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Why live patching?

• Common tiers of change management:

1. Incident response – (we're down, actively exploited …)

2. Emergency change – (we could go down, are vulnerable …)

3. Scheduled change – (time is not critical, we keep safe)

• Live patching fits in with 1 and 2

• Rebooting a 1000 servers is not a quick way to fix a 
pressing issue and also carries the risk of them not 
coming up for other reasons

• Live patching allows quick response and leaving an 
actual update to a scheduled downtime window
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What is kGraft?

• A research project

• A live patching technology

• Developed by SUSE Labs

• Specifically for the Linux kernel

• Based on modern Linux technologies
‒ INT3/IPI-NMI self-modifying code

‒ RCU-like update mechanism

‒ mcount-based NOP space allocation

‒ standard kernel module loading/linking mechanisms
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Advantages of kGraft

• Doesn't require stopping the kernel, ever
‒ not even for short time periods unlike other technologies

• Allows code review on kGraft patch sources
‒ kGraft patch can be built from C source directly, without the 

need for object code manipulation

‒ Object-code based automated patch generation is provided as 
an alternative

• kGraft is lean
‒ Small amount of code thanks to leveraging other Linux 

technologies, no complex instruction decoders or such
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How does kGraft work?

• A kGraft patch is a .ko kernel module in a KMP RPM

• The .ko is inserted into the kernel using 'insmod' at 
RPM install or update time

• kGraft replaces whole functions in the kernel
‒ even while those functions may be executed

• An updated kGraft RPM/module can replace an 
existing patch
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Limitations

• kGraft is designed for fixing critical bugs
‒ and thus primarily for simple changes

• Changes in kernel data structure layout require 
special care
‒ and depending on the size of the change, the change may not 

be possible to do without rebooting at all – same as with other 
live patching tech

• kGraft depends on a stable build environment
‒ and thus best suited for Linux distributions, their customers or 

anyone who builds their own kernels, rather than 3rd party 
support companies
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kGraft in detail: where to patch

• To patch a function, kGraft needs some space at the 
start of a function

• This is, fortunately provided by GCC's profiling code

• ftrace uses the compiler profiling options (-pg) to 
obtain this space (__fentry__ call)

• __fentry__ call instructions are patched out at boot 
and replaced with 5-byte NOPs

• kGraft uses the same space
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kGraft in detail: where to patch
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kGraft in detail: code flow redirection

• kGraft uses the same infrastructure as ftrace to 
perform patching

• INT3 handler is installed with a JMP to the destination 
address

• first byte of NOP is replaced by INT3, taking care of 
incomplete instruction

• remaining bytes are replaced by address

• first byte is replaced by JMP

• NMI IPIs are used throughout to flush instruction 
decoders on other CPUs
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kGraft in detail: code flow redirection
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kGraft function in detail: new function

• Patching during runtime, no stop_kernel();

• Callers are never patched

• Rather, callee's NOP is replaced by a JMP to the new 
function

• So a JMP remains forever

• But this takes care of function pointers, including in 
structures

• And doesn't require saving any old data in case we 
want to un-patch
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kGraft function in detail: new function
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kGraft in detail: RCU-like replacement

• So what happens when a replaced function changes 
semantics and subsequent calls rely on each other?

• Or when it is called recursively?

• We need to provide a consistent 'world-view' to each 
execution thread
‒ user processes

‒ interrupts

‒ kernel processes

• This is done through a "reality check" trampoline and 
a per-thread flag set on each kernel entry/exit
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kGraft in detail: RCU-like replacement
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kGraft in detail: RCU-like replacement
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kGraft in detail: RCU-like replacement

• All processes must wake up or execute a syscall

• Sometimes this requires a signal to be sent (like for 
getties)

• Once all processes have the "new universe" flag set, 
patching is complete and trampolines can be removed
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kGraft in detail: RCU-like replacement
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kGraft in detail: Automatic generation

• Start with a list of functions to be replaced

• This is automatically extended by any functions that 
inline them based on original kernel debuginfo

• Patched kernel is compiled with 

-ffunction-sections -fdata-sections

• Modified objcopy copies all functions and required 
symbols into a .o file

• A stub .c file is generated including module init, kgraft 
register, and references to functions

• Both are compiled and linked into a .ko module
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Get it

• Upstreaming
‒ kGraft will be submitted into Linus's upstream kernel

‒ SUSE will work together with the community to create a 
common standard kernel live patching solution

‒ Suggestions welcome!

• Publishing
‒ kGraft code has become available in a GIT repository TODAY

https://git.kernel.org/cgit/linux/kernel/git/jirislaby/kgraft.git

https://git.kernel.org/cgit/linux/kernel/git/jirislaby/kgraft.git
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Read more about kGraft

• Initial blogs
https://www.suse.com/communities/conversations/kgraft-live-kernel-patching/

https://www.suse.com/communities/conversations/need-kgraft-2/

• Video of kGraft in action
https://www.youtube.com/watch?v=d8Y89obtNI8

• Articles/interviews
https://www.linux.com/news/featured-blogs/200-libby-clark/764542-suse-labs-directo
r-talks-live-kernel-patching-with-kgraft

http://www.serverwatch.com/server-news/linux-kernel-patching-get-dynamic.html

• Collaboration summit talk
http://collaborationsummit2014.sched.org/event/0d798ed17bfaa0361d0aec63f233
1c8d

https://www.suse.com/communities/conversations/kgraft-live-kernel-patching/
https://www.suse.com/communities/conversations/need-kgraft-2/
https://www.youtube.com/watch?v=d8Y89obtNI8
https://www.linux.com/news/featured-blogs/200-libby-clark/764542-suse-labs-director-talks-live-kernel-patching-with-kgraft
https://www.linux.com/news/featured-blogs/200-libby-clark/764542-suse-labs-director-talks-live-kernel-patching-with-kgraft
http://www.serverwatch.com/server-news/linux-kernel-patching-get-dynamic.html
http://collaborationsummit2014.sched.org/event/0d798ed17bfaa0361d0aec63f2331c8d
http://collaborationsummit2014.sched.org/event/0d798ed17bfaa0361d0aec63f2331c8d
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