Skip to content

Commit dcaa880

Browse files
authored
Image Rendering problem resolved (#1178)
1 parent d2d3f31 commit dcaa880

File tree

6 files changed

+23
-23
lines changed

6 files changed

+23
-23
lines changed

notebooks/chapter19/Learners.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -318,7 +318,7 @@
318318
"\n",
319319
"By default we use dense networks with two hidden layers, which has the architecture as the following:\n",
320320
"\n",
321-
"<img src=\"images/nn.png\" width=500/>\n",
321+
"<img src=\"images/nn.png\" width=\"500\"/>\n",
322322
"\n",
323323
"In our code, we implemented it as:"
324324
]
@@ -500,7 +500,7 @@
500500
"name": "python",
501501
"nbconvert_exporter": "python",
502502
"pygments_lexer": "ipython3",
503-
"version": "3.7.2"
503+
"version": "3.6.9"
504504
}
505505
},
506506
"nbformat": 4,

notebooks/chapter19/Loss Functions and Layers.ipynb

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@
4040
"cell_type": "markdown",
4141
"metadata": {},
4242
"source": [
43-
"<img src= images/mse_plot.png width=500/>"
43+
"<img src=\"images/mse_plot.png\" width=\"500\"/>"
4444
]
4545
},
4646
{
@@ -88,7 +88,7 @@
8888
"cell_type": "markdown",
8989
"metadata": {},
9090
"source": [
91-
"<img src= images/corss_entropy_plot.png width=500/>"
91+
"<img src=\"images/corss_entropy_plot.png\" width=\"500\"/>"
9292
]
9393
},
9494
{
@@ -390,7 +390,7 @@
390390
"name": "python",
391391
"nbconvert_exporter": "python",
392392
"pygments_lexer": "ipython3",
393-
"version": "3.7.2"
393+
"version": "3.6.9"
394394
}
395395
},
396396
"nbformat": 4,

notebooks/chapter19/Optimizer and Backpropagation.ipynb

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -251,7 +251,7 @@
251251
"cell_type": "markdown",
252252
"metadata": {},
253253
"source": [
254-
"<img src=\"images/backprop.png\" width=500/>"
254+
"<img src=\"images/backprop.png\" width=\"500\"/>"
255255
]
256256
},
257257
{
@@ -260,7 +260,7 @@
260260
"source": [
261261
"Applying optimizers and back-propagation algorithm together, we can update the weights of a neural network to minimize the loss function with alternatively doing forward and back-propagation process. Here is a figure form [here](https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e) describing how a neural network updates its weights:\n",
262262
"\n",
263-
"<img src=\"images/nn_steps.png\" width=700></img>"
263+
"<img src=\"images/nn_steps.png\" width=\"700\"></img>"
264264
]
265265
},
266266
{
@@ -303,7 +303,7 @@
303303
"name": "python",
304304
"nbconvert_exporter": "python",
305305
"pygments_lexer": "ipython3",
306-
"version": "3.7.2"
306+
"version": "3.6.9"
307307
}
308308
},
309309
"nbformat": 4,

notebooks/chapter19/RNN.ipynb

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@
1212
"\n",
1313
"Recurrent neural networks address this issue. They are networks with loops in them, allowing information to persist.\n",
1414
"\n",
15-
"<img src=\"images/rnn_unit.png\" width=500/>"
15+
"<img src=\"images/rnn_unit.png\" width=\"500\"/>"
1616
]
1717
},
1818
{
@@ -21,7 +21,7 @@
2121
"source": [
2222
"A recurrent neural network can be thought of as multiple copies of the same network, each passing a message to a successor. Consider what happens if we unroll the above loop:\n",
2323
" \n",
24-
"<img src=\"images/rnn_units.png\" width=500/>"
24+
"<img src=\"images/rnn_units.png\" width=\"500\"/>"
2525
]
2626
},
2727
{
@@ -30,7 +30,7 @@
3030
"source": [
3131
"As demonstrated in the book, recurrent neural networks may be connected in many different ways: sequences in the input, the output, or in the most general case both.\n",
3232
"\n",
33-
"<img src=\"images/rnn_connections.png\" width=700/>"
33+
"<img src=\"images/rnn_connections.png\" width=\"700\"/>"
3434
]
3535
},
3636
{
@@ -303,7 +303,7 @@
303303
"\n",
304304
"Autoencoders are an unsupervised learning technique in which we leverage neural networks for the task of representation learning. It works by compressing the input into a latent-space representation, to do transformations on the data. \n",
305305
"\n",
306-
"<img src=\"images/autoencoder.png\" width=800/>"
306+
"<img src=\"images/autoencoder.png\" width=\"800\"/>"
307307
]
308308
},
309309
{
@@ -314,7 +314,7 @@
314314
"\n",
315315
"Autoencoders have different architectures for different kinds of data. Here we only provide a simple example of a vanilla encoder, which means they're only one hidden layer in the network:\n",
316316
"\n",
317-
"<img src=\"images/vanilla.png\" width=500/>\n",
317+
"<img src=\"images/vanilla.png\" width=\"500\"/>\n",
318318
"\n",
319319
"You can view the source code by:"
320320
]
@@ -479,7 +479,7 @@
479479
"name": "python",
480480
"nbconvert_exporter": "python",
481481
"pygments_lexer": "ipython3",
482-
"version": "3.6.8"
482+
"version": "3.6.9"
483483
}
484484
},
485485
"nbformat": 4,

notebooks/chapter24/Image Edge Detection.ipynb

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,7 @@
6969
"cell_type": "markdown",
7070
"metadata": {},
7171
"source": [
72-
"<img src=\"images/gradients.png\" width=700/>"
72+
"<img src=\"images/gradients.png\" width=\"700\"/>"
7373
]
7474
},
7575
{
@@ -105,7 +105,7 @@
105105
"cell_type": "markdown",
106106
"metadata": {},
107107
"source": [
108-
"<img src=\"images/stapler.png\" width=500/>\n",
108+
"<img src=\"images/stapler.png\" width=\"500\"/>\n",
109109
"\n",
110110
"We will use `matplotlib` to read the image as a numpy ndarray:"
111111
]
@@ -226,7 +226,7 @@
226226
"cell_type": "markdown",
227227
"metadata": {},
228228
"source": [
229-
"<img src=\"images/derivative_of_gaussian.png\" width=400/>"
229+
"<img src=\"images/derivative_of_gaussian.png\" width=\"400\"/>"
230230
]
231231
},
232232
{
@@ -318,7 +318,7 @@
318318
"cell_type": "markdown",
319319
"metadata": {},
320320
"source": [
321-
"<img src=\"images/laplacian.png\" width=200/>"
321+
"<img src=\"images/laplacian.png\" width=\"200\"/>"
322322
]
323323
},
324324
{
@@ -334,7 +334,7 @@
334334
"cell_type": "markdown",
335335
"metadata": {},
336336
"source": [
337-
"<img src=\"images/laplacian_kernels.png\" width=300/>"
337+
"<img src=\"images/laplacian_kernels.png\" width=\"300\"/>"
338338
]
339339
},
340340
{
@@ -400,7 +400,7 @@
400400
"name": "python",
401401
"nbconvert_exporter": "python",
402402
"pygments_lexer": "ipython3",
403-
"version": "3.7.2"
403+
"version": "3.6.9"
404404
}
405405
},
406406
"nbformat": 4,

notebooks/chapter24/Objects in Images.ipynb

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -306,7 +306,7 @@
306306
"source": [
307307
"The bounding boxes are drawn on the original picture showed in the following:\n",
308308
"\n",
309-
"<img src=\"images/stapler_bbox.png\" width=500/>"
309+
"<img src=\"images/stapler_bbox.png\" width=\"500\"/>"
310310
]
311311
},
312312
{
@@ -324,7 +324,7 @@
324324
"\n",
325325
"[Ross Girshick et al.](https://arxiv.org/pdf/1311.2524.pdf) proposed a method where they use selective search to extract just 2000 regions from the image. Then the regions in bounding boxes are feed into a convolutional neural network to perform classification. The brief architecture can be shown as:\n",
326326
"\n",
327-
"<img src=\"images/RCNN.png\" width=500/>"
327+
"<img src=\"images/RCNN.png\" width=\"500\"/>"
328328
]
329329
},
330330
{
@@ -446,7 +446,7 @@
446446
"name": "python",
447447
"nbconvert_exporter": "python",
448448
"pygments_lexer": "ipython3",
449-
"version": "3.7.2"
449+
"version": "3.6.9"
450450
}
451451
},
452452
"nbformat": 4,

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy