Skip to content

Commit 14108df

Browse files
refactor 300
1 parent f5afb98 commit 14108df

File tree

2 files changed

+125
-22
lines changed

2 files changed

+125
-22
lines changed

src/main/java/com/fishercoder/solutions/_300.java

Lines changed: 99 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -4,38 +4,115 @@
44

55
public class _300 {
66

7+
/**
8+
* credit: https://leetcode.com/problems/longest-increasing-subsequence/solution/
9+
*/
710
public static class Solution1 {
11+
/**
12+
* brute force:
13+
* Time: O(2^n), size of recursion tree will be: 2^n
14+
* Space: O(n^2)
15+
* will result in Time Limit Exceeded exception.
16+
* <p>
17+
* The idea is straightforward: we'll iterate through each number, check to see if its next neighbor is smaller or bigger than itself,
18+
* if bigger, then we'll take it, if not, we'll not take it.
19+
*/
20+
public int lengthOfLIS(int[] nums) {
21+
return recursion(nums, Integer.MIN_VALUE, 0);
22+
}
23+
24+
private int recursion(int[] nums, int prev, int curr) {
25+
if (curr == nums.length) {
26+
return 0;
27+
}
28+
int taken = 0;
29+
if (nums[curr] > prev) {
30+
taken = 1 + recursion(nums, nums[curr], curr + 1);
31+
}
32+
int notTaken = recursion(nums, prev, curr + 1);
33+
return Math.max(taken, notTaken);
34+
}
35+
}
36+
37+
public static class Solution2 {
38+
/**
39+
* This is an iteration on the previous solution, we use a 2-d array to memoize the previously calculated result
40+
* Time: O(n^2)
41+
* Space: O(n^2)
42+
*/
43+
public int lengthOfLIS(int[] nums) {
44+
int len = nums.length;
45+
int[][] memo = new int[len + 1][len];
46+
for (int[] m : memo) {
47+
Arrays.fill(m, -1);
48+
}
49+
return recusionWithMemo(nums, -1, 0, memo);
50+
}
51+
52+
private int recusionWithMemo(int[] nums, int prevIndex, int currIndex, int[][] memo) {
53+
if (currIndex == nums.length) {
54+
return 0;
55+
}
56+
if (memo[prevIndex + 1][currIndex] >= 0) {
57+
//because we initialize all elements in memo to be -1,
58+
// so if it's not -1, then it means we have computed this value before,
59+
// we'll just return it and this way it avoid duplicate recursion
60+
return memo[prevIndex + 1][currIndex];
61+
}
62+
int taken = 0;
63+
if (prevIndex < 0 || nums[currIndex] > nums[prevIndex]) {
64+
taken = 1 + recusionWithMemo(nums, currIndex, currIndex + 1, memo);
65+
}
66+
int notTaken = recusionWithMemo(nums, prevIndex, currIndex + 1, memo);
67+
memo[prevIndex + 1][currIndex] = Math.max(taken, notTaken);
68+
return memo[prevIndex + 1][currIndex];
69+
}
70+
}
71+
72+
public static class Solution3 {
73+
/**
74+
* DP solution
75+
* Time: O(n^2)
76+
* Space: O(n)
77+
*/
78+
public int lengthOfLIS(int[] nums) {
79+
if (nums.length == 0) {
80+
return 0;
81+
}
82+
int[] dp = new int[nums.length];
83+
dp[0] = 1;
84+
int result = 1;
85+
for (int i = 1; i < nums.length; i++) {
86+
int maxVal = 0;
87+
for (int j = 0; j < i; j++) {
88+
if (nums[i] > nums[j]) {
89+
maxVal = Math.max(maxVal, dp[j]);
90+
}
91+
}
92+
dp[i] = maxVal + 1;
93+
result = Math.max(result, dp[i]);
94+
}
95+
return result;
96+
}
97+
}
898

99+
public static class Solution4 {
9100
/**
10-
* credit: https://discuss.leetcode.com/topic/28719/short-java-solution-using-dp-o-n-log-n
11-
* The idea is that as you iterate the sequence,
12-
* you keep track of the minimum value a subsequence of given length might end with,
13-
* for all so far possible subsequence lengths.
14-
* So dp[i] is the minimum value a subsequence of length i+1 might end with.
15-
* Having this info, for each new number we iterate to,
16-
* we can determine the longest subsequence where it can be appended using binary search.
17-
* The final answer is the length of the longest subsequence we found so far.
101+
* use binary search.
102+
* Time: O(nlogn)
103+
* Space: O(n)
104+
* <p>
105+
* The reason we can use binary search here is because all numbers we put into dp array are sorted
18106
*/
19107
public int lengthOfLIS(int[] nums) {
20108
int[] dp = new int[nums.length];
21109
int len = 0;
22-
for (int x : nums) {
23-
/**Java Doc of this binarySearch API:
24-
* @return index of the search key, if it is contained in the array
25-
* within the specified range;
26-
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
27-
* <i>insertion point</i> is defined as the point at which the
28-
* key would be inserted into the array: the index of the first
29-
* element in the range greater than the key,
30-
* or <tt>toIndex</tt> if all
31-
* elements in the range are less than the specified key. Note
32-
* that this guarantees that the return value will be &gt;= 0 if
33-
* and only if the key is found.*/
34-
int index = Arrays.binarySearch(dp, 0, len, x);
110+
for (int num : nums) {
111+
int index = Arrays.binarySearch(dp, 0, len, num);
35112
if (index < 0) {
36113
index = -(index + 1);
37114
}
38-
dp[index] = x;
115+
dp[index] = num;
39116
if (index == len) {
40117
len++;
41118
}

src/test/java/com/fishercoder/_300Test.java

Lines changed: 26 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -9,18 +9,44 @@
99
public class _300Test {
1010

1111
private static _300.Solution1 solution1;
12+
private static _300.Solution2 solution2;
13+
private static _300.Solution3 solution3;
14+
private static _300.Solution4 solution4;
1215
private static int[] nums;
1316

1417
@BeforeClass
1518
public static void setup() {
1619
solution1 = new _300.Solution1();
20+
solution2 = new _300.Solution2();
21+
solution3 = new _300.Solution3();
22+
solution4 = new _300.Solution4();
1723
}
1824

1925
@Test
2026
public void test1() {
2127
nums = new int[]{10, 9, 2, 5, 3, 7, 101, 18};
2228
assertEquals(4, solution1.lengthOfLIS(nums));
29+
assertEquals(4, solution2.lengthOfLIS(nums));
30+
assertEquals(4, solution3.lengthOfLIS(nums));
31+
assertEquals(4, solution4.lengthOfLIS(nums));
32+
}
33+
34+
@Test
35+
public void test2() {
36+
nums = new int[]{0, 1, 0, 3, 2, 3};
37+
assertEquals(4, solution1.lengthOfLIS(nums));
38+
assertEquals(4, solution2.lengthOfLIS(nums));
39+
assertEquals(4, solution3.lengthOfLIS(nums));
40+
assertEquals(4, solution4.lengthOfLIS(nums));
41+
}
2342

43+
@Test
44+
public void test3() {
45+
nums = new int[]{7, 7, 7, 7, 7, 7, 7};
46+
assertEquals(1, solution1.lengthOfLIS(nums));
47+
assertEquals(1, solution2.lengthOfLIS(nums));
48+
assertEquals(1, solution3.lengthOfLIS(nums));
49+
assertEquals(1, solution3.lengthOfLIS(nums));
2450
}
2551

2652
}

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy