
Using PROV and Blockchain to Achieve Health Data Provenance

Massimiliano Masi, Abdallah Miladi
{massimiliano.masi,abdallah.miladi}@tiani-spirit.com

Andrea Margheri, Vladimiro Sassone
{a.margheri, vsassone}@soton.ac.uk

Jason Rosenzweig
jason.rosenzweig@gmail.com

—WORKING PAPER—

Abstract. Provenance is the foundation of data quality, usually implemented by auto-
matically capturing the trace of data manipulation over space and time. In healthcare,
provenance becomes critical since it encompasses both clinical research and patient safety.
In this proposal we aim at exploiting and innovating existing health IT deployments
by enabling data provenance queries for all kind of clinical information from anywhere.
The proposed technical solution exploits the novelty and the peer-to-peer fashion of the
blockchain technology and smart-contracts to instrument international standards such as
IHE and HL7 with a provenance system robust to fraudulences.

1 Introduction
Digital healthcare, Health IT, or eHealth, are deployed worldwide. The American ini-
tiative Sequoia1 and the European Health Digital Service Infrastructure (DSI)2 witness
how healthcare data is positively enhancing the way the patients are treated. Patients of
developing and developed countries have their health records digitalised in an electronic
form: the Electronic Health Record (EHR). Interoperability initiatives such as Integrat-
ing the Healthcare Enterprise (IHE)3, or Health Level 7 (HL7)4 enable worldwide access
to medical data: records are accessible instantly from different healthcare practices. Such
remote access also facilitates scientific research and improvement of public health.

In this context, assessing the provenance of data is crucial: the importance of data, its
origins and quality have long been recognised in clinical research [2]. Creating trust re-
lationships among the various data controllers and data processors is vital—e.g., the
evidence-based medicine and the healthcare-related decisions using third-party data.
However, although data exchange services have reached a high maturity level, data is
still semantically non-harmonised amongst the healthcare communities. Indeed, such
data is stored in various formats, e.g., XML files named Clinical Documents Architecture

1http://sequoiaproject.org
2https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eHealth
3http://www.ihe.net
4http://hl7.org

1

(CDAs), PDF, or DICOM images. CDA data is either in prosa (Level 1), mixed prosa/-
coded values (Level 2) and only coded values (Level 3). As such prosa is not necessarily
ASCII, but also other data types, CDAs use different formats and templates—e.g., Conti-
nuity of Care Documents (CCD) whose values are defined by ontologies and vocabularies
like SNOMED-CT and ICD-10.

CDAs are the result of multiple transformations: translation and transcoding from
a language or vocabulary to another, data merge from various sources, or documents
created on the fly based on other health evidences (e.g., laboratory results coming from
external facilities). For this reason, international standards such as IHE or HL7 define
content-agnostic data storage systems, like, e.g, IHE XDS (see Section ??). However,

no international standard defines mechanisms to enforce data provenance in
the CDA ecosystem

paving the way to untrustworthy CDA data which most likely will impact the effectiveness
of healthcare decisions and, most of all, patients safety.

Implementing data provenance in healthcare is cumbersome: a technical solution must
address the diversity and sheer number of medical data formats currently in use! Straight-
forward solutions concerning the addition of inline provenance contents to the data (i.e.
XML attributes or enveloped / enveloping signatures) would not solve the problem: such
content can be accidentally or intentionally lost or corrupted during data manipulation.
At the same time, enforcing local policies on provenance data (e.g. requiring valid elec-
tronic signatures before processing data) may open the system to frauds [9]: connection
and mutual trust of distributed policy enforcement systems require organizational efforts
in establishing bilateral or framework agreements, which are unfeasible in practice.

To overcome these issues, our data provenance solution for healthcare features

• data-agnostic provenance evidence to be created and processed on the fly; and
• decentralisation of provenance data storage and computation to prevent by-design loss

and corruption of data.

This proposal seeks to solve the problem of data provenance in healthcare by building on
the decentralization trait given by blockchain systems, and on well-established standards
such as W3C PROV [7], HL7 CDA and FHIR, and various IHE Integration Profiles.
Proposal structure. Section 2 shows the current state-of-the-art of data provenance. Sec-
tion 3 introduces key concepts on healthcare IT systems and background on the Hyper-
ledger Fabric framework. Section 4 reports the proposed architecture. Section 5 concludes
and presents related works.

2 Current data provenance solutions in healthcare
Healthcare interoperability is a key point: products must obey to international stan-
dards. Interoperability helps policy makers and project coordinators in defining long term
strategies by providing software sustainability and securing the investments. Moreover,
interoperability enforces security and patient safety: the quality of the patient healthcare
treatment is not depending on the quality of a specific software solution (the so-called

2

vendor lock-in effect). Using international standards forces vendors to comply with the
state-of-the-art of the security measures.

In such a context, we present the state-of-the-art of data provenance in healthcare.
To this aim, we use the provenance definition given by the Office of National Coordinator

Definition Provenance is defined as attributes about the origin of health information at
the time it is first created and tracks the uses and permutations of the health information
over its lifecycle

In both the Sequoia and eHealth DSI initiatives, data provenance is enforced by using
audit trails and digital signatures5. Audit trails assist in detection of attempted or actual
security breaches, by recording on a log file details of relevant events6. As audit and
log data are currently communicated over unreliable or untrusted messaging systems, by
design, audit trails do not realise a “chain of custody” of healthcare data.

Digital signatures of the IHE DSG profile allows detached advanced and qualified
electronic signatures on one or more healthcare documents. When a document consumer
manipulates documents, it evaluates their associated signatures to check and enforce doc-
ument integrity. However, authenticity must be proved: it is required a trust relationship
established ex-ante between the author and the user of the document (such relationship
is, e.g., a Public Key Infrastructure). Although technically feasible, the trust relation-
ship comes with several scalability and organizational challenges: continuous auditing
procedures to re-enforce the trust, requirements of ISO-27000-like perimeter security, etc.
To achieve continental-wide trust relationships, the European Commission proposed the
eIDAS regulation7, which settles both the legal and technical requirements that a service
provider must comply with to be considered trusted.

Non-repudiation is another security mechanism used to achieve provenance. Non-
repudiation protocols guarantee to the participants that for each exchange message is
possible to reconstruct a full custody chain (and thus, data provenance). ISO-13888 set-
tles the definition of non-repudiation, as a set of services mandated to generate, collect,
maintain, make available and validate evidence concerning a claimed event or action in
order to resolve disputes about the occurrence or nonoccurrence of the event or action.
Non-repudiation mechanisms provide protocols for the exchange of non-repudiation to-
kens, specific for non-repudiation service. These tokens shall be stored as non-repudiation
information that may be used subsequently in case of disputes by so-called Trusted Third
Parties (TTP)8. Among others, non-repudiation protocols enjoy fairness: each party
holds the expected items at the end of the exchange process [1]; specifically, we have

• Strong fairness: when an item exchange is completed, sender A can prove to an arbi-
trator that recipient B has received (or still can receive) the item, without any further
need of cooperation from either B or any trusted third party. In other words, there
is no need for any further proof. For instance, using a protocol only based on digital
signatures of messages is not fair. In case of disputes, one party may refuse to provide
its signed non repudiation token to a judge;

5By leveraging on the IHE ATNA and DSG profiles, respectively
6http://www0.cs.ucl.ac.uk/staff/ucacwxe/lectures/ds98-99/dsee24.pdf
7Regulation (EU) No 910/2014
8http://wiki.ds.unipi.gr/display/ESENS/Whitepaper+-+Non+Repudiation

3

• Weak fairness: when an item exchange is completed, A can prove that B has received
(or still can receive) the item, or otherwise an affidavit can be presented to demonstrate
that B misbehaved or a network failure occurred;

• Eventually Strong fairness: when strong fairness is ensured but with the provision that
additional assumptions about the participating parties are made.

Observation If a document (or part of it) is signed when it is generated, and its signature
is stored as detached document, whenever this document is accessed and such access is
under a strong fair non repudiation protocol, data provenance is guaranteed.
Discussion Let d be a new document and ds be its detached signature document, both
stored in a storage system, under the association assoc(d, ds)9. When a document con-
sumer obtains d using a known protocol (e.g., IHE XDS, see Section ??), it generates a
non-repudiation of origin token stored locally and remotely. The remote storage service
creates a non-repudiation of receipt token stored locally and remotely. In a synchronous
setting, this non-repudiation protocol enjoys fairness: everyone has the evidence that
there was a message m asking for d, and that d has been delivered.

Let now d be transformed into a new document d′. A new evidence is created,
stored locally. In order to prove authenticity, another signature document is created as
assoc(d′, d′

s). When a new system accesses the document, it creates and stores the same
evidence. Whenever a dispute arise (e.g., a system is challenged for data provenance) an
agent can recursively query all the non-repudiation storage to analyse all the evidences,
being able to reconstruct the full path of a given document. This reconstruction can be
done either using a trusted third party or not (depending on the fairness level)10.

The principled use of signatures and non-repudiation protocols can ensure data prove-
nance for healthcare. However, achieving (strong) fairness across thousands of hospitals
is impracticable: to resolve a dispute an agent should crawl among thousands of hospital
evidence storage systems! Therefore, instead of using agents, we rely on a blockchain
system and on state-of-the-art provenance standards. Specifically, the blockchain is used
to realise a peer-to-peer network among all data stakeholders (i.e. all the intermediary
operating on data for which signatures must be stored), and to achieve strong fairness as
a distributed, immutable infrastructure where storing and manipulating provenance data.
This blockchain solution avoids centralisation and TTP, while ensuring non-repudiation.

3 Preliminaries
Before presenting the solution guide to our pilot, we introduce the key preliminary con-
cepts. First, we outline the main IT systems at the basis of modern eHealth, then
blockchain technology and the Hyperledger Fabric framework.

3.1 eHealth building blocks
The corner stone of the an eHealth system is the data management. The most well-
established solution worldwide is the Cross-Enterprise Document Sharing (XDS). The
core model of the XDS is shown in Figure 1.

9An association can be imagined as a logical link between the two documents, d and ds
10For a detailed description of such protocol, see http://wiki.ds.unipi.gr/display/ESENS/PR+-+PerHopProtocol

4

A document source generates data and submits it to a document repository, who is
extracting metadata to update the document registry, who in turn cooperates with a
patient identity source in order address the relationship health data/patient identifier,
that can be subsequently consumed by a document consumer.

Figure 1: The Cross Enterprise Document Sharing (XDS) model

Multiple sources, repositories, and registries are allowed. The use of so-called Affinity
domain permits harmonizing security and health semantics in order to provide basic
interoperability. Affinity domains can scale to communities by having specific actors
named gateways performing cross-community duties (e.g., translations, transcoding, etc).

On the other hand, the interoperability between data repository and any healthcare
devices can be achieved via the HL7 standard Fast Healthcare Interoperability Resources
(FHIR). FHIR combines the concepts from the former HL7 versions, and introduces the
JSON and XML encoding over a set of RESTFul interfaces. IHE embraces FHIR by
introducing specific profiles defining the usage of resources in the IHE stack. Notably,
in its third release FHIR contains a specific provenance resource11, which we will discuss
specifically in the solution guide.

The pilot is indeed built upon XDS and FHIR for which we have used the following
implementations:

• SpiritEHR12, an eHealtheway-certified product13 implementing both infrastructural
(secure document exchange among healthcare facilities) and graphical services used
by hospitals and professionals.

• HAPI-FHIR14, an opensource HL7 Java implementation of FHIR. HAPI is used to
retrieve provenance information and display in the graphical user interface for the
health professional.

11http://www.hl7.org/implement/standards/fhir/provenance.html
12http://www.tiani-spirit.com/spiritehr
13SpiritEHR obtained the certification in 2011, and is listed in http://sequoiaproject.org/ehealth-exchange/

participants, as Inland Northwest Health Services.
14http://hapifhir.io

5

The overall architecture of the pilot is reported in Section 4.2, describing the realised
full-fledged ecosystem to collect, manage and check provenance of healthcare data.

3.2 Blockchain and Hyperledger
Blockchain is a novel technology that has appeared on the market in recent years. It
was firstly used as a public ledger for the Bitcoin cryptocurrency [8]. It consists of
consecutive chained blocks, replicated and stored by the nodes of a peer-to-peer network,
where blocks are created in a distributed fashion by means of a consensus algorithm.
Such algorithm, together with the use of crypto mechanisms, provides two distinguishing
properties of blockchain: decentralisation and democratic control of data. This ensures
that data on the chain cannot be tampered with maliciously, that operations on the chain
are non-repudiable and their provenance fully tracked. All this is achieved in trust-less
scenario, like the anonymous network of Bitcoin, via the consensus mechanism called
Proof-of-Work (PoW). Specifically, PoW is a computational intensive hashing procedure
that creates blocks with the consensus of all the network nodes. The use of PoW is indeed
the key enabler of data integrity related properties of public blockchain systems.

Differently from Bitcoin, new types of blockchains such as Ethereum [15] have recently
appeared featuring smart contracts: programs deployed and executed on blockchain.
Being part of the blockchain contracts and their executions are immutable and irreversible.
Smart contract permits creating so-called decentralised applications, i.e. applications that
operate autonomously and without any control by a system entity and whose logic is
immutably stored on a blockchain.

Both Bitcoin and Ethereum are public, or permissionless, systems whose performance
(due to PoW) is really limited, but integrity and availability guarantees practically always
ensured. Different deployment strategies can be followed by introducing a control on the
operating users and (partially) on the context of execution. Such systems are private, or
permissioned. This sort of blockchain ensures better performance, indeed PoW is replaced
by a more effective algorithmic consensus schema. Integrity and availability are bounded
by classical results of distributed systems—up to one third of malicious nodes can be
tolerated in a real-world network—which have been always considered adequate in any
recent modern computing systems.

Due to performance requirements, as well as privacy concerns on using a public ledger,
we opted for a permissioned approach. To this aim, the proposed solution is implemented
via Hyperledger Fabric15 which, to the best of our knowledge, is the most well-established
solution for permissioned blockchains. We comment on its traits and functionality below.

Hyperledger Fabric. Fabric is a permissioned blockchain framework implemented in
Go under the Hyperledger umbrella project, and supported by the Linux Foundation.

Indeed, Fabric is used to build a permissioned blockchain: before joining the
blockchain, a certain level of trust amongst participants shall be in place. Differently
from other public blockchain implementations (e.g., Ethereum, Bitcoin), Fabric provides
a scalable, performant, and environmentally friendly technology for highly flexible appli-
cations without any transaction fee. Most of all, Fabric follows a modular architecture

15https://www.hyperledger.org/projects/fabric

6

allowing blockchain core components, such as consensus algorithms, to be configured ac-
cording to the needs. Smart contracts—named chaincode in the Fabric’s jargon—are also
implemented in Go and can be queried using SDK; different SDKs are available, we used
the Java implementation. All these distinguishing traits makes the use of Fabric a key
strength for the viability of our pilot; Section ?? will further discuss this point.

Practically, Fabric is a distributed system creating a peer-to-peer network where
each peer has a replicated, consistent copy of the blockchain data structure, namely
a chained list of transaction representing invocation and executions of chaincodes. Per se
a blockchain is just a set of blocks (data structures containing signed transaction informa-
tion) concatenated each other. A node named orderer ensures that blocks are distributed
across all the participants with guarantees such as atomic or total Order broadcast.
Peers & Clients. Peers are nodes receiving ordered state updates in the form of blocks form
the ordering service and maintain the state of the ledger. Peers also execute chaincode for
initiating and endorsing transactions, by following a specific endorsement policy which
defines the necessary and sufficient conditions for considering a transaction valid. Clients
are entities acting on behalf of end-users. They are connected to a peer in order to
communicate and operate with the blockchain.
Ordering Service. The Orderer creates the working environment of Fabric: a communi-
cation channel between peers and clients. A client must be enrolled into a channel to
operate (via chaincodes) on the blockchain. Once enrolled and connected, the ordering
service makes sure that client’s messages are delivered to all the connected peers in the
same logical order, namely implementing a consensus model. These messages represent
the candidate transactions for inclusion in the blockchain state. Channels are similar to
topics of a publisher/subscriber system; channels can be seen as a partition of the system,
in which only peers enrolled can have access to the transactional state of the blockchain.

Therefore, the ability to create different channels allow participants in competition
to hide transactions to others, effectively partitioning the transaction set. Notably, par-
ticipants to channels are enrolled by special nodes named Membership Service Provider
(MSP), which implements the permissioned layer of security of Fabric.
Blockchain state. The state of the blockchain is an abstraction of a Key/Value store,
manipulated using put and get operations. Formally, the state is a mapping K →
(V × N) where K is a list of keys, V is a list of values and N is an infinite orderer
set of version numbers. Thus, an update of the state is modelled as put(k,v), with
k ∈ K and v ∈ V , and has the effect of changing the blockchain state to s → s′ such as
s′(k) = (v, next(s(k).version)), where s′(k′) = s(k′), ∀k′! = k.
The overall interaction schema among mentioned components amounts to what depicted
in Figure 2. Therefore, the following schema is followed to append a new transaction to
the current blockchain.

1. A client C initiates the transaction tx containing its client identifier, the identifier of
the chaincode to be executed, the payload of the transaction, the timestamp, and its
signature.

2. This message is received by organization peers which simulate the transaction by
enforcing and satisfying the endorsement policy of the chaincode.

7

Figure 2: Hyperledger transaction flow

3. The endorsed transaction is delivered to the ordering service which then ensures that
the chosen consensus schema is achieved.

4. Once order of transaction is fixed (in case of concurrent transactions) and hence a
new block in created, it is then broadcasted to all peers and the new (local) state is
consistently updated.

The Orderer is indeed a key element of the whole Fabric blockchain. Thanks to its
modularity, Fabric ensures that the ordering services can be distributed and replicated
(up to a full replication) according to the needs and the chosen consensus schema, rang-
ing from Kafka to PBFT ones. At the same time, due to an adaptive transaction chain
approach—the more transaction in input, the larger the created blocks are—Fabric en-
sures a throughput of thousands of transactions per second. This is clearly the main
difference with respect to public blockchain systems like Bitcoin and Ethereum; we dis-
cuss in Remark 1 the ensured integrity guarantees.

From a deployment point of view, Fabric comes with Docker images16. Docker exploits
features of the Linux kernel such as resource isolation, allowing specific deployments for
peers, orderers, and chaincode. We have indeed geographically deployed a Fabric instance,
developed needed chaincodes and integrated with the rest of eHealth components to build
the pilot.

Remark 1 Hyperledger Fabric Integrity Guarantees. The ordering service (to-
gether with enrolment and membership management) mainly differentiates Hyperledger
Fabric with traditional public blockchain like, e.g., Bitcoin and Ethereum. Their approach
is based on computational hashing power capacity, rather than an algorithm approach.

In fact, orderers are responsible to implement what in public-like blockchains is
achieved by PoW: untrusted systems (aka miners) search for a random number whose

16http://docker.com

8

hash computed with the current block is less than a "difficulty parameter" inserted in
the previous block. To ensure a distributed consensus in the presence of high number of
malicious actors, PoW based blockchains pay a lack of performance due to the required
computing power. Indeed, both Ethereum and Bitcoin are able to process at most hun-
dreds of transactions per seconds, throughput which can be unacceptable for eHealth-based
operations. At the same, private and permissioned instances of those blockchains shall
provide at any time enough hashing power to not suffer from the 51% attack [13, Sec-
tion 4.2.1]: colluded malicious actors joining their forces to acquire the main part of the
hashing power of the system thus causing malicious fork in the blockchain.

4 Solution Guide
Our solution for managing data provenance for healthcare documents relies on two pillars:

1. international standards, all IT solutions used to implement and deploy the pilot are
certified and compliant with state-of-the-art standards for healthcare;

2. decentralisation, a principled used of a permissioned blockchain ensures non-repudiable,
reliable management of data provenance according to the W3C PROV [7] standard.

The primitive data for which we track and manage provenance is the CDA. In the
healthcare ecosystems, three different types can be identified: (i) XML-CDA and its
sections (e.g., generic Consolidated CDAs (CCDA)17; HITSP C3218); (ii) a PDF; (iii)
anything else (e.g., data content standards like X12, or DICOM, and FHIR). Our solution
is compatible and interoperable with any of the previous types and indeed in our pilot
we both use PDF and CCDA formats.

The core aspect of the solution is the process of signing CDAs and the subsequent
creation and management of provenance information according to the W3C PROV. To
ensure reliable provenance tracking across decentralised locations (i.e. hospitals and
laboratories), PROV data is created, stored and distributed via a permissioned blockchain
system. Figure 3 reports a high-level description of the approach.

CDA

Sec. 1

Sec. N

CDA

Sec. 1

Sec. N

Canocalisation
&

Signature

PROV data.

Sign

PROV

XML
< / >

Sec.1

XML
< / >

CDA

XML
< / >

Sec.N
. . .

Sign hash

BLOCKCHAIN

Sign hash

Sign hash

Figure 3: Overall provenance solution: example for CDA

First of all, a CDA is canonicalised and signed by using the technique corresponding
17http://www.hl7.org/implement/standards/product_brief.cfm?product_id=7
18http://www.hitsp.org/ConstructSet_Details.aspx?&PrefixAlpha=4&PrefixNumeric=32

9

to its type; respectively, XaDES19, PaDES20, or CaDES21. Then, starting from the canon-
icalised documents, the PROV documents are created by a smart contract deployed on
blockchain. The created provenance is then stored on the blockchain together with the
hash outcome of the signing carried out with the corresponding *aDES procedure.

Therefore, blockchain enables the building of secure and distributed infrastructure
to underpin a decentralised and immutable management of data provenance. Being the
Hyperledger blockchain based on a key value store (see Section 3), provenance data
corresponds to a couple

〈K, V 〉 := 〈h(d), Pd〉

where d is a CDA entity—either the overall CDA or one of its section, details below—h
is the hash function as outcome of the *aDES over the document, and Pd is the infor-
mation defined as PROV document. The PROV data is created according to a two-layer
approach: a PROV document is first created for the root CDA document, and each of
the contained (if any, hence only for CCDA) has its own PROV document which is linked
to its root CDA.
Data Confidentiality. To manage provenance in healthcare, a key aspect to address is the
management of confidential information part. The use of blockchain may open up issues
of sensitive data leakage as PROV templates are stored on it. However, the signature
process and the definition of the PROV template (see Section 4.2.2) ensure that no
sensitive patient information is revelled. Some information needed in the PROV template
(e.g. location of specific analysis) may still lead to information leaks. Thus, we assume
that the distribution of the provenance of a document can be at the discretion of the
patient. The implemented pilot could easily support such variant by simply tuning the
input parameters of the smart contract creating the PROV documents.
Interoperability. The proposed solution supports any type of CDA and most of all by
relying on FHIR it permits to automatically generate data from end-device to feed into
CDA automatically. On the other hand, any end-application can retrieve and check data
provenance of a document: it relies on RESTful API returning the pair 〈h(d), Pd〉 of a
given document d and then via the corresponding *aDES function checks the integrity of
the document via its signature h(d).
Presentation of the solution. In the following, we further present the proposed solution
according to the following topics:

• Section 4.1 reports on the use case motivating the solution and implemented in the
pilot;

• Section 4.2 details all the technical details regarding the definition of PROV templates,
their subsequent management of them via a chaincode of Hyperledger Fabric, and
integration with FHIR.

19https://www.w3.org/TR/XAdES/
20http://www.etsi.org/deliver/etsi_ts/102700_102799/10277801/01.01.01_60/ts_10277801v010101p.pdf
21http://www.etsi.org/deliver/etsi_ts/101700_101799/101733/01.07.04_60/ts_101733v010704p.pdf

10

4.1 A Provenance Healthcare Use Case
The solution architecture reflects and implements the scenario described in [6, Section 4].
The user story is as follows.

Patient James is feeling tired, and thus he decides to have a healthcare en-
counter with his General Practitioner, Anna. After the visit, Anna decides
to further investigate for cardio-related diseases. She then forwards James to
have two subsequent laboratory analysis, performed by Lab1 and Lab2 re-
spectively. After the analysis, the patient is notified that results are ready,
and thus James goes again to visit Anna who decides, given the results, to
have a consultation with a specialist, Bob, a Cardiologist working in the Cen-
tral Hospital. Anna prepares a patient summary for James (containing the
laboratory results) and makes it available for the visit that will be held by
Bob.
When Bob encounters James, he checks the patient summary prepared by
Anna and observes the results from the two laboratories. In order to decide,
e.g., if those results are accurate enough, he checks their provenance, which
confirms that effectively Lab1 and Lab2 performed the analysis. Given the
provenance guarantees of the results and the trust of Bob in both labora-
tories, the analysis are considered adequate to produce medical reports and
prescriptions.

Figure 4: UML of the use case

The presented user story assumes that all the involved medical actors (i.e., the spe-
cialists and the laboratories) share data using a standard-based healthcare information
exchange, e.g., the NwHIN22. Therefore, by relying on the our blockchain-empowered so-
lution for ensuring data provenance, specialists can be supported towards a trustworthy
medical decision process. Intuitively, the actors are shown in the Figure 4 by emphasis-
ing the key role of blockchain enabling immutable and reliable data provenance tracking
across geographically distributed entities.

4.2 Solution Architecture
The architecture of the solution integrates state-of-the-art IT solutions for eHealth and
the Hyperledger Fabric blockchain. Figure 5 graphically depicts the overall architecture
and its components.

22https://www.healthit.gov/policy-researchers-implementers/nationwide-health-information-network-nwhin

11

Figure 5: Architecture of the solution

SpiritEHR is the backbone of the architecture. Thanks to SpiritEHRPortal and
SpiritHealthServiceBus, (HSB) solutions, SpiritEHR, together with the IHE XDS/X-
CA/ATNA mandatory actors for the secure storage of medical documents, offers a certi-
fied eHealth infrastructure. The Fabric blockchain is then integrated, via its Java SDK,
with HSB so to offer provenance functionality to any managed data. Most of all, to ensure
adequate authentication of users acting on the blockchain, the certification authority of
Fabric is integrated with that used for the XDS system.

In the following, first, we present the low-level infrastructure underlying the pilot
is presented. Then, we introduce the functional components implementing provenance
functionality.

4.2.1 Pilot infrastructure

The low-level infrastructure of the pilot models the use case scenario presented in Sec-
tion 4.1.

Blockchain The network is composed by four virtual machines, named blockchain1,
blockchaingp, blockchainlab1, and blockchainlab2, running the Healthcare In-
formation Exchange software for the Cardiologist, the General Practicioner, and
the Laboratories, respectively. A domain name service (DNS) has been in-
stalled in order on blockchain1 to simulate as much as possible network het-
erogeneity. In fact, each host has been assigned to a domain name. Re-
spectively, we have challenge.tiani-spirit.int, gp.challenge.tiani-spirit.int,

12

lab1.challenge.tiani-spirit.int, and lab2.challenge.tiani-spirit.int. The
operating system is CentOS GNU/Linux.

The provided docker images have been restructured to fully comply with the use case
as follows. Four organizations have been created, OrdererOrg, GP, LAB1, and LAB2. They
all belong to the same consortium, SampleConsortium. Each organisation is allocated
to the machine blockchain1, blockchaingp, blockchainlab1, and blockchainlab2,
respectively. Each organization uses its own MSP to enrol peers and clients. Hyperledger
tools created key pairs for all the systems, and a NFS share has been configured to ease
the deployment of new keys and certification authorities23. A channel has been created,
named masab, which all the peers joined and where the chaincode named prov is executed.

Integrating blockchain in the eHealth ecosystem HSB acts following the façade
design pattern: it intercepts all the document-related activities (e.g., create, update,
delete, store, new, etc.) and executes a chain of plug-ins to achieve other function-
alities like access control, patient privacy consent enforcement, etc. In our scenario,
SpiritEHRPortal and a generic medical device create healthcare documents. They are
submitted using IHE XDS [4, Section 3.41] and intercepted by the HSB, which is acting
as Hyperledger client, running the Java SDK. In fact, Hyperledger enables Java users
to execute operations on the chaincode (in our scenario, the get/set) using the SDK.
Notably, the SDK is not limited to invoke operations, but make it possible to manage
the entire lifecycle of channels and chaincodes. SDK acts as a Hyperledger user with
certificate-based credentials. Requests arrive at the interceptors of the type of Provide
and Register Document set as in Listing 1.

The MTOM/XOP attachment is obtained and it is checked for its type for canon-
icalization. The hash is created (sha256) (if it is an XML, before we perform a XML
canonicalization and the segmentation) and the agent information are obtained from the
SAML assertion. Then the Client is executed with the extracted information and the
ledger updated. The mechanism is in place for MHD/FHIR document provisions.

When querying or accessing the documents, the Retrieve Document Set transaction
is intercepted when returning from the repository. The document is extracted again from
the MTOM/XOP attachment and it is canonicalized. If it is a XML, it is segmented. For
each document, and for each segment (if any), the ledger is queried using the get method
from the Client by passing the corresponding hash, using the FHIR Provenance query.
In fact, the client is grouped with the FHIR Resource server. The FHIR provenance
resource is returned together with the associated PROV document following the templates
and mapping in Sections 4.2.2 and 4.2.4, respectively. We return both documents to
allow interoperability and in order to enable provenance consumers to collect provenance
documents and still be able to execute the PROV’s ontology. If the document returned
is a CDA, each segment is annotated with the provenance information of its ancestors.
Otherwise, the provenance information is included in the SOAP Header, following the
IHE approach handling the homeCommunityId in the XCDR profile.

Notably, with this architecture we intercept all the possible documents and actions
belonging to a XDS system. In fact a document has a defined lifecycle in the XDS

23For the sake of simplicity, the usage of tools like http://hyperledger-fabric-ca.readthedocs.io/en/latest/ have
not been used. However, it is worth noticing that every certification authority which is in place in the healthcare facilities
fits for the purpose.

13

1 <ProvideAndRegisterDocumentSetRequest xmlns="urn:ihe:iti:xds-b:2007">
2 <lcm:SubmitObjectsRequest xmlns:lcm="urn:oasis:names:tc:ebxml-regrep:xsd:lcm:3.0">
3 <rim:RegistryObjectList xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0">
4 <rim:ObjectRef id="urn:uuid:7edca82f-054d-47f2-a032-9b2a5b5186c1"/>...
5 <rim:ExtrinsicObject id="theDocument0" mimeType="text/xml"
6 objectType="urn:uuid:7edca82f-054d-47f2-a032-9b2a5b5186c1">
7 <rim:Slot name="languageCode">
8 <rim:ValueList>
9 <rim:Value>en-US</rim:Value>
10 </rim:ValueList>
11 </rim:Slot>
12 <rim:Slot name="sourcePatientId">
13 <rim:ValueList><rim:Value>RED.1515^^^&1.3.1000&ISO</rim:Value> </rim:ValueList>
14 </rim:Slot> ...
15 <rim:Slot name="sourcePatientInfo">
16 <rim:ValueList>
17 <rim:Value>PID-3|RED.15155854163759^^^&1.3.6.1.4.1.21367.13.20.1000&ISO</rim

:Value>
18 <rim:Value>PID-5|BlockchainTest5^Test5</rim:Value> <rim:Value>PID-7|20180110</rim:

Value>
19 </rim:ValueList>
20 </rim:Slot>
21 <rim:Slot name="creationTime">
22 <rim:ValueList> <rim:Value>20180110115806</rim:Value></rim:ValueList>
23 </rim:Slot>
24 <rim:Name>
25 <rim:LocalizedString value="BlockchainTest"/>
26 </rim:Name> ...
27 <rim:Classification
28 classificationScheme="urn:uuid:a09d5840-386c-46f2-b5ad-9c3699a4309d"
29 classifiedObject="theDocument0" id="1.2.40.0.13.1.1.10.10.40.1.20180110122249046.32901"
30 nodeRepresentation="CDA/IHE 1.0">
31 <rim:Name>
32 <rim:LocalizedString value="CDA/IHE 1.0"/>
33 </rim:Name>
34 </rim:Classification>
35 <rim:ExternalIdentifier
36 id="1.2.40.0.13.1.1.10.10.40.1.20180110122249046.32902"
37 identificationScheme="urn:uuid:58a6f841-87b3-4a3e-92fd-a8ffeff98427"
38 registryObject="theDocument0" value="REG.1HQ117BUIL^^^&1.2.3.4.0&ISO">
39 <rim:Name>
40 <rim:LocalizedString value="XDSDocumentEntry.patientId"/>
41 </rim:Name>
42 </rim:ExternalIdentifier>
43 <rim:ExternalIdentifier
44 id="1.2.40.0.13.1.1.10.10.40.1.20180110122249046.32903"
45 identificationScheme="urn:uuid:2e82c1f6-a085-4c72-9da3-8640a32e42ab"
46 registryObject="theDocument0" value="1.2.40.0.13.1.1.10.10.40.1.20180110122249046.32892"

>
47 <rim:Name>
48 <rim:LocalizedString value="XDSDocumentEntry.uniqueId"/>
49 </rim:Name>
50 </rim:ExternalIdentifier>
51 </rim:ExtrinsicObject>
52 </rim:RegistryObjectList>
53 </lcm:SubmitObjectsRequest>
54 <nsA:Document id="theDocument0" xmlns:nsA="urn:ihe:iti:xds-b:2007">
55 <nsI:Include href="cid:theDocument0"
56 xmlns:nsI="http://www.w3.org/2004/08/xop/include"/>
57 </nsA:Document>
58 </ProvideAndRegisterDocumentSetRequest>

Listing 1: Sample Provide and Register document set

system, with a set of countable actions (submit, replace, approve, deprecate). Every
action to document which requires provenance, it is resulted in the transactions being

14

intercepted. The provenance document and the FHIR resource link will be included
into the CDA document, so the provenance related informations are already included in
the CDA (no needed of additional queries) and the FHIR link will serve for community
external consumers to fetch provenance related material.

The patient could deny the creation of the PROV document for its data. As also
previously described, being PROV documents without personal information, we do not
further address this concept in this paper.

4.2.2 Provenance for healthcare data

Our solution to manage provenance for healthcare data is based on the W3C PROV
standard. Hence, keeping on what firstly introduced in [6], we developed our PROV
templates. To this aim, we followed the guidelines from [16]. For presentation’s clarity, we
report in Figure 6 the overall PROV approach to provenance and we recall our approach.

Figure 6: W3C PROV key concepts

Entity. It is a healthcare document. Provenance records can describe the provenance of
entities, and an entity’s provenance may refer to many other entities. In such a way, e.g.,
a CDA can have its provenance records, and such records linked to other records related
to the derivation of the document itself.
Activity. It is how the entity comes to existence, and how their attributes change to
become new entities. For instance, typical activities are: a translation, a merge, a new
on demand document creations, segmentation due to access control.
Agent. It takes a role in an activity such that the agent can be assigned some degree
of responsibility for the activity taking place. An agent can be a person, a piece of
software, an inanimate object, an organization, or other entities that may be ascribed
responsibility.

Upon the previous concepts, the self-explanatory connections in Figure 6 can be de-
fined. We comment for each PROV template the created relationships in further details.

Provenance templates for CDA As reported in Section 4.1, healthcare data can be
divided in CDA-based entities and non-CDA based data. The latter can be consider as
a document formed by a single section, while in case of CDA we have an additional layer
that is the internal sectioning. To this aim, we define two different PROV templates:

15

• document template, to be used for whole documents, being either PDF, DICOM or
CDAs;

• section template, to be used for CCDA sections.

The definition of two different template ensures high modularity and granularity of the
approach. Indeed, in case of CCDA defining a template for the whole document will not
permit tracking provenance on single healthcare records part of the CDA. Practically, to
track provenance of a CCDA with a single template would require updating the previous
document (as the whole signature would change) critically hindering modularity and
extendibility of the solution.

Document PROV template In Listing 2, is presented a sample W3C PROV XML
for a generic object item (e.g., a PDF, CDA, DICOM).

