Teorema de Lindemann–Weierstrass

(Redirigido desde «Teorema de Lindemann-Weierstrass»)

El teorema de Lindemann–Weierstrass es un resultado muy útil para establecer la trascendencia de un número. Afirma que si α1, α2, ...,αn son números algebraicos linealmente independientes sobre el cuerpo de los números racionales , entonces son algebraicamente independientes sobre ; es decir, el grado de trascendencia de la extensión del cuerpo sobre es n.

Lindemann demostró en 1882 que eα es trascendente para todo α algebraico no nulo, y de este modo estableció que π es transcendente. Weierstrass demostró la forma más general de este teorema en 1885.

El teorema anterior junto con el Teorema de Gelfond-Schneider, está generalizado por la conjetura de Schanuel.

Trascendencia de e y π

editar

La trascendencia de e y π se obtiene como corolario de este teorema.

Supongamos que α es un número algebraico no nulo; entonces {α} es un conjunto linealmente independiente sobre los racionales y por lo tanto {eα} es un conjunto algebraicamente independiente; en otras palabras, eα es trascendente. En particular, e1 = e es trascendente.

Probemos ahora que π es trascendente. Si π fuese algebraico, 2πi también lo sería (porque 2i es algebraico), y por tanto, según el teorema de Lindemann-Weierstrass ei = 1 es trascendente. Pero sabemos que 1 es racional y por tanto π es necesariamente trascendente.

Véase también

editar

Enlaces externos

editar

Referencias

editar
  1. Alan Baker, Transcendental Number Theory, Cambridge University Press, 1975, ISBN 0-521-39791-X. Chapter 1, Theorem 1.4.
  2. F. Lindemann, Über die Zahl π, Mathematische Annalen, vol. 20 (1882), pp. 213-225.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy