Skip to content

Commit 6f4c386

Browse files
authored
Merge pull request #122 from L4RBI/master
added a classification algorithms folder
2 parents ed189a5 + 039ff4a commit 6f4c386

File tree

2 files changed

+77
-0
lines changed

2 files changed

+77
-0
lines changed

classification/fcm.py

Lines changed: 57 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,57 @@
1+
from tools import *
2+
3+
# https://en.wikipedia.org/wiki/Fuzzy_clustering
4+
5+
6+
class FuzzyCMeans:
7+
def __init__(self, n_clusters, initial_centers, data, max_iter=250, m=2, error=1e-5):
8+
assert m > 1
9+
#assert initial_centers.shape[0] == n_clusters
10+
self.U = None
11+
self.centers = initial_centers
12+
self.max_iter = max_iter
13+
self.m = m
14+
self.error = error
15+
self.data = data
16+
17+
def membership(self, data, centers):
18+
U_temp = cdist(data, centers, 'euclidean')
19+
U_temp = numpy.power(U_temp, 2/(self.m - 1))
20+
denominator_ = U_temp.reshape(
21+
(data.shape[0], 1, -1)).repeat(U_temp.shape[-1], axis=1)
22+
denominator_ = U_temp[:, :, numpy.newaxis] / denominator_
23+
return 1 / denominator_.sum(2)
24+
25+
def Centers(self, data, U):
26+
um = U ** self.m
27+
return (data.T @ um / numpy.sum(um, axis=0)).T
28+
29+
def newImage(self, U, centers, im):
30+
best = numpy.argmax(self.U, axis=-1)
31+
# print(best)
32+
# numpy.round()
33+
image = im.astype(int)
34+
for i in range(256):
35+
image = numpy.where(image == float(i), centers[best[i]][0], image)
36+
return image
37+
38+
def compute(self):
39+
self.U = self.membership(self.data, self.centers)
40+
41+
past_U = numpy.copy(self.U)
42+
begin_time = datetime.datetime.now()
43+
for i in range(self.max_iter):
44+
45+
self.centers = self.Centers(self.data, self.U)
46+
self.U = self.membership(self.data, self.centers)
47+
48+
if norm(self.U - past_U) < self.error:
49+
break
50+
past_U = numpy.copy(self.U)
51+
x = datetime.datetime.now() - begin_time
52+
return self.centers, self.U, x
53+
54+
# that's how you run it, data being your data, and the other parameters being the basic FCM parameters such as numbe rof cluseters, degree of fuzziness and so on
55+
# f = FuzzyCMeans(n_clusters=C, initial_centers=Initial_centers,
56+
# data=data m=2, max_iter=1000, error=1e-5)
57+
# centers, U, time = f.compute()

classification/tools.py

Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,20 @@
1+
from matplotlib.image import imread
2+
import matplotlib.pyplot as plt
3+
from math import sqrt
4+
import math
5+
import random
6+
import numpy
7+
import operator
8+
from scipy.spatial.distance import cdist
9+
from scipy.linalg import norm
10+
import datetime
11+
12+
13+
def Histogram(path):
14+
image = imread(path)
15+
if len(image.shape) != 2:
16+
def gray(rgb): return numpy.dot(rgb[..., :3], [0.2989, 0.5870, 0.1140])
17+
gray = gray(image)
18+
image = gray
19+
hist, bins = numpy.histogram(image.ravel(), 256, [0, 256])
20+
return adapt(hist)

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy