Skip to content

Commit 5c085c9

Browse files
committed
Added for loop to train multiple times
1 parent 10f3ca1 commit 5c085c9

File tree

1 file changed

+31
-34
lines changed

1 file changed

+31
-34
lines changed

main.py

Lines changed: 31 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -5,11 +5,6 @@
55
import time
66
import random
77

8-
np.set_printoptions(linewidth=200)
9-
random_seed = random.randint(10, 1010)
10-
np.random.seed(random_seed)
11-
12-
138
class NeuralNetwork:
149

1510
def __init__(self, layer_sizes, layer_activations, learning_rate=0.1, low=-2, high=2):
@@ -62,39 +57,41 @@ def calculate_SSE(self, input_data, desired_output_data):
6257
desired_output_data = np.array(desired_output_data).reshape(-1, 1)
6358
assert len(input_data) == self.layer_sizes[0]
6459
assert len(desired_output_data) == self.layer_sizes[-1]
65-
#Error is difference between desired_output & actual output.
6660
return np.sum(np.power(desired_output_data - self.calculate_output(input_data), 2))
6761

6862
def print_weights_and_biases(self):
6963
print(self.weights)
7064
print(self.biases)
7165

72-
print("Random seed: " + str(random_seed))
73-
74-
data_input = h.import_from_csv("data/features.txt", float)
75-
data_output = h.import_from_csv("data/targets.txt", int)
76-
data_output = np.array([h.class_to_array(np.amax(data_output), x) for x in data_output])
77-
78-
train_input, validate_input, test_input = h.kfold(4, data_input, random_seed)
79-
train_output, validate_output, test_output = h.kfold(4, data_output, random_seed)
8066

81-
nn = NeuralNetwork(layer_sizes=[10, 15, 7], layer_activations=["sigmoid", "sigmoid"])
82-
83-
print("Beginning training")
84-
previous_mse = 1
85-
current_mse = 0
86-
num_epochs = 0
87-
while(current_mse < previous_mse):
88-
previous_mse = h.calculate_MSE(nn, validate_input, validate_output)
89-
for i in range(len(train_input)):
90-
nn.train(train_input[i], train_output[i])
91-
current_mse = h.calculate_MSE(nn, validate_input, validate_output)
92-
93-
num_epochs += 1
94-
if num_epochs % 10 == 0: print("Epoch: " + str(num_epochs) + " MSE: " + str(current_mse))
95-
96-
97-
train_mse = h.calculate_MSE(nn, train_input, train_output)
98-
test_mse = h.calculate_MSE(nn, test_input, test_output)
99-
print("Results:")
100-
print("Tr: " + str(train_mse) + " V: " + str(current_mse) + " T: " + str(test_mse))
67+
np.set_printoptions(linewidth=200)
68+
for i in range(5):
69+
random_seed = random.randint(10, 1010)
70+
np.random.seed(random_seed)
71+
72+
data_input = h.import_from_csv("data/features.txt", float)
73+
data_output = h.import_from_csv("data/targets.txt", int)
74+
data_output = np.array([h.class_to_array(np.amax(data_output), x) for x in data_output])
75+
76+
train_input, validate_input, test_input = h.kfold(4, data_input, random_seed)
77+
train_output, validate_output, test_output = h.kfold(4, data_output, random_seed)
78+
79+
nn = NeuralNetwork(layer_sizes=[10, 15, 7], layer_activations=["sigmoid", "sigmoid"])
80+
81+
# print("Beginning training")
82+
previous_mse = 1
83+
current_mse = 0
84+
epochs = 0
85+
while(current_mse < previous_mse):
86+
previous_mse = h.calculate_MSE(nn, validate_input, validate_output)
87+
for i in range(len(train_input)):
88+
nn.train(train_input[i], train_output[i])
89+
current_mse = h.calculate_MSE(nn, validate_input, validate_output)
90+
91+
epochs += 1
92+
# if epochs % 10 == 0: print("Epoch: " + str(epochs) + " MSE: " + str(current_mse))
93+
94+
95+
train_mse = h.calculate_MSE(nn, train_input, train_output)
96+
test_mse = h.calculate_MSE(nn, test_input, test_output)
97+
print("Random_Seed: " + str(random_seed) + " Epochs: " + str(epochs) + " Tr: " + str(train_mse) + " V: " + str(current_mse) + " T: " + str(test_mse))

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy