|
| 1 | +想法:因為只會出現 0 - 100 的數字,所以我們可以用一個二維矩陣紀錄到目前為止看過每個數字的次數;而最後 k 個數字可以利用 |
| 2 | +每個數字出現次數減掉每個數字在 k 個數字前的出現次數而得到最後 k 個數字是什麼 |
| 3 | +接著用快速冪平方法 / pow() 的運算求出最後 k 元素的乘積 |
| 4 | + |
| 5 | +// assume there are n add() operations and m getProduct() operations |
| 6 | +Time Complexity : O( n + mlogk ) for each add() need O(1) time and getProduct() need O(logk) time |
| 7 | +Space Complexity : O(n) for storing n arrays , each one has O(100) = O(1) elements |
| 8 | + |
| 9 | +class ProductOfNumbers { |
| 10 | +public: |
| 11 | + vector<vector<int>> numbercount ; |
| 12 | + ProductOfNumbers() { |
| 13 | + vector<int> init(101) ; |
| 14 | + numbercount.push_back(init) ; |
| 15 | + } |
| 16 | + |
| 17 | + void add(int num) { |
| 18 | + vector<int> lastcount = numbercount.back() ; |
| 19 | + lastcount[num]++ ; |
| 20 | + numbercount.push_back(lastcount) ; |
| 21 | + } |
| 22 | + |
| 23 | + int getProduct(int k) { |
| 24 | + vector<int> lastelements = numbercount.back() ; |
| 25 | + int zeros = lastelements[0] - numbercount[numbercount.size() - 1 -k][0] ; |
| 26 | + if (zeros > 0) |
| 27 | + return 0 ; |
| 28 | + |
| 29 | + for(int i = 1 ; i < 101 ; i++) |
| 30 | + lastelements[i] -= numbercount[ numbercount.size() - 1 - k ][i] ; |
| 31 | + |
| 32 | + int product = 1 ; |
| 33 | + for(int i = 1 ; i < 101 ; i++) |
| 34 | + product *= pow(i , lastelements[i]) ; |
| 35 | + return product ; |
| 36 | + } |
| 37 | +}; |
| 38 | + |
| 39 | +/** |
| 40 | + * Your ProductOfNumbers object will be instantiated and called as such: |
| 41 | + * ProductOfNumbers* obj = new ProductOfNumbers(); |
| 42 | + * obj->add(num); |
| 43 | + * int param_2 = obj->getProduct(k); |
| 44 | + */ |
| 45 | + |
| 46 | +// 法二:由於 0 的出現,只要最後 k 個元素中有包含 0,最後乘積必然是 0;所以實際上我們只需要紀錄末尾不為 0 的數字有哪些即可 |
| 47 | +如果 k > 末尾不為 0 的數字長度,即可直接輸出 0 |
| 48 | +接著,為了方便快速運算,我們可以使用 prefix product 紀錄前面已獲得的乘積 |
| 49 | +那麼最後 k 個元素的乘機就是 prefixproduct[size] - prefixproduct[size- k] |
| 50 | + |
| 51 | +Time Complexity : O(n + m) for each operation need O(1) time |
| 52 | +Space Complexity : O(n) for record the non-zero elements |
| 53 | + |
| 54 | +class ProductOfNumbers { |
| 55 | +public: |
| 56 | + vector<int> prefixproduct ; |
| 57 | + int size = 0 ; // size == prefixproduct.size() - 1 |
| 58 | + ProductOfNumbers() { |
| 59 | + prefixproduct.push_back(1) ; |
| 60 | + } |
| 61 | + |
| 62 | + void add(int num) { |
| 63 | + if (num == 0) { |
| 64 | + prefixproduct = {1} ; |
| 65 | + size = 0 ; |
| 66 | + } |
| 67 | + else { |
| 68 | + prefixproduct.push_back( prefixproduct.back() * num ) ; |
| 69 | + size++ ; |
| 70 | + } |
| 71 | + } |
| 72 | + |
| 73 | + int getProduct(int k) { |
| 74 | + // prefixproduct record last size elements products |
| 75 | + if ( k > size) |
| 76 | + return 0 ; |
| 77 | + else |
| 78 | + return prefixproduct[size] / prefixproduct[size - k] ; |
| 79 | + |
| 80 | + } |
| 81 | +}; |
| 82 | + |
| 83 | +/** |
| 84 | + * Your ProductOfNumbers object will be instantiated and called as such: |
| 85 | + * ProductOfNumbers* obj = new ProductOfNumbers(); |
| 86 | + * obj->add(num); |
| 87 | + * int param_2 = obj->getProduct(k); |
| 88 | + */ |
| 89 | + |
0 commit comments