Skip to content

Commit da7917c

Browse files
authored
Merge pull request #14 from Pratham1807/master
Added Tree Sort
2 parents 9eba429 + 9f755dc commit da7917c

File tree

4 files changed

+92
-1
lines changed

4 files changed

+92
-1
lines changed

allalgorithms/sorting/__init__.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,3 +5,4 @@
55
from .pidgeonhole_sort import pidgeonhole_sort
66
from .stooge_sort import stooge_sort
77
from .cocktail_shaker_sort import cocktail_shaker_sort
8+
from .tree_sort import tree_sort

allalgorithms/sorting/tree_sort.py

Lines changed: 48 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,48 @@
1+
class BinaryTreeNode(object):
2+
#initial values for value,left and right
3+
def __init__(self, value):
4+
self.value = value
5+
self.left = None
6+
self.right = None
7+
8+
9+
# inserting a new node in the binary tree
10+
def insert(tree, item):
11+
# if no initial element in the tree
12+
if tree == None:
13+
tree = BinaryTreeNode(item)
14+
else:
15+
if (item < tree.value):
16+
# if left branch of the tree is empty
17+
if (tree.left == None):
18+
tree.left = BinaryTreeNode(item)
19+
else:
20+
insert(tree.left, item)
21+
else:
22+
# if right branch of the tree is empty
23+
if (tree.right == None):
24+
tree.right = BinaryTreeNode(item)
25+
else:
26+
insert(tree.right, item)
27+
return tree
28+
29+
# funtion for the inorder traversal of the binary tree
30+
def in_order_traversal(tree,a):
31+
if (tree.left != None):
32+
in_order_traversal(tree.left,a)
33+
a.append(tree.value)
34+
if (tree.right != None):
35+
in_order_traversal(tree.right,a)
36+
37+
38+
def tree_sort(x):
39+
# root node
40+
t = insert(None, x[0]);
41+
# inserting all elements in the binary tree
42+
for i in x[1:]:
43+
insert(t,i)
44+
# the results of the inorder traversal of a binary tree is a sorted
45+
a = []
46+
in_order_traversal(t,a)
47+
return a
48+

docs/sorting/tree-sort.md

Lines changed: 38 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,38 @@
1+
# Tree Sort
2+
3+
A tree sort is a sort algorithm that builds a binary search tree from the elements to be sorted, and then traverses the tree (in-order) so that the elements come out in sorted order. It has two phases:
4+
1. Frist is creating a binary search tree using the given array elements.
5+
2. Second phase is traversing the given binary search tree in inorder, thus resulting in a sorted array.
6+
7+
**Performance**
8+
9+
The average number of comparisions for this method is O(nlogn). But in worst case, number of comparisions is reduced by O(n^2), a case which arrives when the tree is skewed.
10+
11+
12+
13+
## Install
14+
15+
```
16+
pip install allalgorithms
17+
```
18+
19+
## Usage
20+
21+
```py
22+
from allalgorithms.sorting import tree_sort
23+
24+
arr = [77, 2, 10, -2, 1, 7]
25+
26+
print(tree_sort(arr))
27+
# -> [-2, 1, 2, 7, 10, 77]
28+
```
29+
30+
## API
31+
32+
### tree_sort(array)
33+
34+
> Returns a sorted array
35+
36+
##### Params:
37+
38+
- `array`: Unsorted Array

tests/test_sorting.py

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,8 @@
77
selection_sort,
88
pigeonhole_sort,
99
stooge_sort,
10-
cocktail_shaker_sort
10+
cocktail_shaker_sort,
11+
tree_sort
1112
)
1213

1314

@@ -32,6 +33,9 @@ def test_stooge_sort(self):
3233

3334
def test_cocktail_shaker_sort(self):
3435
self.assertEqual([-44, 1, 2, 3, 7, 19], cocktail_shaker_sort([7, 3, 2, 19, -44, 1]))
36+
37+
def tree_sort(self):
38+
self.assertEqual([-44, 1, 2, 3, 7, 19], tree_sort([7, 3, 2, 19, -44, 1]))
3539

3640

3741
if __name__ == "__main__":

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy