diff --git a/Graphs/BinaryLifting.js b/Graphs/BinaryLifting.js new file mode 100644 index 0000000000..594a5b6676 --- /dev/null +++ b/Graphs/BinaryLifting.js @@ -0,0 +1,82 @@ +/** + * Author: Adrito Mukherjee + * Binary Lifting implementation in Javascript + * Binary Lifting is a technique that is used to find the kth ancestor of a node in a rooted tree with N nodes + * The technique requires preprocessing the tree in O(N log N) using dynamic programming + * The techniqe can answer Q queries about kth ancestor of any node in O(Q log N) + * It is faster than the naive algorithm that answers Q queries with complexity O(Q K) + * It can be used to find Lowest Common Ancestor of two nodes in O(log N) + * Tutorial on Binary Lifting: https://codeforces.com/blog/entry/100826 + */ + +class BinaryLifting { + constructor (root, tree) { + this.root = root + this.connections = new Map() + this.up = new Map() // up[node][i] stores the 2^i-th parent of node + for (const [i, j] of tree) { + this.addEdge(i, j) + } + this.log = Math.ceil(Math.log2(this.connections.size)) + this.dfs(root, root) + } + + addNode (node) { + // Function to add a node to the tree (connection represented by set) + this.connections.set(node, new Set()) + } + + addEdge (node1, node2) { + // Function to add an edge (adds the node too if they are not present in the tree) + if (!this.connections.has(node1)) { + this.addNode(node1) + } + if (!this.connections.has(node2)) { + this.addNode(node2) + } + this.connections.get(node1).add(node2) + this.connections.get(node2).add(node1) + } + + dfs (node, parent) { + // The dfs function calculates 2^i-th ancestor of all nodes for i ranging from 0 to this.log + // We make use of the fact the two consecutive jumps of length 2^(i-1) make the total jump length 2^i + this.up.set(node, new Map()) + this.up.get(node).set(0, parent) + for (let i = 1; i < this.log; i++) { + this.up + .get(node) + .set(i, this.up.get(this.up.get(node).get(i - 1)).get(i - 1)) + } + for (const child of this.connections.get(node)) { + if (child !== parent) this.dfs(child, node) + } + } + + kthAncestor (node, k) { + // if value of k is more than or equal to the number of total nodes, we return the root of the graph + if (k >= this.connections.size) { + return this.root + } + // if i-th bit is set in the binary representation of k, we jump from a node to its 2^i-th ancestor + // so after checking all bits of k, we will have made jumps of total length k, in just log k steps + for (let i = 0; i < this.log; i++) { + if (k & (1 << i)) { + node = this.up.get(node).get(i) + } + } + return node + } +} + +function binaryLifting (root, tree, queries) { + const graphObject = new BinaryLifting(root, tree) + const ancestors = [] + for (const [node, k] of queries) { + const ancestor = graphObject.kthAncestor(node, k) + ancestors.push(ancestor) + } + return ancestors +} + +export default binaryLifting diff --git a/Graphs/test/BinaryLifting.test.js b/Graphs/test/BinaryLifting.test.js new file mode 100644 index 0000000000..769b877e01 --- /dev/null +++ b/Graphs/test/BinaryLifting.test.js @@ -0,0 +1,82 @@ +import binaryLifting from '../BinaryLifting' + +// The graph for Test Case 1 looks like this: +// +// 0 +// /|\ +// / | \ +// 1 3 5 +// / \ \ +// 2 4 6 +// \ +// 7 +// / \ +// 11 8 +// \ +// 9 +// \ +// 10 + +test('Test case 1', () => { + const root = 0 + const graph = [ + [0, 1], + [0, 3], + [0, 5], + [5, 6], + [1, 2], + [1, 4], + [4, 7], + [7, 11], + [7, 8], + [8, 9], + [9, 10] + ] + const queries = [ + [2, 1], + [6, 1], + [7, 2], + [8, 2], + [10, 2], + [10, 3], + [10, 5], + [11, 3] + ] + const kthAncestors = binaryLifting(root, graph, queries) + expect(kthAncestors).toEqual([1, 5, 1, 4, 8, 7, 1, 1]) +}) + +// The graph for Test Case 2 looks like this: +// +// 0 +// / \ +// 1 2 +// / \ \ +// 3 4 5 +// / / \ +// 6 7 8 + +test('Test case 2', () => { + const root = 0 + const graph = [ + [0, 1], + [0, 2], + [1, 3], + [1, 4], + [2, 5], + [3, 6], + [5, 7], + [5, 8] + ] + const queries = [ + [2, 1], + [3, 1], + [3, 2], + [6, 2], + [7, 3], + [8, 2], + [8, 3] + ] + const kthAncestors = binaryLifting(root, graph, queries) + expect(kthAncestors).toEqual([0, 1, 0, 1, 0, 2, 0]) +})
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies: