diff --git a/Graphs/BellmanFord.js b/Graphs/BellmanFord.js new file mode 100644 index 0000000000..cf9d168460 --- /dev/null +++ b/Graphs/BellmanFord.js @@ -0,0 +1,56 @@ +/* +The Bellman–Ford algorithm is an algorithm that computes shortest paths +from a single source vertex to all of the other vertices in a weighted digraph. +It also detects negative weight cycle. + +Complexity: + Worst-case performance O(VE) + Best-case performance O(E) + Worst-case space complexity O(V) + +Reference: + https://en.wikipedia.org/wiki/Bellman–Ford_algorithm + https://cp-algorithms.com/graph/bellman_ford.html + +*/ + +/** + * + * @param graph Graph in the format (u, v, w) where + * the edge is from vertex u to v. And weight + * of the edge is w. + * @param V Number of vertices in graph + * @param E Number of edges in graph + * @param src Starting node + * @param dest Destination node + * @returns Shortest distance from source to destination + */ +function BellmanFord (graph, V, E, src, dest) { + // Initialize distance of all vertices as infinite. + const dis = Array(V).fill(Infinity) + // initialize distance of source as 0 + dis[src] = 0 + + // Relax all edges |V| - 1 times. A simple + // shortest path from src to any other + // vertex can have at-most |V| - 1 edges + for (let i = 0; i < V - 1; i++) { + for (let j = 0; j < E; j++) { + if ((dis[graph[j][0]] + graph[j][2]) < dis[graph[j][1]]) { dis[graph[j][1]] = dis[graph[j][0]] + graph[j][2] } + } + } + // check for negative-weight cycles. + for (let i = 0; i < E; i++) { + const x = graph[i][0] + const y = graph[i][1] + const weight = graph[i][2] + if ((dis[x] !== Infinity) && (dis[x] + weight < dis[y])) { + return null + } + } + for (let i = 0; i < V; i++) { + if (i === dest) return dis[i] + } +} + +export { BellmanFord } diff --git a/Graphs/test/BellmanFord.test.js b/Graphs/test/BellmanFord.test.js new file mode 100644 index 0000000000..a5d8e2a856 --- /dev/null +++ b/Graphs/test/BellmanFord.test.js @@ -0,0 +1,34 @@ +import { BellmanFord } from '../BellmanFord.js' + +test('Test Case 1', () => { + const V = 5 + const E = 8 + const destination = 3 + const graph = [[0, 1, -1], [0, 2, 4], + [1, 2, 3], [1, 3, 2], + [1, 4, 2], [3, 2, 5], + [3, 1, 1], [4, 3, -3]] + const dist = BellmanFord(graph, V, E, 0, destination) + expect(dist).toBe(-2) +}) +test('Test Case 2', () => { + const V = 6 + const E = 9 + const destination = 4 + const graph = [[0, 1, 3], [0, 3, 6], + [0, 5, -1], [1, 2, -3], + [1, 4, -2], [5, 2, 5], + [2, 3, 1], [4, 3, 5], [5, 4, 2]] + const dist = BellmanFord(graph, V, E, 0, destination) + expect(dist).toBe(1) +}) +test('Test Case 3', () => { + const V = 4 + const E = 5 + const destination = 1 + const graph = [[0, 3, -1], [0, 2, 4], + [3, 2, 2], [3, 1, 5], + [2, 1, -1]] + const dist = BellmanFord(graph, V, E, 0, destination) + expect(dist).toBe(0) +})
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies: