Skip to content

Commit 9a60c12

Browse files
authored
Add files via upload
First Machine Learning project with Iris Data
1 parent 42a4e47 commit 9a60c12

File tree

1 file changed

+46
-0
lines changed

1 file changed

+46
-0
lines changed

irismodel.py

Lines changed: 46 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,46 @@
1+
# -*- coding: utf-8 -*-
2+
"""
3+
4+
@author: FaizMohammad
5+
"""
6+
7+
#importing all the required Modules
8+
import numpy as np
9+
import pandas as pd
10+
import matplotlib.pyplot as plt
11+
from sklearn.datasets import load_iris
12+
from sklearn.metrics import confusion_matrix,accuracy_score
13+
from sklearn.cross_validation import train_test_split
14+
from sklearn.tree import DecisionTreeClassifier
15+
16+
17+
#insert iris_data from sklearn.datasets and separate features and target
18+
#let's take X = features and y = Target
19+
20+
iris = load_iris()
21+
X = iris.data
22+
y= iris.target
23+
24+
#Now let's divide the data for traning and testing with test-size= 20%
25+
X_train,X_test,y_train,y_test= train_test_split(X,y,test_size=0.2,random_state=0)
26+
27+
#Select Decision tree Classifier algorithm for model fitting
28+
classifier = DecisionTreeClassifier()
29+
classifier.fit(X_train,y_train)
30+
31+
#Now check the Model prediction with testing data
32+
predict = classifier.predict(X_test)
33+
34+
#and at last check the Model Accuracy
35+
cm= accuracy_score(pred,y_test)
36+
37+
#plot (X VS y )graph where X-label is sepal length(cm) and y-label is sepal width(cm)
38+
feature1=0
39+
feature2=1
40+
formatter = plt.FuncFormatter(lambda i, *args: iris.target_names[int(i)])
41+
plt.figure(figsize=(5,4))
42+
plt.scatter(X[:,feature1],X[:,feature2],c=y)
43+
plt.colorbar(ticks=[0,1,2],format=formatter)
44+
plt.xlabel(iris.feature_names[0])
45+
plt.ylabel(iris.feature_names[1])
46+
plt.show()

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy