrison, Y., 1975. Food yields summarized by different stages of 891 
preparation US Dept of Agriculture, Washington DC. 892 



35 

Melrose, J. and Delepart, D., 2012. Hawai‘i County Food Self-Sufficiency Baseline 2012, 893 
University of Hawai‘i, Hilo. 894 
Moroney, J. and Jones, D., 2006. Biodiversity Space in Urban Environments: Implications of 895 
Changing Lot Size. Australian Planner, 43:22-47. 896 
Muth, M.K., Karns, S.A., Neilsen, S.J., Buzby, J.C. and Wells, H.F., 2011. Consumer-Level 897 
Food Loss Estimates and their use in the ERS Loss-Adjusted Food Availability Data, US 898 
Department of Agriculture, Washington DC. 899 
Peters, C.J., Bills, N.L., Wilkins, J.L. and Fick, G.W., 2009. Foodshed analysis and its 900 
relevance to sustainability. Renewable Agriculture and Food Systems, 24:1-7. 901 
Peters, C.J., Wilkins, J.L. and Fick, G.W., 2005. Input and Output Data in Studying the 902 
Impact of Meat and Fat on the Land Resource Requirements of the Human Diet and Potential 903 
Carrying Capacity: The New York State Example CSS Research Series Department of Crop 904 
and Soil Sciences, pp. 1 - 25. 905 
Peters, C.J., Wilkins, J.L. and Fick, G.W., 2007. Testing a complete-diet model for estimating 906 
the land resource requirements of food consumption and agricultural carrying capacity: The 907 
New York State example. Renewable Agriculture and Food Systems, 22:145-153. 908 
Pillarisetti, J.R., 2002. World Trade in Environmentally Sustainable Agriculture Products: 909 
Policy Issues for Australia. Journal of Economic and Social Policy, 7. 910 
Plastina, A., 2011. World Apparel Fiber Consumption Survey, FAO/ICAC, Washington DC. 911 
Robins, L. and Dovers, S., 2007. NRM Regions in Australia: the ‘Haves’ and the ‘Have 912 
Nots’. Geographical Research, 45:273-290. 913 
Summers, P., 2004. Population Carrying Capacity in Noosa Shire. Noosa Shire Council, 914 
Tewantin. 915 
Tontisirin, K. and Haen, H.d., 2004. Human energy requirements, Food and Agriculture 916 
Organization of the UN, Rome. 917 
Trewin, D. and Banks, G., 2006. Characteristics of Australia's Irrigated Farms: 2000-01 to 918 
2003-04, Australian Bureau of Statistics, Canberra. 919 
van Gool, D., Moore, G. and Tille, P., 2005. Land evaluation standards for land resource 920 
mapping. Resource Management Technical Report, 298. 921 
Wackernagel, M., 1994. Ecological footprint and appropriated carrying capacity: a tool for 922 
planning toward sustainability, University of British Columbia, Vancouver. 923 
West, P.W., Cawsey, E.M., Stol, J. and Freudenberger, D., 2008. Firewood harvest from 924 
forests of the Murray-Darling Basin, Australia. Part 2: Plantation resource required to supply 925 
present demand. Biomass and Bioenergy, 32:1220-1226. 926 
Westendorf, M.L., 2000. Food Waste to Animal Feed. John Wiley & Sons, Ames. 927 
Whyte, J. and Beuret, N., 2004. Carrying Capacity and Borders. Chain Reaction, Winter:28-928 
29. 929 
Williams, R. and Walcott, J., 1998. Environmental benchmarks for agriculture? Clarifying the 930 
framework in a federal system - Australia. Land Use Policy, 15:149-163. 931 
Wimalasuriya, R., Ha, A., Tsafack, E. and Larson, K., 2008. Rainfall Variability and its 932 
Impact on Dryland Cropping in Victoria. 52nd Annual conference of the Australian 933 
Agricultural and Resource Economics Society, Canberra. 934 
 935 
 936 


