@@ -10,20 +10,24 @@ def __init__(self, layer_sizes, layer_activations, learning_rate=0.1, low=-2, hi
10
10
assert len (layer_sizes )- 1 == len (layer_activations )
11
11
12
12
# Initialize weights between every neuron in all adjacent layers.
13
- self .weights = []
13
+ self .weights = typed . List ()
14
14
for i in range (1 , len (layer_sizes )):
15
15
self .weights .append (np .random .uniform (low , high , (layer_sizes [i - 1 ], layer_sizes [i ])))
16
16
# Initialize biases for every neuron in all layers
17
17
18
- self .biases = []
18
+ self .biases = typed . List ()
19
19
for i in range (1 , len (layer_sizes )):
20
20
self .biases .append (np .random .uniform (low , high , (layer_sizes [i ], 1 )))
21
21
# Initialize empty list of output of every neuron in all layers.
22
- self .layer_outputs = []
22
+ self .layer_outputs = typed . List ()
23
23
for i in range (len (layer_sizes )):
24
24
self .layer_outputs .append (np .zeros ((layer_sizes [i ], 1 )))
25
25
26
- self .layer_activations = layer_activations
26
+ # Initialize list with activation functions per layer.
27
+ self .layer_activations = typed .List ()
28
+ for f in layer_activations :
29
+ self .layer_activations .append (f )
30
+
27
31
self .layer_sizes = layer_sizes
28
32
self .learning_rate = learning_rate
29
33
0 commit comments