diff --git a/Project-Euler/Problem026.js b/Project-Euler/Problem026.js new file mode 100644 index 0000000000..edee6f2299 --- /dev/null +++ b/Project-Euler/Problem026.js @@ -0,0 +1,71 @@ +/** + * Problem - Longest Recurring Cycle + * + * @see {@link https://projecteuler.net/problem=26} + * + * Find the value of denominator < 1000 for which 1/denominator contains the longest recurring cycle in its decimal fraction part. + * + * A unit fraction (1/denominator) either terminates or repeats. We need to determine the length of the repeating sequence (cycle) + * for each fraction where the denominator is between 2 and 999, and find the denominator that produces the longest cycle. + */ + +/** + * Main function to find the denominator < limit with the longest recurring cycle in 1/denominator. + * + * @param {number} limit - The upper limit for the denominator (exclusive). + * @returns {number} The denominator that has the longest recurring cycle in its decimal fraction part. + */ +function findLongestRecurringCycle(limit) { + /** + * Calculates the length of the recurring cycle for 1 divided by a given denominator. + * + * @param {number} denominator - The denominator of the unit fraction (1/denominator). + * @returns {number} The length of the recurring cycle in the decimal part of 1/denominator. + */ + function getRecurringCycleLength(denominator) { + // A map to store the position of each remainder encountered during division + const remainderPositions = new Map() + let numerator = 1 // We start with 1 as the numerator (as we're computing 1/denominator) + let position = 0 // This tracks the position of each digit in the decimal sequence + + // Continue until the remainder becomes 0 (terminating decimal) or a cycle is found + while (numerator !== 0) { + // If the remainder has been seen before, we've found the start of the cycle + if (remainderPositions.has(numerator)) { + // The length of the cycle is the current position minus the position when the remainder first appeared + return position - remainderPositions.get(numerator) + } + + // Record the position of this remainder + remainderPositions.set(numerator, position) + + // Multiply numerator by 10 to simulate long division and get the next digit + numerator = (numerator * 10) % denominator + position++ // Move to the next digit position + } + + // If numerator becomes 0, it means the decimal terminates (no cycle) + return 0 + } + + let maxCycleLength = 0 // Store the maximum cycle length found + let denominatorWithMaxCycle = 0 // Store the denominator corresponding to the longest cycle + + // Iterate through each possible denominator from 2 up to (limit - 1) + for (let denominator = 2; denominator < limit; denominator++) { + // Calculate the cycle length for the current denominator + const cycleLength = getRecurringCycleLength(denominator) + + // Update the maximum length and the corresponding denominator if a longer cycle is found + if (cycleLength > maxCycleLength) { + maxCycleLength = cycleLength + denominatorWithMaxCycle = denominator + } + } + + // Return the denominator that has the longest recurring cycle + return denominatorWithMaxCycle +} + +// Exporting the main function for use in other modules +export { findLongestRecurringCycle } diff --git a/Project-Euler/Problem027.js b/Project-Euler/Problem027.js new file mode 100644 index 0000000000..dac47a4552 --- /dev/null +++ b/Project-Euler/Problem027.js @@ -0,0 +1,61 @@ +/** + * Problem - Quadratic Primes + * + * @see {@link https://projecteuler.net/problem=27} + * + * The quadratic expression n^2 + an + b, where |a| < 1000 and |b| ≤ 1000, + * produces a positive prime for consecutive values of n, starting with n = 0. + * Find the product of the coefficients, a and b, for the quadratic expression that + * produces the maximum number of primes for consecutive values of n. + */ + +/** + * Main function to find the coefficients a and b that produce the maximum number + * of consecutive primes for the quadratic expression n^2 + an + b. + * + * @returns {{maxPrimes: number, product: number}} An object containing the maximum number of primes + * and the product of coefficients a and b. + */ +function findMaxConsecutivePrimes() { + /** + * Checks if a number is prime. + * + * @param {number} n - The number to check for primality. + * @returns {boolean} True if n is a prime number, false otherwise. + */ + function isPrime(n) { + if (n < 2) return false // 0 and 1 are not prime numbers + if (n === 2) return true // 2 is a prime number + if (n % 2 === 0) return false // Exclude even numbers + for (let i = 3; i <= Math.sqrt(n); i += 2) { + // Check odd divisors only + if (n % i === 0) return false // Divisible by i, so not prime + } + return true // No divisors found, so it is prime + } + + let maxPrimes = 0 // Store the maximum number of primes found + let product = 0 // Store the product of coefficients a and b + + for (let a = -999; a < 1000; a++) { + for (let b = -1000; b <= 1000; b++) { + let n = 0 + let consecutivePrimes = 0 + while (true) { + const result = n * n + a * n + b // Evaluate the quadratic expression + if (result < 0 || !isPrime(result)) break // Stop if the result is negative or not prime + consecutivePrimes++ + n++ + } + if (consecutivePrimes > maxPrimes) { + maxPrimes = consecutivePrimes + product = a * b // Calculate product of coefficients a and b + } + } + } + + return { maxPrimes, product } // Return the results +} + +// Exporting the main function for use in other modules +export { findMaxConsecutivePrimes } diff --git a/Project-Euler/test/Problem026.test.js b/Project-Euler/test/Problem026.test.js new file mode 100644 index 0000000000..ac276bf748 --- /dev/null +++ b/Project-Euler/test/Problem026.test.js @@ -0,0 +1,30 @@ +import { findLongestRecurringCycle } from '../Problem026' + +/** + * Tests for the findLongestRecurringCycle function. + */ +describe('findLongestRecurringCycle', () => { + // Test to check the basic case with a limit of 10 + test('should return 7 for limit of 10', () => { + const result = findLongestRecurringCycle(10) + expect(result).toBe(7) + }) + + // Test to check with a limit of 1000 + test('should return the correct value for limit of 1000', () => { + const result = findLongestRecurringCycle(1000) + expect(result).toBe(983) // The expected result is the denominator with the longest cycle + }) + + // Test with a smaller limit to validate behavior + test('should return 3 for limit of 4', () => { + const result = findLongestRecurringCycle(4) + expect(result).toBe(3) + }) + + // Test with a limit of 2, where there is no cycle + test('should return 0 for limit of 2', () => { + const result = findLongestRecurringCycle(2) + expect(result).toBe(0) // No cycle for fractions 1/1 and 1/2 + }) +}) diff --git a/Project-Euler/test/Problem027.test.js b/Project-Euler/test/Problem027.test.js new file mode 100644 index 0000000000..f7859f03d6 --- /dev/null +++ b/Project-Euler/test/Problem027.test.js @@ -0,0 +1,9 @@ +import { findMaxConsecutivePrimes } from '../Problem027' + +describe('Problem 027 - Quadratic Primes', () => { + test('should return the correct product of coefficients for max consecutive primes', () => { + const { maxPrimes, product } = findMaxConsecutivePrimes() + expect(maxPrimes).toBe(71) + expect(product).toBe(-59231) + }) +})
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies: