Skip to content

Commit 665f27b

Browse files
committed
add sample benchmark results
1 parent 862e013 commit 665f27b

File tree

1 file changed

+56
-1
lines changed

1 file changed

+56
-1
lines changed

README.md

Lines changed: 56 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,62 @@ The original Caffe implementation can be found here : [Original Caffe implementa
4242

4343
SimpleNet performs very decently, it outperforms VGGNet, variants of ResNet and MobileNets(1-3)
4444
and its pretty fast as well! and its all using plain old CNN!.
45-
For benchmark results [look here](https://github.com/Coderx7/SimpleNet_Pytorch/tree/master/ImageNet/training_scripts/imagenet_training/results)
45+
46+
Here's an example of benchmark run on small variants of simplenet and some other known architectures such as mobilenets.
47+
Small variants of simplenet consistently achieve high performance/accuracy:
48+
49+
| model | samples_per_sec | param_count | top1 | top5 |
50+
|:----------------------------------| :--------------: | :-----------: | :--: | :---: |
51+
|mobilenetv3_small_050 | 3035.37 | 1.59 | 57.89 | 80.194 |
52+
|**simplenetv1_small_m1_05** | 2839.35 | 1.51 | **60.89**|**82.978**|
53+
|lcnet_050 | 2683.57 | 1.88 | 63.1 | 84.382 |
54+
|**simplenetv1_small_m2_05** | 2340.51 | 1.51 |**61.524**|**83.432**|
55+
|mobilenetv3_small_075 | 1781.14 | 2.04 | 65.242 | 85.438 |
56+
|tf_mobilenetv3_small_075 | 1674.31 | 2.04 | 65.714 | 86.134 |
57+
|**simplenetv1_small_m1_075** | 1524.64 | 3.29 |**67.764**|**87.66** |
58+
|tf_mobilenetv3_small_minimal_100 | 1308.27 | 2.04 | 62.908 | 84.234 |
59+
|**simplenetv1_small_m2_075** | 1264.33 | 3.29 |**68.15** |**87.762**|
60+
|mobilenetv3_small_100 | 1263.23 | 2.54 | 67.656 | 87.634 |
61+
|tf_mobilenetv3_small_100 | 1220.08 | 2.54 | 67.924 | 87.664 |
62+
|mnasnet_small | 1085.15 | 2.03 | 66.206 | 86.508 |
63+
|mobilenetv2_050 | 848.38 | 1.97 | 65.942 | 86.082 |
64+
|dla46_c | 531.0 | 1.3 | 64.866 | 86.294 |
65+
|dla46x_c | 318.32 | 1.07 | 65.97 | 86.98 |
66+
|dla60x_c | 298.59 | 1.32 | 67.892 | 88.426 |
67+
68+
and this is a sample for larger models: simplenet variants outperform many newer architecures.
69+
70+
| model | samples_per_sec | param_count | top1 | top5 |
71+
|:----------------------------------| :--------------: | :-----------: | :--: | :---: |
72+
| vit_tiny_r_s16_p8_224 | 1882.23 | 6.34 | 71.792 | 90.822 |
73+
| simplenetv1_small_m1_075 | 1516.74 | 3.29 | 67.764 | 87.660 |
74+
| simplenetv1_small_m2_075 | 1260.89 | 3.29 | 68.150 | 87.762 |
75+
| simplenetv1_5m_m1 | 1107.70 | 5.75 | 71.370 | 90.100 |
76+
| deit_tiny_patch16_224 | 991.41 | 5.72 | 72.172 | 91.114 |
77+
| resnet18 | 876.92 | 11.69 | 69.744 | 89.082 |
78+
| simplenetv1_5m_m2 | 835.17 | 5.75 | 71.936 | 90.300 |
79+
| crossvit_9_240 | 602.13 | 8.55 | 73.960 | 91.968 |
80+
| vit_base_patch32_224_sam | 571.37 | 88.22 | 73.694 | 91.010 |
81+
| tinynet_b | 530.15 | 3.73 | 74.976 | 92.184 |
82+
| resnet26 | 524.36 | 16.00 | 75.300 | 92.578 |
83+
| tf_mobilenetv3_large_075 | 505.13 | 3.99 | 73.436 | 91.344 |
84+
| resnet34 | 491.96 | 21.80 | 75.114 | 92.284 |
85+
| regnetx_006 | 478.41 | 6.20 | 73.860 | 91.672 |
86+
| dla34 | 472.49 | 15.74 | 74.620 | 92.072 |
87+
| simplenetv1_9m_m1 | 459.21 | 9.51 | 73.376 | 91.048 |
88+
| repvgg_b0 | 455.36 | 15.82 | 75.160 | 92.418 |
89+
| ghostnet_100 | 407.03 | 5.18 | 73.974 | 91.460 |
90+
| tf_mobilenetv3_large_minimal_100 | 406.84 | 3.92 | 72.250 | 90.630 |
91+
| mobilenetv3_large_100 | 402.08 | 5.48 | 75.766 | 92.544 |
92+
| simplenetv1_9m_m2 | 389.94 | 9.51 | 74.170 | 91.614 |
93+
| tf_mobilenetv3_large_100 | 388.30 | 5.48 | 75.518 | 92.604 |
94+
| mobilenetv2_100 | 295.68 | 3.50 | 72.970 | 91.020 |
95+
| densenet121 | 293.94 | 7.98 | 75.584 | 92.652 |
96+
| mnasnet_100 | 262.25 | 4.38 | 74.658 | 92.112 |
97+
98+
99+
Benchmark was done using a GTX1080 on Pytorch 1.11 with fp32, nhwc, batchsize of 256, input size = `224x224x3`.
100+
For all benchmark results [look here](https://github.com/Coderx7/SimpleNet_Pytorch/tree/master/ImageNet/training_scripts/imagenet_training/results)
46101

47102
-- The models pretrained weights (pytorch, onnx, jit) can be found in [Release section](https://github.com/Coderx7/SimpleNet_Pytorch/releases)
48103

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy