Skip to content

Commit aa503b9

Browse files
add 667
1 parent 0cb6052 commit aa503b9

File tree

3 files changed

+157
-0
lines changed

3 files changed

+157
-0
lines changed

README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,7 @@ Your ideas/fixes/algorithms are more than welcome!
2323
| # | Title | Solutions | Time | Space | Difficulty | Tag | Notes
2424
|-----|----------------|---------------|---------------|---------------|-------------|--------------|-----
2525
|668|[Kth Smallest Number in Multiplication Table](https://leetcode.com/problems/kth-smallest-number-in-multiplication-table/)|[Solution](../master/src/main/java/com/fishercoder/solutions/_668.java) | O(logm*n) | O(1) | Hard | Binary Search
26+
|667|[Beautiful Arrangement II](https://leetcode.com/problems/beautiful-arrangement-ii/)|[Solution](../master/src/main/java/com/fishercoder/solutions/_667.java) | O(n) | O(1) | Medium | Array
2627
|666|[Path Sum IV](https://leetcode.com/problems/path-sum-iv/)|[Solution](../master/src/main/java/com/fishercoder/solutions/_666.java) | O(1) | O(1) | Medium | Tree, DFS
2728
|665|[Non-decreasing Array](https://leetcode.com/problems/non-decreasing-array/)|[Solution](../master/src/main/java/com/fishercoder/solutions/_665.java) | O(n) | O(n) | Easy |
2829
|664|[Strange Printer](https://leetcode.com/problems/strange-printer/)|[Solution](../master/src/main/java/com/fishercoder/solutions/_664.java) | O(n^3) | O(n^2) | Hard | DP
Lines changed: 112 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,112 @@
1+
package com.fishercoder.solutions;
2+
3+
import java.util.ArrayList;
4+
import java.util.HashSet;
5+
import java.util.List;
6+
import java.util.Set;
7+
8+
/**
9+
* 667. Beautiful Arrangement II
10+
*
11+
* Given two integers n and k, you need to construct a list which contains n different positive integers ranging from 1 to n
12+
* and obeys the following requirement:
13+
* Suppose this list is [a1, a2, a3, ... , an],
14+
* then the list [|a1 - a2|, |a2 - a3|, |a3 - a4|, ... , |an-1 - an|] has exactly k distinct integers.
15+
* If there are multiple answers, print any of them.
16+
17+
Example 1:
18+
19+
Input: n = 3, k = 1
20+
Output: [1, 2, 3]
21+
Explanation: The [1, 2, 3] has three different positive integers ranging from 1 to 3, and the [1, 1] has exactly 1 distinct integer: 1.
22+
23+
Example 2:
24+
25+
Input: n = 3, k = 2
26+
Output: [1, 3, 2]
27+
Explanation: The [1, 3, 2] has three different positive integers ranging from 1 to 3, and the [2, 1] has exactly 2 distinct integers: 1 and 2.
28+
29+
Note:
30+
31+
The n and k are in the range 1 <= k < n <= 104.
32+
*/
33+
34+
public class _667 {
35+
36+
public static class Solutoin1 {
37+
/**This brute force solution will result in TLE as soon as n = 10 and k = 4.*/
38+
public int[] constructArray(int n, int k) {
39+
List<List<Integer>> allPermutaions = findAllPermutations(n);
40+
int[] result = new int[n];
41+
for (List<Integer> perm : allPermutaions) {
42+
if (isBeautifulArrangement(perm, k)) {
43+
convertListToArray(result, perm);
44+
break;
45+
}
46+
}
47+
return result;
48+
}
49+
50+
private void convertListToArray(int[] result, List<Integer> perm) {
51+
for (int i = 0; i < perm.size(); i++) {
52+
result[i] = perm.get(i);
53+
}
54+
}
55+
56+
private boolean isBeautifulArrangement(List<Integer> perm, int k) {
57+
Set<Integer> diff = new HashSet<>();
58+
for (int i = 0; i < perm.size() - 1; i++) {
59+
diff.add(Math.abs(perm.get(i) - perm.get(i + 1)));
60+
}
61+
return diff.size() == k;
62+
}
63+
64+
private List<List<Integer>> findAllPermutations(int n) {
65+
List<List<Integer>> result = new ArrayList<>();
66+
backtracking(new ArrayList<>(), result, n);
67+
return result;
68+
}
69+
70+
private void backtracking(List<Integer> list, List<List<Integer>> result, int n) {
71+
if (list.size() == n) {
72+
result.add(new ArrayList<>(list));
73+
return;
74+
}
75+
for (int i = 1; i <= n; i++) {
76+
if (list.contains(i)) {
77+
continue;
78+
}
79+
list.add(i);
80+
backtracking(list, result, n);
81+
list.remove(list.size() - 1);
82+
}
83+
}
84+
}
85+
86+
public static class Solutoin2 {
87+
/**This is a very smart solution:
88+
* First, we can see that the max value k could reach is n-1 which
89+
* comes from a sequence like this:
90+
* when n = 8, k = 5, one possible sequence is:
91+
* 1, 8, 2, 7, 3, 4, 5, 6
92+
* absolute diffs are:
93+
* 7, 6, 5, 4, 1, 1, 1
94+
* so, there are total 5 distinct integers.
95+
*
96+
* So, we can just form such a sequence by putting the first part first and
97+
* decrement k along the way, when k becomes 1, we just put the rest numbers in order.*/
98+
public int[] constructArray(int n, int k) {
99+
int[] result = new int[n];
100+
int left = 1;
101+
int right = n;
102+
for (int i = 0; i < n && left <= right; i++) {
103+
if (k > 1) {
104+
result[i] = k-- % 2 != 0 ? left++ : right--;
105+
} else {
106+
result[i] = k % 2 != 0 ? left++ : right--;
107+
}
108+
}
109+
return result;
110+
}
111+
}
112+
}
Lines changed: 44 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,44 @@
1+
package com.fishercoder;
2+
3+
import com.fishercoder.solutions._667;
4+
import org.junit.BeforeClass;
5+
import org.junit.Ignore;
6+
import org.junit.Test;
7+
8+
import static org.junit.Assert.assertArrayEquals;
9+
10+
public class _667Test {
11+
private static _667.Solutoin1 solution1;
12+
private static _667.Solutoin2 solution2;
13+
private static int[] expected;
14+
15+
@BeforeClass
16+
public static void setup() {
17+
solution1 = new _667.Solutoin1();
18+
solution2 = new _667.Solutoin2();
19+
}
20+
21+
@Test
22+
public void test1() {
23+
expected = new int[] { 1, 2, 3 };
24+
assertArrayEquals(expected, solution1.constructArray(3, 1));
25+
assertArrayEquals(expected, solution2.constructArray(3, 1));
26+
}
27+
28+
@Test
29+
@Ignore//this problem requires you to return any one of the legit answer, so the results vary from time to time, so comment out this test
30+
public void test2() {
31+
expected = new int[] { 1, 3, 2 };
32+
assertArrayEquals(expected, solution1.constructArray(3, 2));
33+
assertArrayEquals(expected, solution2.constructArray(3, 2));
34+
}
35+
36+
@Test
37+
@Ignore//this problem requires you to return any one of the legit answer, so the results vary from time to time, so comment out this test
38+
public void test3() {
39+
expected = new int[] { 1, 5, 2, 4, 3, 6, 7, 8, 9, 10 };
40+
// assertArrayEquals(expected, solution1.constructArray(10, 4));//this is not working, so comment out
41+
assertArrayEquals(expected, solution2.constructArray(10, 4));
42+
}
43+
44+
}

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy