NMock«<3»

NMock3 is a Mocking and Stubbing framework that uses expectations to
define interactions between a controller and the mock. Its primary use is
to be the implementation of a code interface.

Visit http://NMock3.codeplex.com for Tutorials and Documentation.

Creating a MockFactory. A MockFactory creates and ties
together all mocks. Only one is needed per test class.

MockFactory _factory = new MockFactory();

Creating a Mock<T>. A Mock<T> is used to set
expectations on how the underlying type will be exercised.

Mock<Interface> _mock =
_factory.CreateMock<Interface> () ;

Creating a Stub. A Stub<T> is a Mock<T> where all
expectations are defaulted to AtLeast(0). (No expectations)

_mock.Stub.Out...

Syntax:

Syntax properties. Some properties in the API are only _mock

included for readability. (Affectionately called syntactic -Expects

sugar.) Expectsis a "syntax class". R

Specifying the number of calls. The Expects syntax .Any .No

class contains properties and methods to specify the -One . -Exactly(int)

number of expected calls to the member specified in the P RIELEARE | AL AELEAFEONE

expectation .AtMost (int) .AtMostOng .

.Between (int, int)

Expectations:

Getting a property value. Creates an expectation thatthe _mock

getter of this property will be called. -Expects

GetProperty uses the lambda expression to extract the : 8216:Property(. Sayiello)

name of thg property for the expectatllon.' ' ‘WillReturn ("Eello,_.World! "y

WillReturn is strongly-typed for compile time checking.

Setting a property value. Creates an expectation that the _mock

setter of this property will be called and this value will be . giEeCtS

zgtihl;ll\élfpc:g;/\(/z:llvzlsjet'he value from the lambda expression _SetPropertyTo(> _.RowCount — 3);

Calling a method. Creates an expectation that this _mock

method will be called with the supplied parameters and will : gigects

return the specified value. The parameters will be wrapped
in EqualMatchers meaning the values will be matched
exactly (even object references.) See Matchers below.

.MethodWith(_ => _.Search("query",
.WillReturn (dataSet) ;

10))

Binding events. Creates an expectation that this event
will be bound to a delegate. "Add" or "Remove" is inferred
by the use of "+=" or "-=" in the expression. Eventinvoker
is a class that can be used later to actually invoke the
event. (nullis only needed for the compiler!)

EventInvoker savelInvoker =
_mock
.Expects
.One
.EventBinding(_ => _.Save += null);

Invoking events. Use the Invoke method to raise an event
in a unit test after all expectations have been created.

savelInvoker.Invoke () ;

Verification:

Verifying calls. NMock3 will throw an exception
immediately when something unexpected happens. Call
this method to verify that all expectations were met.

[TestCleanup] public void TearDown () {
_factory.VerifyAllExpectationsHaveBeenMet () ;

}

Suppressing exceptions. Unit tests that are designed to
throw exceptions should call this method to clear thrown
exceptions.

_factory.ClearException () ;

Advanced:

The MockObject property. The Mock<T> class exposes
a MockObject property to access the underlying type.

Controler controler = new
Controler (_mock.MockObject) ;

Ordering calls. NMock3 can add constraints to the
expectations so that they are executed in a specific order.

using(_factory.Ordered) {
_mock .Expects.One. ####;
_mock.Expects.One. ####;

NMock3 Cheat Sheet — Copyright © 2013 NMock3, Updated March 2013

Matchers:

Matching a Type. In some situations it is not possible to
match the instance of an object. To accomplish this, use

_mock.Expects.One

.Method (_ => _ .Methodl (null, null))

a matcher instead. Note how the use of ‘null’ in the GRELE (I T s bt emmEnel () B
method call is used to match the signature and the
matcher and argument are specified in the *With’ call.
Custom Matching. To perform custom matching, create =~ _mock.Expects.One
a subclass of Matcher or use the Is.Match<>() shortcut %?E;?d (. => _.MethodZ(null))
i i i W1
(which creates an instance of PredicateMatcher<T>) The Is.Match<Customers (c => c.Td != null));

shortcut provides a way to perform matching logic in a
method or expression without deriving a class.

//check that the customer Id is not null

Invoking a Callback. Some APIs like RIA Services
perform Async operations and require a callback method
as a parameter. In NMock3, use a CallbackMatcher<T>
to match those parameters. Later on in the unit test,
simulate the callback by calling the action stored in the
Callback property of the CallbackMatcher<>.

var matcher =

_mock
.Expects
.One
.Method(_ => _.Async(null))
.With (matcher) ;

matcher.Callback() ;

new CallbackMatcher<Action> () ;

//simulate the callback

Actions:

Returning a value. Use the “WillReturn()’ shorthand to

_mock.Expects.One

specify the value to return. “WillReturn()’ is a strongly- -MethodWith (_ => _.Search("query", 10))
typed shorthand to the syntax method Return.Value(). e
Returning queued values. Use a QueueAction<> to var queue = new Queue<string>();
return a sequence of values when an expectation is qugug-ggquzlﬁ E :zglgg %:; ;
i i ueue. ueu i 2
matched multiple times. Emock . Exgects .Exactlg =
.PropertyGet (_ => _.StringProp)
.Will (Return.Queue<string> (queue)) ;
Throwing an exception. Creates an expectation thatan _mock.Expects.One
exception will be thrown when this method or property is -MethodWith (_ => _.ThrowError())
accessed. .Will (Throw.Exception (new Exception()));
Performing an Action. Actions can also be used to do _mock
something when an expectation is met. In this example, -Expects
SaveAsync is void and DoSomething is invoked when 'ﬁgihodmth(L veree()]
SaveAsync; is cal!ed by using the syntax lmethod ‘Will (Invoke.Action (DoSomZthing) ;
Invoke.Action which wraps an InvokeAction class. private void DoSomething() {...;}
Expect class:
Expecting an exception. Instead of using an Expect
ExpectedException attribute, wrap a method call with an .That (() => obj.DoSomething(null))

Expect.That(Action). Throws(Exception) call. By using this
convention you are assured that the exception is thrown

.Throws<ArgumentNullException> ("Expected
an ArgumentNullException that contains the

. . \ . string 'argument'.", new
on the right method and not just somewhere in the unit StringContainsMatcher ("Parameter name:
test. argument")) ;

Setting expectations on hon-Mock<> types. Previous
versions of NMock and in other mocking frameworks, the
Mock<> type is not used and expectations are applied
directly to an instance of a type that is really a proxy.

var instance =
_factory.CreateInstance<Interface>();

Expect
.On (instance)
.One
.Method (_ =>_.DoSomething()) ;

Advanced Property Expectations:

Getting an internal value. In some cases the code
under test will create an instance of an object inside of a
method and then set a property to that value. Normally
NMock would validate that the property was set through
an expectation but it would disregard the value. Using the
WillReturnSetterValue() method signals NMock to retain
the value for a future call.

mock .Expects.One.SetProperty (_ =>
_.Prop) .To(Is.TypeOf<AType>()) ;
mock .Expects.One.GetProperty (_ =>

_.Prop) .WillReturnSetterValue() ;

mock .MockObject.DoSomething () ;
Assert.AreEqual (aType, mock.MockObject.Prop);

NMock3 Cheat Sheet — Copyright © 2013 NMock3, Updated March 2013

