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Nan Jiang1,2,3, Yan Xu1,2,3, Tianhe Xu4,5, Guochang Xu3, Zhangzhen Sun3, Harald Schuh1,2 

 

Abstract 

The Chinese BeiDou Navigation Satellite System (BDS) has completed its first 
milestone by providing coverage of the Asia-Pacific area navigation service since 
December 27, 2012. With the combination of BDS, the GNSS precise point 
positioning (PPP) can improve its positioning accuracy, availability, and reliability. 
However, in order to achieve the best positioning solutions, the inter-system bias (ISB) 
between GPS and BDS must be resolved as precisely as possible. In this study, a one 
week period (GPS week 1810) of GPS/BDS observations for 18 distributed stations 
from the International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) are 
processed. Primarily, the ISB is estimated by an extended Kalman filter (EKF) as a 
piece-wise parameter every 30 minutes. Then we generate a smoothed ISB series 
(ISB_s) with a sliding window median filter to reject the outliers from the original 
estimated ISB series (ISB_o). After analyzing the characteristics of the ISB_s, a 
short-term station-dependent ISB model based on a one week period is proposed in 
this study. This model consists of a quadratic polynomial in time and two or three 
periodic functions with diurnal and semi-diurnal periods. Frequency spectrum 
analysis is used to determine the periods of the periodic functions and the coefficients 
of the quadratic function and the periodic functions are estimated by least squares 
(LS). For model verification we compare the ISB derived from the model (ISB_m) 
with ISB_s (assumed the true values). The comparisons indicate an almost normal 
distribution. It is found that the proposed model is consistent with the true values: the 
root mean square (RMS) values being about 0.7 ns, and some stations are even better. 
This means that the short team ISB model proposed has a high fitting accuracy. Hence, 
it can be used for ISB prediction. Comparing the prediction ISB series (ISB_p) with 
ISB_s in the following week (GPS week 1811), we can draw the conclusion that the 
accuracy of the prediction declines with increase of the time period. The one day 
period precision can achieve 0.57-1.21 ns, while the accuracy of the two day 
prediction decreases to 0.77-1.72 ns. Hence we recommend a predicting duration of 
one day. The proposed model will be beneficial for subsequent GPS/BDS PPP or 
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precise orbit determination (POD) since the ISB derived from this model can be 
considered as a priori constraint in the PPP/POD solutions. With this a priori 
constraint, the convergence time can be shortened by 19.6%, 16.1%, and 2.4% in N, E, 
and U components, respectively. The accuracy of result in the E component is 
remarkably improved by 11.9%. 
 
Keywords  Inter-system bias (ISB)   BeiDou   GPS   Frequency spectrum 
analysis   MGEX   Precise point positioning 
 
 

Introduction 

 
Research on Precise Point Positioning (PPP) using multi-GNSS observations has 
become increasingly popular. It is expected that multi-GNSS PPP will improve its 
solution accuracy, reliability, and availability by improving satellite geometry, 
especially in difficult terrain conditions where there are limits in sky view. The 
increase in the number of the observed satellites is helpful for shortening the 
initialization time and eliminating the existing position errors caused by the periodic 
regression of satellite constellations (Flohrer 2008). However, a minimum 
requirement for fusion of multi-GNSS data is the calibration of inter-system biases 
(ISB).  

Currently most geodetic receivers available on the market are not calibrated, 
which leaves the instrument hardware delay unknown (Chen et al. 2015). It is 
assumed that the receiver clock will assimilate this delay in GPS-only processing. But 
in multi-GNSS processing the hardware delay is a system-dependent parameter 
(Wanninger 2012; Nadarajah et al. 2013; Odijk et al. 2013). Hence, ISB should be 
estimated together with the receiver clock parameter and other unknown parameters. 
An initial study of the GPS/BDS ISB was conducted by Nadarajah et al. (2013) for 
integer ambiguity resolution. Torre et al. (2014) presents an analysis of inter-system 
biases for GPS/BDS/GLONASS/Galileo/QZSS with different types of receivers. 
Moreover, ISB was applied to GPS/BDS single-frequency short baseline RTK (Zhao 
et al. 2014; Odolinski et al. 2015a) and long baseline relative positioning (Odolinski et 
al. 2015b; Wang et al. 2015). Nadarajah et al. (2014) carried out research on 
instantaneous attitude determination with GPS/BDS data. In the case of GPS/BDS 
PPP and ZTD/PWV retrieval (Li et al. 2015; Li et al. 2015a, 2015b; Lu et al. 2015), it 
was also necessary to take ISB into account. 

The research mentioned above only refer to ISB estimation and its applications, 
but do not involve ISB modelling. If the ISB of GPS/BDS can be properly represented 
as a model, the accuracy of GPS/BDS combined positioning will be improved and the 
estimation time can be shortened because the ISB is considered an a priori constraint. 
In this contribution, we investigate the characteristics of the ISB between GPS and 
BDS so as to develop a short term (one week) station-dependent model. One week 
period (GPS week 1810) observations of 18 distributed stations from the IGS’s 
MGEX are processed in PPP mode to estimate ISB. We apply a sliding window 
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median filter to remove the outliers of the original estimated ISB series (ISB_o) in 
order to obtain a smoothed ISB series (ISB_s). Based on the one week ISB_s 
(assumed true value), the station-dependent model can be expressed in the form of 
some periodic functions with different periods plus a quadratic function. After that, 
we apply frequency spectrum analysis to detect the periods of the periodic function 
(Mann et al. 1989). We introduce a least-squares (LS) approach to estimate the 
coefficients of the terms of the quadratic function and periodic functions. In order to 
assess the fitting accuracy of the proposed model, the ISB derived from the model 
(ISB_m) is compared with ISB_s. We  evaluate the precision of the ISB prediction 
with this model on a day by day basis over the subsequent week (GPS week 1811). In 
order to verify the contribution of the ISB model as an a priori constraint, the 
convergence time and the accuracy of PPP result are tested. 

We begin with a brief description of the GPS/BDS tracking data from MGEX. 
We then describe the PPP model for ISB estimation, the processing strategies be used 
in the experiments, and the method of frequency spectrum analysis and least squares 
(LS). The accuracy analysis of the short term ISB model and a study of the prediction 
quality are then presented. In this part, the convergence time and accuracy of PPP 
result with a priori constraint of ISB are also discussed. Finally, the summary and 
conclusions is given . 
 
 

GPS/BDS Tracking data 

 
At the time GPS launched its modernization program, China independently 
established the BeiDou Navigation Satellite System (BDS). The two-phase schedule 
enables its rapid evolution to a global system starting with providing regional 
coverage around the Asia-Pacific area. The initial satellite system was operational by 
the end of 2012. It consists of five geostationary orbit satellites (GEO), four medium 
earth orbit satellites (MEO) and six inclined geosynchronous orbit satellites (IGSO). 
BeiDou-3 M1, which is the first one of next-generation BeiDou satellites, was 
launched into an IGSO orbit on March 30, 2015 (http://en.beidou.gov.cn/). An 
operational global navigation satellite system will be available from around 2020 
(Yang et al. 2011). 

The MGEX is an IGS project to track, collate, and analyze all available GNSS 
signals. This includes data from GPS, GLONASS, BeiDou, and Galileo, Quasi-Zenith 
Satellite System (QZSS), the Indian Regional Navigation Satellite System (IRNSS) 
and space-based augmentation systems (SBAS). Over several years development, a 
network of multi-GNSS monitoring stations has been deployed around the globe in 
parallel to the legacy IGS network for GPS and GLONASS. The MGEX network has 
now grown to more than 100 stations and it provides an excellent opportunity to track 
multi-GNSS constellations and to conduct tracking data analysis. At the time of 
preparation for this study, about 30 stations are capable of making GPS and BDS 
observations (Montenbruck et al. 2013). 

GPS and BDS observations during GPS week 1810 (7 days from Sept. 14 - 20, 
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2014) of 18 stations from the MGEX network are processed in PPP mode for ISB 
estimation and modelling. The observations during GPS week 1811 (7 days from Sept. 
21 27, 2014) are used for assessing the accuracy of the prediction model. The 
distribution of the GPS and BDS tracking stations is shown in Figure 1. 

 

Fig. 1 Distribution of GPS/BDS stations in the MGEX network 

 
 

Estimation model and processing strategy 

 
Here the PPP solution model is applied for ISB estimation, which can be derived 
together with other unknown parameters. We use an extended Kalman filter to 
estimate the ISB as a piece-wise constant every 30 min. Afterwards the ISB can be 
modelled as a quadratic function plus several periodic functions. Hence we employ a 
frequency spectrum method to detect the different periods of periodic functions. LS is 
applied to determine the coefficients of both types of functions. 
 

GPS/BDS PPP model for ISB estimation 

 
In general, the ionospheric-free (IF) pseudorange and phase observations are utilized 
in PPP to eliminate the first-order effect of the ionosphere. The observation equations 
can be written as (Kouba 2009): 

            (1) 

where and   are the ionospheric-free combination of pseudorange and carrier 

phase, respectively,  is the speed of light,  and  denote the receiver and 

satellite clock biases, ,   and ,   are the pseudorange and carrier phase 

hardware delay biases of the ionospheric-free function for receivers and satellites,  

is the tropospheric delay,   is the phase ambiguity in units of meters; 	and  
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denote unmodelled parameters (e.g. the measurement noise and multipath errors for 

pseudorange and carrier phase), and  denotes the geometric distance between the 

phase centers of the satellite and the receiver antennas at the signal transmission and 
reception time, respectively. The phase center offset and variation, relativistic effects, 
tidal loading, ocean tide, earth rotation effects, and phase wind-up must be corrected 
for according to existing models (Kouba 2009), although they are not explicitly 
included in the equations.  

For GNSS observations, the pseudorange hardware delay biases ,   are 

assimilated into the clock offset . In most GNSS data processing, the 

carrier phase hardware delay biases ,   are not considered. The carrier phase 

hardware delay bias is satellite-dependent and stable over time, thus it is absorbed by 
the ambiguity (Defraigne et al. 2007; Geng et al. 2012). Upon using precise satellite 
orbits and clocks, equation (1) can be rewritten as: 

                      (2) 

where and are the modified receiver clock and ambiguity: 

                         (3) 

Equation (2) indicates the PPP observation equation, in which the satellite hardware 
delays can be removed when applying the precise satellite clocks (Defraigne et al. 
2007). From (3) we see that the ambiguity is not an integer as it contains the bias term; 

the term  refers to the uncalibrated phase delay (Ge et al. 2008) 

GPS/BDS PPP refers to combined PPP using observations from the GPS and 
BDS satellite constellations, where precise satellite orbits and clock products are 
available accord from the MGEX analysis centers. The GPS/BDS PPP model requires 
the estimation of an additional inter-system bias (ISB) parameter, hence the combined 
observation model can be expressed as: 

                (4) 
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units of time. It will be modelled as an unknown parameter and estimated together 
with the other parameters such as coordinates and receiver clock. So we can consider 

the estimated parameter vector  to be: 

, , , , , , ,G C
rX x y z dt ISB T N N                       (5) 

where GN , CN are modified ambiguity parameters of GPS and Beidou. An 

extended Kalman filter is employed to estimate the unknown parameters in the 
processing. 

The estimation of the ISB parameter can be performed in three different ways: as 
epoch-wise variable, piece-wise constant, or daily constant. For rigorous data analysis, 
ISB should be estimated on an epoch-wise basis. However this approach will 
introduce too many unknown parameters and reduce the efficiency of the solution. 
Paziewski et al. (2015) made a detailed analysis of ISB estimation using 
double-difference measurements from various receivers. They reported that the ISB 
values estimated as a constant parameter for “longer pieces” showed better 
repeatability than when estimating an epoch-varying parameter. Considering not only 
the current PPP accuracy limits, but also the computing speed, we choose the 
piece-wise constant ISB model as the optimal approach. 

During preprocessing we detect and repair clock jumps in order to avoid the 
misidentifying an observation jump caused by the receiver clock jump as a cycle slip. 
Then the Geometry-Free (GF) and Hatch-Melbourne-Wubbena (HMW) (Hatch 1982) 
combinations are used to detect cycle slips. An extended Kalman filter (EKF) is 
employed to estimate the unknown parameters. A cutoff elevation angle of 7° and an 
elevation-dependent weighting method are applied. MGEX precise satellite orbits and 
clocks from the GFZ analysis center are used in the GPS/BDS PPP processing. The 
tropospheric delay is corrected for its dry component using the Saastamoinen model, 
while the residual zenith wet delay is estimated as a random-walk process. We apply 
the Global Mapping Function (GMF) (Boehm et al. 2006) to convert zenith delay to 
slant delay. Moreover, the phase-wind up effects (Wu et al. 1992), the solid earth tide, 
the ocean loading tide (Petit et al. 2010) and relativistic effects are also considered. 
However, the satellite phase center variation (PCV) and the receiver phase center 
offset (PCO) and PCV corrections for BDS are not applied since they are not yet 
known to sufficient accuracy. Table 1 summarizes GPS/BDS observation models and 
data processing strategies. 
 

 

Table 1 Observation models and data processing strategies for GPS/BDS PPP 

Item Models and Strategies 

Tracking data 
18 stations of MGEX network with GPS/BDS 
observations 

Estimator Extended Kalman filter (EKF)  

Observations 
Undifferenced ionospheric-free code and phase 
combination 

X
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Signal selection GPS: L1/L2, BDS: B1/B2 
Elevation angle cutoff 7° 
Sampling rate 30s 
Precise obit Fixed, MGEX precise ephemeris from GFZ 15min 
Precise clock biases Fixed, MGEX combined precise clock from GFZ 5min 
Observation weight Elevation dependent weight 
Tropospheric delay Saastamoinen model & random walk process 
Mapping function Global Mapping Function (GMF)  

Ionospheric delay 
First order effect eliminated by ionospheric-free linear 
combination 

Phase-windup effect Corrected 

Earth rotation  Fixed, IGS ERP product 

Satellite Antenna PCO & 
PCV 

Applied for GPS; PCO applied for BDS 

Receiver Antenna PCO & 
PCV 

Applied for GPS; not applied for BDS 

Relativistic effects IERS Convention 2010 

Solid Earth tides IERS Convention 2010 

Pole tides IERS Convention 2010 

Ocean tides IERS Convention 2010 

Receiver clock biases Estimated as white noise for each epoch 

Phase ambiguity Estimated as constant for each ambiguity arc 

Time system GPS Time 

Terrestrial frame ITRF2008 

ISB Estimated as a piece-wise constant every 30min 

 

 

ISB modelling and coefficients estimation 

 
Taking the characteristic of ISB into account, the fitting model can be expressed as a 
sum of a quadratic function and several periodic functions. We apply frequency 
spectrum analysis to detect the different periods of the periodic functions. The 
frequency spectrum can be generated via a Fourier transform of the time-domain 
signal, and the resulting values are usually presented as amplitude versus frequency 
(Mann et al. 1989). Any signal that can be represented by an amplitude that varies 
with time has a corresponding frequency spectrum. In this study, we use a fast Fourier 
transform (FFT) to analyze the ISB signal frequency spectrum. FFT, an algorithm to 
compute the discrete Fourier transform (DFT) and its inverse, rapidly converts time to 



8 
 

frequency and vice versa (Bergland 1969). The specific algorithm of FFT refers to 
(Duhamel et al. 1990). 

After the periods have been detected, LS is applied to determine the coefficients 
of the periodic functions together and the quadratic function. Due to the application of 
the sliding window median filter, we can obtain a clean ISB set of values without 
outliers. Hence, LS is suitable to estimate the unknown coefficients. However, it is 
recommended to apply robust least-squares (Zhou 1989; Yang et al. 2002), on account 
of its outstanding capacity for data quality control (outliers detecting and repairing). 
 
 

Analysis and Results 

 

In this part, the accuracy of the PPP model for ISB estimation is analyzed. We also 
obtain a short term model of ISB and the derived ISB, which is compared with the 
true value. The comparison shows that the derived ISB from the model agrees well 
with the true value. Then the predicted accuracy of the model is tested. In the end, the 
convergence time and positioning accuracy are both studied. 
 

Accuracy of PPP 

 
As a first step the accuracy of the PPP solution which will affect the accuracy of the 
ISB should be evaluated. Hence high-precise PPP is a precondition for ISB estimation. 
In order to assess the accuracy of the GPS/BDS PPP processing, we processed the 
aforementioned 18 stations from the MGEX network for the period of GPS week 
1810. All the data are processed at the 30-sec sampling interval. We compared the 
daily position estimates with the IGS daily solutions in north, east, and up 
components. RMS statistics of the residuals between GPS/BDS daily static PPP and 
the IGS daily solution are used to assess the external positioning precision.  

As example, Figure 2 shows the mean RMS values of the differences between the 
GPS/BDS daily static PPP and the IGS daily solution for week 1810 at seven stations 
(CAS1, MAJU, MAL2, NNOR, REUN, TUVA, and XMIS). In this plot, the averaged 
RMS of the north and east components are 0.26-0.80 cm and 0.70-1.78 cm 
respectively, which confirms that the PPP solution has a horizontal accuracy of better 
than 2 cm. The mean RMS of the up component is 1.43-5.86 cm, but even more than 
half of all stations are better than 2 cm. 
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Fig. 2 Mean RMS statistics of coordinate differences between GPS/BDS daily static PPP and IGS 

daily solution for each station in north, east and up components over GPS week 1810. 

 
The daily statistic of the whole week are summarized in Table 2, which shows not 

only the errors between the daily PPP results and the IGS daily solution in week 1810 
for seven stations, but also the mean error of each station and the whole week period. 
The daily comparison for MAJU station on the fifth day of week 1810 is blank, 
because there is no positioning result for the station in the SINEX file provided by 
IGS on that day. We can see that the mean RMS values of all stations during one week 
are 0.51 cm, 1.38cm, and 2.88 cm for the north, east and up components, respectively. 
The mean RMS of all stations further confirms the high accuracy of the GPS/BDS 
PPP processing.  

 

Table 2 Daily and mean RMS of residuals of the PPP position estimates against the IGS daily 

solutions for GPS week 1810 (unit: cm) 

Day of week 

1810 
1 2 3 4 5 6 7 Mean 

CAS1 

N 0.84 0.56 1.31 0.49 1.33 0.47 0.66 0.80 

E 1.85 2.33 2.58 0.59 1.95 2.04 1.16 1.78 

U 4.95 6.83 6.28 6.88 5.08 6.42 4.61 5.86 

MAJU 

N 0.30 0.38 0.83 0.22  0.39 0.14 0.37 

E 0.87 1.49 0.48 0.86  1.30 1.46 1.07 

U 2.34 0.55 0.99 1.68  0.24 2.91 1.45 

MAL2 

N 0.22 0.09 0.21 0.39 0.05 0.7 0.07 0.24 

E 1.02 0.37 0.37 1.81 0.83 0.16 0.38 0.70 

U 2.08 1.88 2.43 0.72 2.56 0.53 0.83 1.57 
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NNOR 

N 0.6 0.86 0.79 0.71 0.61 0.75 0.42 0.67 

E 2.08 1.95 1.87 0.98 0.9 1.66 0.92 1.48 

U 3.82 3.48 4.01 3.56 4.97 3.31 2.77 3.70 

REUN 

N 0.73 0.79 0.74 0.56 0.4 0.4 0.32 0.56 

E 1.58 1.78 1.33 1.5 1.52 1.45 1.5 1.52 

U 0.47 0.41 1.19 2.73 1.13 1.81 2.25 1.43 

TUVA 

N 0.75 0.65 0.67 1.05 0.26 0.75 0.85 0.71 

E 2.53 1.01 2.13 1.07 1.53 1.53 1.90 1.67 

U 3.98 3.34 2.30 1.14 0.87 0.96 1.18 1.96 

XMIS 

N 0.16 0.16 0.12 0.53 0.42 0.19 0.29 0.26 

E 1.18 1.28 1.07 1.23 1.4 2.19 2.18 1.50 

U 3.73 4.66 5.14 4.25 4.15 3.96 3.57 4.20 

ALL N 0.51 E 1.38 U 2.88 

 

 

ISB estimation and the short-term model 

 
In order to evaluate the performance of ISB estimation and validate the short-term 
station-dependent model for ISB, we carry out the processing of 18 stations from the 
MGEX network for GPS week 1810 according to the processing strategy described 
above and summarized in Table 1. We process ISB as a piece-wise parameter every 30 
mins in PPP mode. 

Figure 3 shows the original ISB series (ISB_o) and the smoothed ones (ISB_s) at 
eight stations from the MGEX networks during GPS week 1810 as examples. The 
stations are CAS1, MAJU, MAL2, MAYG, NNOR, REUN, TUVA and XMIS. These 
stations were selected because they can observe more than four BDS satellites and 
have reliable and continuous data during the period under consideration. The receiver 
types and firmware versions of the eight stations are shown in Table 3, where one can 
see that the receiver models of Trimble NetR9 and SEPT POLARX4 are widely 
installed at MGEX stations. The ISB_o and ISB_s are displayed in blue and red colors 
respectively. It should be noted that the ISB_o has many outliers and considerable 
noise. Therefore we apply a sliding window median filter to generate the smoothed 
ISB series, because the median has good capability of rejecting outliers. It is obvious 
that the filtered ISB series is more robust and smoother than the original series. The 
sliding window median filter can effectively remove the outliers and improve the 
reliability of the estimated ISB. From the characteristics of ISB_s, the model for ISB 
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can be approximated by a quadratic function plus some periodic functions. 
 

Table 3 Stations and receiver types at 8 stations under consideration 

Station ID Receiver type/ Firmware version 

CAS1 Trimble NetR9  4.81 

MAJU Trimble NetR9  4.81 

MAL2 SEPT POLARX4  2.5.1p1 

MAYG TRIMBLE NETR9  4.85 

NNOR SEPT POLARX4  2.5.1p1 

REUN Trimble NetR9  4.85 

TUVA Trimble NetR9  4.81 

XMIS Trimble NetR9  4.85 

 

 
Fig. 3 Original (ori) and smoothed (smo) ISB series in nanoseconds during GPS week 1810 at 

stations CAS1 (a), MAJU (b), MAL2 (c), MAYG (d), NNOR (e), REUN (f), TUVA (g), and XMIS 

(h) for the 30 min sampling interval 

 

In order to validate this modelling strategy, we use the approaches outlined above. 
The model can be represented in the following form: 

      (7) 

where , , and  are the coefficients of the quadratic, first-order, and constant 
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and and  represent the current epoch time and the reference epoch time. In this 

study  is the first epoch time in GPS week 1810. The coefficients of both 

functions are estimated by LS and the different periods of the periodic functions are 
derived from frequency spectrum analysis. The results are shown in Table 4. It can be 
noted that GPS/BDS ISB of all eight stations has a quadratic function and two or three 
periodic functions, which commonly contain one day and semi-diurnal periods. 
 

Table 4 Coefficients and periods of quadratic and periodic function at 8 stations under 

consideration. The value of  is the number of epoch with 30min interval. 

Coefficient/ 
period 

      

CAS1 0.000084 -0.000002 93.462 

-1.103 -0.691 48 

0.095 0.152 24 

-0.344 -0.224 16 

MAJU 0.000077 0.002091 112.964 

-0.121 -1.374 48 

0.583 -0.215 24 

0.029 -0.193 33.6 

MAL2 0.000096 -0.005940 65.116 
0.188 0.571 48 

-0.428 -0.476 24 

MAYG 0.000064 0.005136 101.026 
-0.606 0.613 48 

-0.134 -0.227 24 

NNOR 0.000052 0.008957 63.672 
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-0.509 0.304 28 

XMIS 0.000070 0.004422 98.845 
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Fig. 4 Smoothed (smo) and modelled (mod) ISB series during GPS week 1810 at stations CAS1 

(a), MAJU (b), MAL2 (c), MAYG (d), NNOR (e), REUN (f), TUVA (g) and XMIS (h) for the 30 

min sampling interval 

 
In order to assess the fitting accuracy of the model, we compare the ISB values 

derived from the model (ISB_m) with the smoothed values (assumed to be the true 
values). Figure 4 shows the values of ISB_s and ISB_m during the same period for 
the eight stations mentioned above. One can see that the modelled ISB series agree 
well with the smoothed series. Figure 5 shows the distribution of differences between 
modelled and smoothed ISB series, together with the standard normal distribution 
curves. It can be seen that the frequency count of the differences follows closely a 
normal distribution. In Table 5, the statistical results of the differences between the 
modelled and the smoothed ISB series are listed, where the mean values of the 
differences for the eight stations are 0.046 ns, 0.009 ns, -0.067 ns, 0.009 ns, -0.010 ns, 
0.011 ns, -0.006 ns, and -0.069 ns, and the RMS of the differences are 0.807 ns, 1.154 
ns, 0.769 ns, 0.688 ns, 0.510 ns, 0.659 ns, 0.709 ns, and 0.609ns, with an accuracy 
level of about 0.7 ns. This means that the model for the ISB proposed in this study has 
a high fitting precision and a good consistency. However, the RMS of station MAJU 
is obviously weaker than for the others, and the possible reason may be the higher 
observation noise or worse BDS geometry. These results confirm the conclusion made 
earlier that the model proposed in this study is precise enough, reaching a level of 0.7 
ns, and can be applied to ISB prediction. 
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Fig. 5 Distribution of differences between modelled and smoothed ISB series during GPS week 

1810 at stations CAS1 (a), MAJU (b), MAL2 (c), MAYG (d), NNOR (e), REUN (f), TUVA (g), 

and XMIS (h), with the standard normal distribution curves 

 

 

Table 5 Statistics for differences between modelled and smoothed ISB series (units: ns) 

Station ID Max Min Mean RMS 

CAS1 2.237 -1.936 0.046 0.807 

MAJU 3.659 -4.224 0.009 1.154 

MAL2 2.179 -2.595 -0.067 0.769 

MAYG 1.825 -1.676 0.009 0.688 

NNOR 1.313 -1.346 -0.010 0.510 

REUN 1.848 -1.897 0.011 0.659 

TUVA 0.701 -2.339 -0.006 0.709 

XMIS 1.447 -2.040 -0.069 0.609 

 

 

ISB prediction with the model 

 
We perform as experiment with the aforementioned eight stations during the following 
GPS week 1811. The predicted ISB series (ISB_p) are generated according to (7) with 
the variation of epoch time . We estimate the ISB_o following the approach 
described above and obtain the ISB_s using the sliding window median filter. The 
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precision of prediction is evaluated by comparing the ISB_p with ISB_s in the 
corresponding period. The comparisons during the seven day period are shown in 
Figure 6. We can see that as time goes on, the accuracy of prediction has a tendency to 
degrade. During the first day, the ISB_p agrees well with ISB_s. But after this period, 
the agreement declines markedly, especially during the later days. 

Figure 7 shows the RMS values of the ISB differences between the smoothed and 
predicted values for different periods from one day to seven days. One can see that the 
RMS of the ISB differences at the eight stations is 0.57-1.21 ns for a one day period. 
For the two day period they are 0.77- 1.72 ns. As the time period increases, the RMS is 
getting worse, which is consistent with Figure 6. The corresponding statistics are listed 
in Table 6. From these analyses we recommend a prediction duration of one day. The 
comparison of the ISB prediction further confirms the aforementioned conclusion 
concerning the accuracy of the proposed ISB model and its advantage for prediction 
purposes. It confirms the potential effects of this model for subsequent GPS/BDS PPP 
and POD, since the ISB derived from this model can be considered as a given value, 
without requiring it to be estimated or considered an a priori constraint in PPP/POD 
solutions. This will improve the accuracy and reduce the processing time. Furthermore, 
under some extreme circumstances, the standard multi-GNSS PPP model with ISB 
estimation may fail because of rank deficiency. For instance, in the situation when 
only four satellites can be observed (at least one BDS satellite), the PPP model with a 
known ISB may still obtain results. 
 

 
Fig. 6 ISB derived from smoothed (smo) and predicted (pre) ISB at stations CAS1 (a), MAJU (b), 

MAL2 (c), MAYG (d), NNOR (e), REUN (f), TUVA (g), and XMIS (h) for GPS week 1811 
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Fig. 7 RMS of ISB differences of smoothed and predicted at stations CAS1, MAJU, MAL2, 

MAYG, NNOR, REUN, TUVA, and XMIS for periods from one to seven days 

 
 
Table 6 Statistics of the ISB differences of smoothed and predicted at stations CAS1, MAJU, 

MAL2, MAYG, NNOR, REUN, TUVA, and XMIS for periods from one to seven days (units: ns) 

Day period 1 Day 2 Days 3 Days 4 Days 5 Days 6 Days 7 Days 

CAS1 0.79 0.86 1.66 1.64 1.54 1.53 1.48 

MAJU 1.17 1.45 2.05 2.35 2.60 2.68 2.72 

MAL2 1.21 1.22 1.86 1.69 1.58 1.62 1.81 

MAYG 0.86 1.72 1.62 2.55 3.44 3.92 4.08 

NNOR 0.60 1.04 1.13 2.84 4.20 4.94 5.42 

REUN 0.97 0.98 2.21 2.21 1.98 2.08 2.59 

TUVA 0.92 1.04 1.19 1.53 2.03 2.34 2.38 

XMIS 0.57 0.77 1.22 1.54 2.16 2.45 2.56 

 

 

Analysis of convergence time and positioning accuracy 

 
Since the average RMS of the ISB prediction on the first day of GPS week 1811 (Doy 
264) is about 0.8 ns, it is not precise enough to consider the ISB as a constant 
parameter in the observation equation. So here it is better to treat the predicted ISB as 
an a priori constraint. The a priori value of ISB is used with the predicted ISB of each 
station mentioned above, and the a priori precision is applied with the RMS of ISB 



17 
 

model. In order to verify the improvement of this a priori constraint, the convergence 
time and accuracy of PPP with and without a priori constraint are compared. The error, 
which is derived from the difference between PPP result and truth value, is analyzed 
for convergence time and accuracy of PPP. 

With respect to the analysis of convergence time, primarily we define the 
convergence criterion as the moment when the error of positioning is less than 0.1m in 
each component of north (N), east (E), and up (U). After the convergence epoch has 
been found, considering the reliability of the criterion, it is necessary to check the 
errors of following 20 epochs. If they are all below 0.1 m, the current epoch can be 
identified as the true convergence time. Figure 8 shows the comparison of 
convergence time without and with a priori constraint of ISB. It can be seen that the 
average convergence time of the PPP processing without ISB constraint are 28.5, 43.4, 
and 50.8 min in N, E, and U components, respectively. When using the predicted ISB 
as an a priori constraint, the mean convergence time in three components are 22.9, 
36.4, and 49.6 min, respectively. Therefore, the convergence speed can be increased by 
19.6%, 16.1%, and 2.4%, respectively. 
 

 

Fig. 8 Comparison of the Convergence time between without and with a priori constraint in N, E, 

and U components at stations MAJU, NNOR, REUN, TUVA, and XMIS on Doy 264. 

Convergence time is defined as the time when the position error in a given component is less than 

0.1 m. 

 
As for the accuracy of PPP, we also compare the results of the cases with and 

without a priori constraint. The statistics of RMS are shown in Table 7. From which 
we can see that the mean RMS of PPP processing without a priori constraint are 0.48, 
2.02, and 2.86 cm in N, E, and U components, respectively. After adding the a priori 
constraint, the average RMS become 0.46, 1.78, and 2.92 cm in three components, 
respectively. Thus it can be concluded that when using predicted ISB as an a priori 
constraint, the accuracy of positioning in N and U components are similar as obtained 
without a priori constraint, but the E component improves by 11.9%. It is obvious that 
with the a priori constraint of ISB can mainly improve the positioning accuracy in E 
component. 
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Table 7 The positioning RMS of with and without a priori constraint at stations MAJU, NNOR, 

REUN, TUVA, and XMIS on Doy 264 (units: cm) 

Station 
Without  With 

N E U  N E U 

MAJU 0.4 1.0 3.1  0.4 1.1 3.2 

NNOR 0.5 1.2 2.5  0.5 0.8 2.4 

REUN 0.7 1.5 3.4  0.6 1.3 3.6 

TUVA 0.5 2.7 1.9  0.6 2.8 1.9 

XMIS 0.3 3.7 3.4  0.2 2.9 3.5 

Average 0.48 2.02 2.86  0.46 1.78 2.92 

 

 

Summary and Conclusions 

 
ISB is known to affect the combined precise positioning and precise orbit 
determination of multi-GNSS observations. Normally, ISB is considered an 
unknown parameter and estimated together with other parameters in PPP/POD 
solutions. In this contribution, we have developed a short-term ISB model relating 
GPS and BDS. The GPS and BDS data during GPS week 1810 from 18 stations of the 
MGEX network are processed in a PPP model in order to estimate the original ISB 
series (ISB_o). We apply a sliding window median filter to remove outliers from 
ISB_o and generate smoothed ISB series (ISB_s). After analyzing the characteristics 
of the ISB we propose a short-term ISB model for a one week period, which contains a 
quadratic function with quadratic-term, first-order-term and constant-term, and two or 
three periodic functions with one day and semi-diurnal periods. 

In order to determine the periods of the periodic function and the coefficients of 
the quadratic function and the periodic functions, we apply a frequency spectrum 
analysis and use the least squares approach, respectively. Then we compare the ISB_m 
with ISB_s to verify the model. It was noted that the differences closely follow a 
normal distribution. The results also show that ISB derived from model (ISB_m) agree 
well with ISB_s. The RMS values of the differences between ISB_m and ISB_s are at 
an accuracy level of 0.7 ns, and the mean values of differences for eight stations are 
from -0.069 to 0.046 ns. The agreement implies that the short-term ISB model 
proposed has a high fitting accuracy and is effective for ISB prediction. 

Data from the following week (GPS week 1811) for the above mentioned stations 
are processed using ISB values that were predicted from the model. Comparing the 
predicted ISB series (ISB_p) with ISB_s, we conclude that the prediction accuracy 
during the one week period drops by the day. The RMS values for the one day period 
differences can reach 0.57-1.21 ns, but those for two days period degrade to 0.77-1.72 
ns. Thus we recommend a predicting duration of one day. The results further confirm 
the performance of the derived short-term model and the benefit of applying it for ISB 
prediction. There are benefits in using this model for subsequent GPS/BDS PPP and 
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POD, since the ISB derived from this model can be applied as an a priori constraint in 
these solutions. This effectively improves the result accuracy in E component by 
11.9%. In addition, the processing time is shortened by 19.6%, 16.1%, and 2.4% in N, 
E, and U components, respectively. Furthermore, under some extreme circumstances 
without sufficient observations, the GPS/BDS PPP model with an a priori constraint of 
ISB may still obtain results because it avoids the rank deficiency that otherwise would 
arise if ISB has to be estimated.  
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