1 <?xml version="1.0" encoding="UTF-8"?>
2 <prov:document xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xsi:schemaLocation="http://www.w3.org/ns/prov# http://www.w3.org/ns/prov.xsd"
4 xmlns:ex="urn:tiani:provenance"
5 xmlns:prov="http://www.w3.org/ns/prov#">
6 <prov:entity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:id="theobject">
7 <prov:label>The object document</prov:label>
8 <prov:location>Nashville, TN</prov:location>
9 <prov:type>XML</prov:type>
10 <prov:value>S52fkpF2rCEArSuwqyDA9tVjawUdrkGzbNQLaa7xJfA=</prov:value>
11 <ex:locationId>urn:oid:1.2.3</ex:locationId>
12 <ex:locationName>General Hospital</ex:locationName>
13 </prov:entity>
14 <prov:activity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:id="theobjectcreation">
15 <prov:type>ex:CREATE</prov:type>
16 </prov:activity>
17 <prov:agent xmlns:ns1="http://www.w3.org/ns/prov#" ns1:id="agentidentifier">
18 <prov:type>1.2.3.4</prov:type>
19 <hpd:doctorid xmlns:hpd="IHEHPD">agentidentifier</hpd:doctorid>
20 <hpd:doctorname xmlns:hpd="IHEHPD">7.8.9</hpd:doctorname>
21 <hpd:idp xmlns:hpd="idp">urn:tiani-spirit:sts</hpd:idp>
22 </prov:agent>
23 <prov:wasGeneratedBy>
24 <prov:entity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:ref="theobject"/>
25 <prov:activity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:ref="theobjectcreation"/>
26 <prov:time>2018-11-10T12:15:55.028Z</prov:time>
27 </prov:wasGeneratedBy>
28 <prov:wasAssociatedWith>
29 <prov:activity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:ref="theobjectcreation"/>
30 <prov:agent xmlns:ns1="http://www.w3.org/ns/prov#" ns1:ref="agentidentifier"/>
31 </prov:wasAssociatedWith>
32 <prov:wasAttributedTo>
33 <prov:entity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:ref="theobject"/>
34 <prov:agent xmlns:ns1="http://www.w3.org/ns/prov#" ns1:ref="agentidentifier"/>
35 </prov:wasAttributedTo>
36 </prov:document>

Listing 2: PROV document for CDA and non-CDA documents

The presented XML follows the W3C PROV core schema24. The lines 1-5 defines
the declaration of a document in the prov namespace. Another namespace, ex has been
defined in order to strictly specify additional elements introduced by the alignment with

24Available at: http://www.w3.org/ns/prov-core.xsd

16

IHE profiles. The document is divided as follows: it begins with the declaration of one
entity, the activity that generated it, and the agent who performed the activity. Then,
the relationships between those three PROV actors are defined.
Entity. The definition of the entity (lines 6-13) starts the template. The identifier (fixed
value) is named "theobject", and its label (fixed value) "The object document". To give
a hint on the datatype to the user, the type is extended as related to the XDS mime
type element (e.g., XML, PDF, JPG). Indeed, a more elaborated type may be used,
e.g., the classCode/typeCode elements from the XDS metadata. As last element of the
entity we have the value, representing the hash of the element itself. The location
element contains the physical location where the entity faced the activity, and we add
two additional values ex:locationId and ex:locationName which corresponds to unique
identifier of the Client performing the action.
Activity. The next element is the named activity (lines 14-16) which has only a direct child
containing all the possible activities permitted by the IHE profiles: CREATE, UPDATE,
DELETE, TRANSLATE, TRANSCODE, ONDEMAND (see Table 3.20.4.1.1.1-1 of [4]).
Notably, being not part of the PROV namespace, they are defined in the ex namespace.
Agent. Next, the agent (lines 17-22) is defined, namely the principal performing the
activity on the entity. The agent belongs to the actor who is bearing the IHE transaction.
In fact, in all IHE messaging, the only method to formally prove a link between an identity
and a community is the relationship between the user and its identity provider in the
SAML assertion (see the XUA profile, [4, Section 3.40]).

This principal can be either a user or an application acting on behalf of the user.
In any case, the link on how the subject (the principal) can be univocally verified is
using the SAML’s SubjectConfirmation method. These properties inherited from the
SAML protocol [10] allow us to define the agent as the SAML role, Subject Identifier,
XSPA Subject ID [11], and the Issuer name as type, doctorid, doctorname, and idp,
respectively. Notably the type is defined in the PROV namespace.
Relationships. The template is then completed by the definition of the relationships.
Specifically, we have

• wasGeneratedBy states the time when the entity has been created by the activity, at
which time;

• wasAssociatedWith states how the object relates to the agent;

• wasAttributedTo states how the entity has been attributed to the agent.

Notably we do not use a time period on the activity since we believe that the con-
sidered actions are precisely identified by using a timestamp. This is the reason why
the time of the action is reflected semantically in the wasGeneratedBy: to answer the
question "when the object has been created?".

This template is used for both CDA and non-CDA documents. Specifically, as high-
lighted in Figure 3, the document is first signed and then the provenance info created.
Non-CDA documents are hashed using SHA-256, while non-CDA documents are first
digitally signed via XMLDSG [14] to provide canonicalization of the XML, then the sig-
natureÕs digest value obtained is used (the rest of the signature element is removed as

17

not necessary for the following steps). Notably, that the intermediate XMLDSG step is
mandatory since many XML implementations handle XML differently by adding spurious
space, tabulations, or namespace that could irremediably change the hash value of the
signature.

Section PROV template Here, we define a PROV template for fine-grained man-
agement of section provenance. In order to define the template, we first outline the overall
process of managing a CCDA, identifying its sections and creating the provenance items.

First of all, given a CCDA, data segmentation is applied to achieve the canonical
form of [6, Section 4]. The obtained document is a normalized CDA document doc ⇒
(d, d′, d′′, . . .) a document whose parts (d) requiring provenance are selected using the
DS4P framework (e.g. a user XACML policy). The signature is then calculated by
applying XML digital signature to the full document and to each of its sections. We
briefly comment the PROV document for the section reported in Listing 3.

Differently from Listing 2, Listings 3 presents two entities (lines 6-21): the master
document and the segment to which this provenance document refers to. The reason
of having two separate entities is to provide the provenance "chain": when a section is
used to create another CDA, we guarantee the possibility to locate the corresponding
provenance document for the originating CDA.

The parts related to activity, agent, and relations wasGeneratedBy and
wasAssociatedWith (lines 22-39) are the same as Listing 2. Instead, this document
features two more relations: used and wasDerivedFrom. In fact, those relations state
that the activity theobjectcreation used the entity theobject, and that thesegment,
was derived from theobject.

To sum up, the master document will have a provenance document similar to Listing 2,
and each section will have a document similar to Listing 3. It is worth noticing that this
segmentation fully respect the RIM model25.

Remark 2 CDA sectioning - It is worth pointing out that our implementation does
not depend on the DS4P method, but any template and segmentation strategies could
be plugged in or designed on demand. However, for the sake of the pilot, we consider
DS4P the default segmentation strategy for CDA sections. Therefore, whenever a CDA
document is submitted to the XDS repository (the Provide and Register Document Set
transaction) it is intercepted as per Section 4.2.1 and segmented accordingly. On each of
the generated section the provenance documents are created.

4.2.3 Managing provenance on blockchain

The provenance documents presented before are then autonomously created and stored
by a smart contract deployed on blockchain. Therefore, to Being the smart contract state
a key value store (see Section 3). we have:

〈K, V 〉 := 〈h(d), Pd〉

hence where K represents the list hash of PROV entities and V the associated PROV
document in XML format. To act on this state, "get" and "set" operations are defined.

25http://www.hl7.org/implement/standards/product_brief.cfm?product_id=7

18

1 <?xml version="1.0" encoding="UTF-8"?>
2 <prov:document xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xsi:schemaLocation="http://www.w3.org/ns/prov# http://www.w3.org/ns/prov.xsd"
4 xmlns:ex="urn:tiani:provenance"
5 xmlns:prov="http://www.w3.org/ns/prov#">
6 <prov:entity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:id="theobject">
7 <prov:label>The object document</prov:label>
8 <prov:location>Nashville, TN</prov:location>
9 <prov:type>XML</prov:type>
10 <prov:value>S52fkpF2rCEArSuwqyDA9tVjawUdrkGzbNQLaa7xJfA=</prov:value>
11 <ex:locationId>urn:oid:1.2.3</ex:locationId>
12 <ex:locationName>General Hospital</ex:locationName>
13 </prov:entity>
14 <prov:entity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:id="thesegment">
15 <prov:label>The CDA Segment</prov:label>
16 <prov:location>Nashville, TN</prov:location>
17 <prov:type>XML</prov:type>
18 <prov:value>E0nioxbCYD5AlzGWXDDDl0Gt5AAKv3ppKt4XMhE1rfo</prov:value>
19 <ex:locationId>urn:oid:1.2.3</ex:locationId>
20 <ex:locationName>General Hospital</ex:locationName>
21 </prov:entity>
22 <prov:activity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:id="theobjectcreation">
23 <prov:type>ex:CREATE</prov:type>
24 </prov:activity>
25 <prov:agent xmlns:ns1="http://www.w3.org/ns/prov#" ns1:id="agentidentifier">
26 <prov:type>1.2.3.4</prov:type>
27 <hpd:doctorid xmlns:hpd="IHEHPD">agentidentifier</hpd:doctorid>
28 <hpd:doctorname xmlns:hpd="IHEHPD">7.8.9</hpd:doctorname>
29 <hpd:idp xmlns:hpd="idp">urn:tiani-spirit:sts</hpd:idp>
30 </prov:agent>
31 <prov:wasGeneratedBy>
32 <prov:entity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:ref="theobject"/>
33 <prov:activity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:ref="theobjectcreation"/>
34 <prov:time>2018-11-10T12:15:55.028Z</prov:time>
35 </prov:wasGeneratedBy>
36 <prov:wasAssociatedWith>
37 <prov:activity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:ref="theobjectcreation"/>
38 <prov:agent xmlns:ns1="http://www.w3.org/ns/prov#" ns1:ref="agentidentifier"/>
39 </prov:wasAssociatedWith>
40 <prov:used>
41 <prov:activity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:ref="theobjectcreation"/>
42 <prov:entity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:ref="theobject"/>
43 </prov:used>
44 <prov:wasDerivedFrom>
45 <prov:generatedEntity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:ref="thesegment"/>
46 <prov:usedEntity xmlns:ns1="http://www.w3.org/ns/prov#" ns1:ref="theobject"/>
47 </prov:wasDerivedFrom>
48 </prov:document>

Listing 3: PROV document for CDA sections

Notably, in case of CDA sections, we may have collision of hash (when the same section
is used in multiple CDAs), thus we rely on version history to handle different PROV
templates.

The operations on the state are implemented in the Go language26 as part of a chain-
code. Such program, executed in a versioned, separated and isolated docker instance by
all the peers, has four main methods: Init executed when the chaincode is firstly de-
ployed in the blockchain, Invoke which is executed by either the command line interface
or by the Clients, and set and get, executed by the Invoke flow, as shown in Listing 4.

The Invoke expects one argument, shim, the stub to handle the blockchain trans-
26At the moment of writing Hyperledger only supports chaincode written in Go. Future support for Java and Python is

foreseen.

19

1 func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {
2 // Extract the function and args from the transaction proposal
3 log.Printf("Invocation of the chaincode called")
4 fn, args := stub.GetFunctionAndParameters()
5
6 if args == nil {
7 return shim.Error("No arguments passed")
8 }
9 log.Printf("Args len is %v", len(args))
10 creator, erro := stub.GetCreator()
11 if erro != nil {
12 return shim.Error(erro.Error())
13 }
14
15 // check who’s calling
16 log.Printf("Transaction from %s", creator)
17 // In fn I know if it is a query (get) or a update (set)
18 var result string
19 var err error
20
21 if fn == "set" {
22 log.Println("Obtanied a set")
23 result, err = set(stub, args)
24 log.Printf("Obtained result %v", result)
25 } else {
26 log.Println("Obtanied a get")
27 resultDocument, errno := get(stub, args)
28 if errno != nil {
29 return shim.Error(errno.Error())
30 }
31
32 m := ReturnedMessage{string(resultDocument)}
33 b, errMarshal := json.Marshal(m)
34 log.Printf("The value of the marshalled %s", b)
35 if errMarshal != nil {
36 return shim.Error(errMarshal.Error())
37 }
38 return shim.Success([]byte(b))
39 }
40 if err != nil {
41 return shim.Error(err.Error())
42 }
43 return shim.Success([]byte("PROCESSED_OK"))
44 }

Listing 4: Go code for the Invoke

action, and returns a object Response. The shim contains the arguments that will be
processed in the blockchain as JSon-encoded structure. As example, Listings 5 contains
the invocation for a transaction with id "1", to "set" information about a document with
hash starting with S52..., with an agent whose role is "medical doctor", whose identifier
(as National Provider Identifier27, npi) is npi:1.2.3.4, named "John Doe", and identified
by an identity provider named urn:oregon-state:comm-a:tiani-spirit:sts.

1 res := stub.MockInvoke("1", [][]byte{[]byte("set"), []byte("
S52fkpF2rCEArSuwqyDA9tVjawUdrkGzbNQLaa7xJfA="),

2 []byte("agentInfo.atype"),[]byte("Medical Doctor"),
3 []byte("agentInfo.id"),[]byte("npi:1.2.3.4"),
4 []byte("agentinfo.name"),[]byte("John Doe"),
5 []byte("agentinfo.idp"),[]byte("urn:oregon-state:comm-a:tiani-spirit:sts"),
6 []byte("action"),[]byte("ex:CREATE"),

27https://www.cms.gov/Regulations-and-Guidance/Administrative-Simplification/NationalProvIdentStand/

20

7 []byte("date"),[]byte("2018-11-10T12:15:55.028Z")})

Listing 5: Sample Invoke parameters

By recognizing the "set" transaction, the chaincode persists this information in the
blockchain by calling the orderer and performing the necessary protocol steps to propagate
the information to all peers connected to the channel. Note that if there is a collision,
e.g., in the event that the same document is inserted more than one time, the world state
of the blockchain is updated and versioned, thus to all the subsequent "get" operation the
full history of the provenance will be returned. After validating the input, the chaincode
creates the provenance XML to be persisted.

Similarly, the "get" operation expects only one input, a hash. If the hash is not found
in the blockchain, an error is returned. Otherwise the state and its history (if available)
is returned. If the Client receives a PROV document for a segment (as in Listing 3), it
will recursively call the "get" operation until a full document (as in Listing 2) is returned.
This effectively enables the "chaining" of provenance records. Responses are returned
as JSon-encoded objects containing the Base64-encoded provenance XML of the related
hash and its history.

The complete source code can be found in http://github.com/mascanc.

4.2.4 Mapping to FHIR provenance resource

The provenance resource is built to define a standardized way to exchange provenance
information (either in XML or JSON) about a specific entity out of a set of actions. FHIR
specifies the boundaries and the relationships about on how the resources shall be used.
Here, we report how we mapped PROV templates with FHIR provenance resources.

For instance, if a resource already contain elements that represent information about
how the resource was obtained, those elements should always be preferred than the prove-
nance resource. On contrast, we always use the PROV document in our model over other
information. In fact, provenance data can be embedded in CDAs28, or in Audit Trail/Se-
curity Events. In both cases, such data is not accountable: if a CDA is not signed and
thus integrity-protected, anyone can alter the provenance information. Similarly, audit
trails are also not signed.

The FHIR provenance format contains several concepts that are mapped to RIM (the
model behind the CDA), to PROV, and to Audits. Amongst the many, FHIR defines
the reason the activity took place, the activity that took place, the role that a provenance
agent played with respect to the activity, the type of relationship between two agents, and
how an entity was used in an activity. We used the PROV mappings and we extended
them to fully represent our templates (refer to Listings 2, and 3). The used mappings
are shown in Table 1.

In August, 2017, IHE promoted two integration profiles addressing provenance as
option, namely, Mobile Cross-Enterprise Document Data Element Extraction (mXDE) [3]
and Query for Existing Data for Mobile [5]. These two profiles, together with Mobile
Access to Health Documents, MHD29 create the ecosystem for an IHE-based scenario
that perfectly adapts to the proposed settings. In Figure 7, two actors are defined: the
provenance consumer, and the document element extractor.

28http://www.hl7.org/implement/standards/product_brief.cfm?product_id=420
29https://wiki.ihe.net/index.php/Mobile_access_to_Health_Documents_(MHD)

21

PROV FHIR Reason

Target URL of the entity resource Contains also the entity type/hash

Period empty All the actions that we consider are hap-
pening in one point in time

Recorded wasGeneratedBy/time
Generation is the completion of production
of a new entity by an activity [7]. In all the
actions that are considered, this sentence
holds.

Policy empty

No particular policy has been evaluated for
this pilot. However, implementations, are
encouraged to use and define policy identi-
fiers on, e.g., how to disclose this informa-
tion, or depending on a specific standard,
e.g., [3, 5]

Location empty

In our model the provenance information
is traveling together with the document it-
self. This is enforced by the intercept-at-
repository concept, thus the location is not
reported in this field. Moreover, the recur-
sive calls for provenance allows to recon-
struct the full chain of information

Reason activity/type This is the definition of the activity per-
formed

Agent

It is constructed on the basis of
the agent as follows: role is con-
structed as per IHE XUA [4, 3.40] as
doctorname<doctorid@idp>, onBehalfOf
not used since we rely on the same
information which are already presented
in the SAML assertion (if in case),
relatedAgentType is empty

Table 1: Mapping PROV templates and FHIR Provenance resource

By using the IHE grouping mechanism (in which integration profiles’ requirements
are "merged" together to face complex clinical use cases), the provenance consumer can
be implemented as XDS Document Consumer (as in our case) or a MHD document
consumer. By intercepting the MHD Provide Document Bundle transaction [4], and
various MHD queries for documents, our architecture fulfils the profile’s dictates, and
can be integrated in such deployments. In particular, on server side, the Data Element
Extractor is logically grouped as XDS document registry, or MHD document responder.
Notably, QEDm actors are abstraction layers used to respect the "grouping" methodology
of IHE. They do not provide any message functionality, but only content-level semantic
definitions.

5 Conclusions
This proposal builds on existing international standards and innovate them using
blockchain technology, which is the de-facto standard for security and immutability of
records. By using a performant and secure-by-design approach, the propose solution scale
up to billions of records and citizens. This scalability is proven by the existing standards
(e.g., the Sequoia project, the NwHIN), and well-established blockchain applications.
Related work. Data Provenance and blockchain are not a novel field of research. In par-

22

Figure 7: Figure of the IHE profiles mXDE, MHD, and QEDm

1 <Provenance xmlns="http://hl7.org/fhir">
2 <id value="0%2Fi%2FSYqvJrKmuU0QCjOtBMJYy2JNqcMidJHNWIeY6fc%3D"/>
3 <recorded value="2018-01-19T17:19:35.489+01:00"/>
4 <reason>
5 <system value="http://hl7.org/fhir/v3/DataOperation"/>
6 <code value="CREATE"/>
7 <display value="create"/>
8 </reason>
9 <agent>
10 <role>
11 <coding>
12 <system value="http://hl7.org/fhir/provenance-entity-role"/>
13 <code value="source"/>
14 <display value="Source"/>
15 </coding>
16 </role>
17 <whoReference
18 id="Some Dr. accessing ELGA<[GP Hospital IDP @ GP Hospital]@urn:gda:tiani-spirit:sts>"
19 />
20 </agent>
21 </Provenance>

Listing 6: FHIR Provenance Resource Example

ticular, for blockchain-specific software, in [12] it is acknowledged the need for better tools
and techniques for blockchain applications, effectively naming it as Blockchain-Oriented
Software Engineering. The Provenance company30 offers a blockchain-based solution to
reconstruct the provenance tracks for food. Also the Hyperledger Fabric offers a solution
for provenance based on storing hashes values of an asset31. Many other solutions are
offered also in healthcare, like, e.g., Ernst & Young32, or Ark Invest Research33, or IBM34.
Our proposal differs from these approaches because it is entirely based on worldwide open
standards, thus avoiding the vendor lock-in effect and guaranteeing interoperability.

30http://www.provenance.org
31https://www.hyperledger.org/community/projects/sawtooth/info
32http://www.ey.com/Publication/vwLUAssets/ey-blockchain-in-health/$FILE/ey-blockchain-in-health.pdf
33http://research.ark-invest.com/blockchain-and-healthcare
34https://www.ibm.com/blogs/watson-customer-engagement/2017/04/11/blockchain-supply-chain/

23

References
[1] N. Asokan. Fairness in electronic commerce. PhD thesis, Waterloo, 1998.

[2] Vasa Curcin, Elliot Fairweather, Roxana Danger, and Derek Corrigan. Templates as
a method for implementing data provenance in decision support systems. Journal
of Biomedical Informatics, 65:1 – 21, 2017.

[3] IHE. Mobile cross-enterprise document data element extraction (mxde). Web, July
2007.

[4] IHE. Ihe technical framework, http://www.ihe.net/uploadedFiles/Documents/
ITI/IHE_ITI_TF_Vol2b.pdf. Webpage, 2017.

[5] IHE. Query for existing data for mobile. Web, July 2017.

[6] Massimiliano Masi, Abdallah Miladi, Andrea Margheri, Vladimiro Sassone, and Ja-
son Rosenzweig. Using blockchain technology to achieve health data provenance,
2017.

[7] Paolo Missier, Khalid Belhajjame, and James Cheney. The w3c prov family of
specifications for modelling provenance, 2013.

[8] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. Available at
https://bitcoin.org/bitcoin.pdf.

[9] NEPCon. Is chain of custody certification a “myth”? http://www.nepcon.org/
newsroom/chain-custody-certification-myth. Webpage, October 2014.

[10] OASIS Security Services TC. Assertions and protocols for the OASIS security as-
sertion markup language (SAML) v2.02, 2005. http://docs.oasis-open.org/
security/saml/v2.0/saml-core-2.0-os.pdf.

[11] OASIS Web Services Security TC. Cross enterprise security and privacy authoriza-
tion profile for xacml for healthcare, 2009.

[12] Simone Porru, Andrea Pinna, Michele Marchesi, and Roberto Tonelli. Blockchain-
oriented software engineering: Challenges and new directions. 2017.

[13] Matthew Tegart W Kuan Hon, John Palfreyman. Distributed ledger technology and
cybersecurity. Technical report, ENISA, 2016.

[14] W3C. Xml signature syntax and processing- https://www.w3.org/TR/
xmldsig-core1/, 2013.

[15] G. Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, 2017.

[16] Simon Miles Yolanda Gil. Prov model primer. Webpage, April 2013.

24

