diff --git a/Project-Euler/Problem026.js b/Project-Euler/Problem026.js new file mode 100644 index 0000000000..684f1c55a1 --- /dev/null +++ b/Project-Euler/Problem026.js @@ -0,0 +1,56 @@ +/** + * Problem - Longest Recurring Cycle + * + * @see {@link https://projecteuler.net/problem=26} + * + * Find the value of denominator < 1000 for which 1/denominator contains the longest recurring cycle in its decimal fraction part. + */ + +/** + * Main function to find the denominator < limit with the longest recurring cycle in 1/denominator. + * + * @param {number} limit - The upper limit for the denominator (exclusive). + * @returns {number} The denominator that has the longest recurring cycle in its decimal fraction part. + */ +function findLongestRecurringCycle(limit) { + /** + * Calculates the length of the recurring cycle for 1 divided by a given denominator. + * + * @param {number} denominator - The denominator of the unit fraction (1/denominator). + * @returns {number} The length of the recurring cycle in the decimal part of 1/denominator. + */ + function getRecurringCycleLength(denominator) { + const remainderPositions = new Map() + let numerator = 1 + let position = 0 + + while (numerator !== 0) { + if (remainderPositions.has(numerator)) { + return position - remainderPositions.get(numerator) + } + + remainderPositions.set(numerator, position) + + numerator = (numerator * 10) % denominator + position++ + } + + return 0 + } + + let maxCycleLength = 0 + let denominatorWithMaxCycle = 0 + + for (let denominator = 2; denominator < limit; denominator++) { + const cycleLength = getRecurringCycleLength(denominator) + + if (cycleLength > maxCycleLength) { + maxCycleLength = cycleLength + denominatorWithMaxCycle = denominator + } + } + + return denominatorWithMaxCycle +} + +export { findLongestRecurringCycle } diff --git a/Project-Euler/Problem027.js b/Project-Euler/Problem027.js new file mode 100644 index 0000000000..dac47a4552 --- /dev/null +++ b/Project-Euler/Problem027.js @@ -0,0 +1,61 @@ +/** + * Problem - Quadratic Primes + * + * @see {@link https://projecteuler.net/problem=27} + * + * The quadratic expression n^2 + an + b, where |a| < 1000 and |b| ≤ 1000, + * produces a positive prime for consecutive values of n, starting with n = 0. + * Find the product of the coefficients, a and b, for the quadratic expression that + * produces the maximum number of primes for consecutive values of n. + */ + +/** + * Main function to find the coefficients a and b that produce the maximum number + * of consecutive primes for the quadratic expression n^2 + an + b. + * + * @returns {{maxPrimes: number, product: number}} An object containing the maximum number of primes + * and the product of coefficients a and b. + */ +function findMaxConsecutivePrimes() { + /** + * Checks if a number is prime. + * + * @param {number} n - The number to check for primality. + * @returns {boolean} True if n is a prime number, false otherwise. + */ + function isPrime(n) { + if (n < 2) return false // 0 and 1 are not prime numbers + if (n === 2) return true // 2 is a prime number + if (n % 2 === 0) return false // Exclude even numbers + for (let i = 3; i <= Math.sqrt(n); i += 2) { + // Check odd divisors only + if (n % i === 0) return false // Divisible by i, so not prime + } + return true // No divisors found, so it is prime + } + + let maxPrimes = 0 // Store the maximum number of primes found + let product = 0 // Store the product of coefficients a and b + + for (let a = -999; a < 1000; a++) { + for (let b = -1000; b <= 1000; b++) { + let n = 0 + let consecutivePrimes = 0 + while (true) { + const result = n * n + a * n + b // Evaluate the quadratic expression + if (result < 0 || !isPrime(result)) break // Stop if the result is negative or not prime + consecutivePrimes++ + n++ + } + if (consecutivePrimes > maxPrimes) { + maxPrimes = consecutivePrimes + product = a * b // Calculate product of coefficients a and b + } + } + } + + return { maxPrimes, product } // Return the results +} + +// Exporting the main function for use in other modules +export { findMaxConsecutivePrimes } diff --git a/Project-Euler/test/Problem026.test.js b/Project-Euler/test/Problem026.test.js new file mode 100644 index 0000000000..67f60c2b48 --- /dev/null +++ b/Project-Euler/test/Problem026.test.js @@ -0,0 +1,16 @@ +import { findLongestRecurringCycle } from '../Problem026' + +/** + * Tests for the findLongestRecurringCycle function. + */ +describe('findLongestRecurringCycle', () => { + it.each([ + { limit: 10, expected: 7 }, + { limit: 1000, expected: 983 }, // The denominator with the longest cycle for limit of 1000 + { limit: 4, expected: 3 }, + { limit: 2, expected: 0 } // No cycle for fractions 1/1 and 1/2 + ])('should return $expected for limit of $limit', ({ limit, expected }) => { + const result = findLongestRecurringCycle(limit) + expect(result).toBe(expected) + }) +}) diff --git a/Project-Euler/test/Problem027.test.js b/Project-Euler/test/Problem027.test.js new file mode 100644 index 0000000000..f7859f03d6 --- /dev/null +++ b/Project-Euler/test/Problem027.test.js @@ -0,0 +1,9 @@ +import { findMaxConsecutivePrimes } from '../Problem027' + +describe('Problem 027 - Quadratic Primes', () => { + test('should return the correct product of coefficients for max consecutive primes', () => { + const { maxPrimes, product } = findMaxConsecutivePrimes() + expect(maxPrimes).toBe(71) + expect(product).toBe(-59231) + }) +})
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies: