From 537fb748f3b5fd7860685c017c9b2f1fde5fd9b3 Mon Sep 17 00:00:00 2001 From: alxkm Date: Thu, 10 Jul 2025 22:53:59 +0200 Subject: [PATCH] refactor: improving GenericRoot --- .../com/thealgorithms/maths/GenericRoot.java | 44 +++++++++++++------ 1 file changed, 31 insertions(+), 13 deletions(-) diff --git a/src/main/java/com/thealgorithms/maths/GenericRoot.java b/src/main/java/com/thealgorithms/maths/GenericRoot.java index 07f4756f93f8..e13efe5a77e0 100644 --- a/src/main/java/com/thealgorithms/maths/GenericRoot.java +++ b/src/main/java/com/thealgorithms/maths/GenericRoot.java @@ -1,30 +1,48 @@ package com.thealgorithms.maths; -/* - * Algorithm explanation: - * https://technotip.com/6774/c-program-to-find-generic-root-of-a-number/#:~:text=Generic%20Root%3A%20of%20a%20number,get%20a%20single%2Ddigit%20output.&text=For%20Example%3A%20If%20user%20input,%2B%204%20%2B%205%20%3D%2015. +/** + * Calculates the generic root (repeated digital sum) of a non-negative integer. + *

+ * For example, the generic root of 12345 is calculated as: + * 1 + 2 + 3 + 4 + 5 = 15, + * then 1 + 5 = 6, so the generic root is 6. + *

+ * Reference: + * https://technotip.com/6774/c-program-to-find-generic-root-of-a-number/ */ public final class GenericRoot { + + private static final int BASE = 10; + private GenericRoot() { } - private static int base = 10; - + /** + * Computes the sum of the digits of a non-negative integer in base 10. + * + * @param n non-negative integer + * @return sum of digits of {@code n} + */ private static int sumOfDigits(final int n) { assert n >= 0; - if (n < base) { + if (n < BASE) { return n; } - return n % base + sumOfDigits(n / base); + return (n % BASE) + sumOfDigits(n / BASE); } + /** + * Computes the generic root (repeated digital sum) of an integer. + * For negative inputs, the absolute value is used. + * + * @param n integer input + * @return generic root of {@code n} + */ public static int genericRoot(final int n) { - if (n < 0) { - return genericRoot(-n); - } - if (n > base) { - return genericRoot(sumOfDigits(n)); + int number = Math.abs(n); + if (number < BASE) { + return number; } - return n; + return genericRoot(sumOfDigits(number)); } } pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy