diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 89106794b..f92643700 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -84,6 +84,8 @@ Patch Rules
without your patch.
- Follow the style guidelines described above.
+- Refer the issue you have fixed.
+- Explain in brief what changes you have made with affected files name.
# Choice of Programming Languages
diff --git a/agents.ipynb b/agents.ipynb
index b065f5dc2..636df75e3 100644
--- a/agents.ipynb
+++ b/agents.ipynb
@@ -11,7 +11,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -43,141 +43,9 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- " \n",
- "\n",
- "class Agent ( Thing ): \n",
- " """An Agent is a subclass of Thing with one required slot, \n",
- " .program, which should hold a function that takes one argument, the \n",
- " percept, and returns an action. (What counts as a percept or action \n",
- " will depend on the specific environment in which the agent exists.) \n",
- " Note that 'program' is a slot, not a method. If it were a method, \n",
- " then the program could 'cheat' and look at aspects of the agent. \n",
- " It's not supposed to do that: the program can only look at the \n",
- " percepts. An agent program that needs a model of the world (and of \n",
- " the agent itself) will have to build and maintain its own model. \n",
- " There is an optional slot, .performance, which is a number giving \n",
- " the performance measure of the agent in its environment.""" \n",
- "\n",
- " def __init__ ( self , program = None ): \n",
- " self . alive = True \n",
- " self . bump = False \n",
- " self . holding = [] \n",
- " self . performance = 0 \n",
- " if program is None or not isinstance ( program , collections . Callable ): \n",
- " print ( "Can't find a valid program for {}, falling back to default." . format ( \n",
- " self . __class__ . __name__ )) \n",
- "\n",
- " def program ( percept ): \n",
- " return eval ( input ( 'Percept={}; action? ' . format ( percept ))) \n",
- "\n",
- " self . program = program \n",
- "\n",
- " def can_grab ( self , thing ): \n",
- " """Return True if this agent can grab this thing. \n",
- " Override for appropriate subclasses of Agent and Thing.""" \n",
- " return False \n",
- " \n",
- "\n",
- "\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"psource(Agent)"
]
@@ -207,207 +75,9 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "\n",
- "\n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- " \n",
- "\n",
- "class Environment : \n",
- " """Abstract class representing an Environment. 'Real' Environment classes \n",
- " inherit from this. Your Environment will typically need to implement: \n",
- " percept: Define the percept that an agent sees. \n",
- " execute_action: Define the effects of executing an action. \n",
- " Also update the agent.performance slot. \n",
- " The environment keeps a list of .things and .agents (which is a subset \n",
- " of .things). Each agent has a .performance slot, initialized to 0. \n",
- " Each thing has a .location slot, even though some environments may not \n",
- " need this.""" \n",
- "\n",
- " def __init__ ( self ): \n",
- " self . things = [] \n",
- " self . agents = [] \n",
- "\n",
- " def thing_classes ( self ): \n",
- " return [] # List of classes that can go into environment \n",
- "\n",
- " def percept ( self , agent ): \n",
- " """Return the percept that the agent sees at this point. (Implement this.)""" \n",
- " raise NotImplementedError \n",
- "\n",
- " def execute_action ( self , agent , action ): \n",
- " """Change the world to reflect this action. (Implement this.)""" \n",
- " raise NotImplementedError \n",
- "\n",
- " def default_location ( self , thing ): \n",
- " """Default location to place a new thing with unspecified location.""" \n",
- " return None \n",
- "\n",
- " def exogenous_change ( self ): \n",
- " """If there is spontaneous change in the world, override this.""" \n",
- " pass \n",
- "\n",
- " def is_done ( self ): \n",
- " """By default, we're done when we can't find a live agent.""" \n",
- " return not any ( agent . is_alive () for agent in self . agents ) \n",
- "\n",
- " def step ( self ): \n",
- " """Run the environment for one time step. If the \n",
- " actions and exogenous changes are independent, this method will \n",
- " do. If there are interactions between them, you'll need to \n",
- " override this method.""" \n",
- " if not self . is_done (): \n",
- " actions = [] \n",
- " for agent in self . agents : \n",
- " if agent . alive : \n",
- " actions . append ( agent . program ( self . percept ( agent ))) \n",
- " else : \n",
- " actions . append ( "" ) \n",
- " for ( agent , action ) in zip ( self . agents , actions ): \n",
- " self . execute_action ( agent , action ) \n",
- " self . exogenous_change () \n",
- "\n",
- " def run ( self , steps = 1000 ): \n",
- " """Run the Environment for given number of time steps.""" \n",
- " for step in range ( steps ): \n",
- " if self . is_done (): \n",
- " return \n",
- " self . step () \n",
- "\n",
- " def list_things_at ( self , location , tclass = Thing ): \n",
- " """Return all things exactly at a given location.""" \n",
- " return [ thing for thing in self . things \n",
- " if thing . location == location and isinstance ( thing , tclass )] \n",
- "\n",
- " def some_things_at ( self , location , tclass = Thing ): \n",
- " """Return true if at least one of the things at location \n",
- " is an instance of class tclass (or a subclass).""" \n",
- " return self . list_things_at ( location , tclass ) != [] \n",
- "\n",
- " def add_thing ( self , thing , location = None ): \n",
- " """Add a thing to the environment, setting its location. For \n",
- " convenience, if thing is an agent program we make a new agent \n",
- " for it. (Shouldn't need to override this.)""" \n",
- " if not isinstance ( thing , Thing ): \n",
- " thing = Agent ( thing ) \n",
- " if thing in self . things : \n",
- " print ( "Can't add the same thing twice" ) \n",
- " else : \n",
- " thing . location = location if location is not None else self . default_location ( thing ) \n",
- " self . things . append ( thing ) \n",
- " if isinstance ( thing , Agent ): \n",
- " thing . performance = 0 \n",
- " self . agents . append ( thing ) \n",
- "\n",
- " def delete_thing ( self , thing ): \n",
- " """Remove a thing from the environment.""" \n",
- " try : \n",
- " self . things . remove ( thing ) \n",
- " except ValueError as e : \n",
- " print ( e ) \n",
- " print ( " in Environment delete_thing" ) \n",
- " print ( " Thing to be removed: {} at {}" . format ( thing , thing . location )) \n",
- " print ( " from list: {}" . format ([( thing , thing . location ) for thing in self . things ])) \n",
- " if thing in self . agents : \n",
- " self . agents . remove ( thing ) \n",
- " \n",
- "\n",
- "\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"psource(Environment)"
]
@@ -444,17 +114,9 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Can't find a valid program for BlindDog, falling back to default.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"class BlindDog(Agent):\n",
" def eat(self, thing):\n",
@@ -475,17 +137,9 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "True\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"print(dog.alive)"
]
@@ -509,7 +163,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -563,7 +217,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -610,7 +264,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -633,21 +287,9 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: 1\n",
- "BlindDog decided to move down at location: 2\n",
- "BlindDog decided to move down at location: 3\n",
- "BlindDog decided to move down at location: 4\n",
- "BlindDog ate Food at location: 5\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"park = Park()\n",
"dog = BlindDog(program)\n",
@@ -671,19 +313,9 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: 5\n",
- "BlindDog decided to move down at location: 6\n",
- "BlindDog drank Water at location: 7\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"park.run(5)"
]
@@ -697,25 +329,9 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: 7\n",
- "BlindDog decided to move down at location: 8\n",
- "BlindDog decided to move down at location: 9\n",
- "BlindDog decided to move down at location: 10\n",
- "BlindDog decided to move down at location: 11\n",
- "BlindDog decided to move down at location: 12\n",
- "BlindDog decided to move down at location: 13\n",
- "BlindDog decided to move down at location: 14\n",
- "BlindDog drank Water at location: 15\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"park.add_thing(water, 15)\n",
"park.run(10)"
@@ -741,7 +357,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -807,544 +423,9 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog starts at (1,1) facing downwards, lets see if he can find any food!\n"
- ]
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: [0, 1]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: [0, 2]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: [0, 3]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: [0, 4]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog ate Food at location: [0, 5]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: [0, 5]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: [0, 6]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog drank Water at location: [0, 7]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: [0, 7]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: [0, 8]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: [0, 9]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: [0, 10]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: [0, 11]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: [0, 12]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: [0, 13]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog decided to move down at location: [0, 14]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BlindDog drank Water at location: [0, 15]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"park = Park2D(5,20, color={'BlindDog': (200,0,0), 'Water': (0, 200, 200), 'Food': (230, 115, 40)}) # park width is set to 5, and height to 20\n",
"dog = BlindDog(program)\n",
@@ -1401,7 +482,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -1472,7 +553,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -1537,609 +618,9 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "dog started at [0,0], facing down. Let's see if he found any food or water!\n"
- ]
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to move downwards at location: [0, 0]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog drank Water at location: [0, 1]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to turnleft at location: [0, 1]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to turnright at location: [0, 1]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to turnleft at location: [0, 1]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to move rightwards at location: [0, 1]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to turnleft at location: [1, 1]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to move upwards at location: [1, 1]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to turnleft at location: [1, 0]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to move leftwards at location: [1, 0]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to turnleft at location: [0, 0]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to move downwards at location: [0, 0]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to move downwards at location: [0, 1]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to turnleft at location: [0, 2]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to move rightwards at location: [0, 2]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog ate Food at location: [1, 2]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to move rightwards at location: [1, 2]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to turnright at location: [2, 2]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to turnright at location: [2, 2]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "EnergeticBlindDog decided to turnleft at location: [2, 2]\n"
- ]
- },
- {
- "data": {
- "text/html": [],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"park = Park2D(5,5, color={'EnergeticBlindDog': (200,0,0), 'Water': (0, 200, 200), 'Food': (230, 115, 40)})\n",
"dog = EnergeticBlindDog(program)\n",
@@ -2173,7 +654,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -2215,30 +696,9 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[[], [], [], [], [, None]]\n",
- "Bump\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"step()"
]
@@ -2267,7 +727,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.5.6"
+ "version": "3.6.4"
}
},
"nbformat": 4,
diff --git a/csp.ipynb b/csp.ipynb
index 411d6f55c..86cc934db 100644
--- a/csp.ipynb
+++ b/csp.ipynb
@@ -607,7 +607,9 @@
{
"data": {
"text/plain": [
- "(, , )"
+ "(,\n",
+ " ,\n",
+ " )"
]
},
"execution_count": 7,
@@ -1137,9 +1139,9 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHwCAYAAABkPlyAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X+4FNWd7/vPd9gbEMOvDRtMgGtgkifnTowY2SPOELnEkDEgGD137gxco0dzczk39xiC4GRGnmeemDwnmqsCIXHu5OTIgOeMAc04RtREiUYwYNTZMMrEZOY+BkxE5McWdkC3icBZ94/a7e7uXVVdu7uqq6vq/Xqefrq7atVaq3ux+fZatWqVOecEAABa2++lXQEAAFAbARsAgAwgYAMAkAEEbAAAMoCADQBABhCwAQDIAAI2AAAZQMAGACADCNhAizGz95vZD8zsuJkdMrO7zKwtJP04M/vb/rR9ZvYvZvYfmllnAMkjYAOt5/+VdETSeyVdIOl/kfR/+yU0s+GSnpB0rqQ/kjRW0l9Iut3MljeltgCagoANtJ7pku53zv3WOXdI0mOSPhyQ9hpJ/5Ok/805t985d8o595ik5ZL+s5mNliQzc2b2gdJBZrbJzP5z2ftFZvaCmfWa2TNmdn7ZvveZ2QNmdtTM9pf/EDCzW8zsfjP7b2Z20sxeMrOusv1/aWav9e/7NzP7RDxfEVA8BGyg9ayXtMTMRpnZFEkL5AVtP5+U9EPn3FtV2x+QNErSxbUKM7MLJf2dpP8oaYKk/yJpq5mNMLPfk/SwpBclTZH0CUkrzOyysiyukLRF0jhJWyXd1Z/vhyTdIOkPnXOjJV0m6ZVa9QHgj4ANtJ4d8nrUJyQdkNQt6fsBaSdKer16o3PutKQeSZ0Ryvs/Jf0X59xzzrkzzrl7JP1OXrD/Q0mdzrmvOufecc7tk/RfJS0pO36nc+4Hzrkzkv67pJn9289IGiHpD8ys3Tn3inPulxHqA8AHARtoIf092scl/aOks+UF5PGS/p+AQ3rkneuuzqet/9ijEYo9V9Kq/uHwXjPrlTRN0vv6972vat9qSZPLjj9U9rpP0kgza3POvSxphaRbJB0xsy1m9r4I9QHgg4ANtJYOecHyLufc75xzb0jaKGlhQPonJC0ws7Ortv+vkk5Jer7/fZ+8IfKSc8pevyrpa865cWWPUc65zf379lftG+2cC6pPBefcd51zH5MX+J2Cf3gAqIGADbQQ51yPpP2SPm9mbWY2TtJ/kHcO2c9/lzds/r3+y8Ha+88vf1PS7c653/Sne0HS/25mw8zsU/Jmnpf8V0n/l5nNNs/ZZnZ5/4S15yWd6J88dlb/8eeZ2R/W+ixm9iEzu9TMRkj6raS35Q2TA6gDARtoPf9e0qfkDWe/LOm0pBv9Ejrnfidpvrye8HPyguJjkr4h6StlSb8oabGkXklXq+ycuHOuW9557LskHe8v87r+fWf6j7tA3g+JHkl3y7t8rJYRkr7ef8whSZPkDacDqIM559KuA4CYmFm7pB9Kek3SdY4/cCA36GEDOeKcOyXv/PUvJX0o5eoAiBE9bAAAMoAeNgAAGRB4Q4FmmThxonv/+9+fdjUSs3v37rSrkKhZs2alXYXE0YbZRvtlX97bUFKPc67mIkepD4l3dXW57u7uVOuQJDNLuwqJSvvfTzPE1YYuhn/mA6t0xyfvbcjfYPblvQ0l7XbO1fzrZkgcSNBN13iBOo5gLQ3ktfLqePIDkB0EbCABHWO8wHrHF5PJf82NXv6TOpLJH0DrSf0cNpA3cfWmozi8zXtOYqgcQGuhhw3EqJnBuhXKBdA8BGwgBr99Jv2g6bqlP/9kunUAkBwCNtAg1y2NGN54Pjfc3ngeW25L/4cDgGRwDhtowNu7Gs+j/Pzz39zvPTcadH/7jDTyjxvLA0BroYcNNGDkiNppOudL9/7Qf1/QZLFGJ5HF0eMH0FoI2ECdavWCrct79PRKn/nrxoNwKb/S47w/a6x+ALKFgA3UoVYw/NZ9/tvrDdp+x720r/ZxBG0gPwjYwBB1RlisZPkdyddDivYDYMLY5OsBIHkEbGCIjmyLL6+gHnCcPeOeJ+PLC0B6mCUODMFfXDPw2q93Wwq0rjv68Lfrlk72SWPmSieelkaPil6fjV+OVp8VS6VvbI6eL4DWQw8bGILb+9cGDwrGB44MvJ4zc/D+oJ5zKUgHBeug465b7D3/+pD//lI9163y3w8gOwjYQIymLRx4vXNDZaANG+b+4FXe84RLg9NU51X+/txFQ6sngOwhYAMRNXpe+bUjwfteftV7PnYiOE3YviiYMQ5kGwEbiNHCOcH7pi4M3hdFWO970SWN5Q2g9RGwgTr0BSxJ+uj65taj5OF1/tvffqa59QCQHAI2EMHkCZXvzxrhDTGfVbY0aZQh500P11f+Qztqpykvf9RI7/3IqiVKJ46rr3wA6SNgAxEcetx/e98u6dRz3usol3Fd/5XB206fqXzf0zs4zZURZnmXyu/dLr210z/N0Sdq5wOgNRGwgQa1DWvs+OEXV77vnN9YfmPf09jxAFoTARuIUZRe9pLVle+dC0//2a/GUy6AbCNgA0123xCXNt24NZl6AMiWRAK2mX3KzP7NzF42s79KogygmVaujZ622b3doZQ3lM8BoLXEHrDNbJikv5G0QNIfSFpqZn8QdzlAM61dGW9+n78tWrq47/oV9+cA0DxJ9LAvkvSyc26fc+4dSVskfTqBcoCWtWhF+P5vP+A979jjv3/r095z0H21S6pnj197ee26AcimJAL2FEmvlr0/0L/tXWa2zMy6zaz76NGjCVQBaK7p76t8/2jAZVXV5i3z3/7piD3h6uuz7/G5bAxAPiQRsM1nW8U8WOfcd5xzXc65rs7OzgSqADTXT+4evG3B8vBjOkKWGpWk8R8P379iTfh+APmSRMA+IGla2fupkg4mUA7QNBM/Eb5/yqTB2x6rsSzo8Ro38+g9Gb5/fR33tw5bjxxAa0siYP+TpA+a2XQzGy5piSQuTEGmvfGb+o5Lasb4VTfVd1yjd/wCkJ62uDN0zp02sxskPS5pmKS/c869FHc5QJF9f3vaNQDQbLEHbElyzv1A0g+SyBtoVZM7pMPH0it/9nnplQ0geax0BkRUa3j70BBXMCv3kQ9I8y+Sfn9q/Xk8uyl8P8uXAtmWSA8bKCrXHRwYF85p7H7Zl90gbXs2uFwA+UbABoZg1TppzY3haXq3S+Pmea8Pb5MmdVTuv+4W6Z5Hopc5Z6a0c4P0+F0D2/YflGZc4b2O0rP/QswrpgFoPnO1bhWUsK6uLtfdnd/ugZnfZen5kfa/n2aobsMovVnrGki3ZZu0dHV4+qH47tekpZcNLqdWfYLkvQ35G8y+vLehpN3OuZonrQjYCcv7P7S0//00Q3UbThwnHX0iwnERzxkvnitdv1iaN0s6flL66V7p1o3Sz/fVPjZKsJ5wafjlXHlvQ/4Gsy/vbaiIAZshcWCIenrrP3brWi9ABxk/RpoxRbp6QeX2nS9Il3yuvjK59hrIBwI2UIcoQ9GlCWjtbdI7VZPFhjJj23VLH7tgoLz22dLpM40PhQPIFgI2UKeo549Lwbre4Fl+3JnnpVPPRcuLYA3kC9dhAw1YcnPtNNYVHDxvWSYdf8oL/KVH3y5vu59hF0ULxH/6pdppAGQLk84SlvfJEmn/+2mGWm0Y1MuuDqxXzpMevLP+eixd7c04r6fsMHlvQ/4Gsy/vbSgmnQHNYV3SWzulUSMH7+t5UpowtnLb6LnSm33R8+8YI73xY2nzrd5Dkr6+Sbr5rsFpl9ws3fej6HkDyA4CNhCDsz/mPVf3eNuGSdOvkF5p4Aazx05U9ph/9cjgnrbEOWsg7ziHDcSoPGi6bumhHY0Faz/nLvKu2y7/cUCwBvKPHjYQM+uSxo+Wjj0lXXu590hK5/zGrgsHkB30sIEEHD/pBe4Va5LJf/kdXv4Ea6A46GEDCVq/2XtI8dxRi6FvoLjoYQNNUroe27oG7uZVbtW6wdvOuazyOADFRQ8bSMFv3vQPwGvvbX5dAGQDPWwAADKAgA0AQAYQsAEAyAACNgAAGZD6zT/MLNcr16f9/SatAIvy04YZR/tlXwHakJt/5NqZ49ILHRWbVq2T1txYle78g1L7e5tXLwBAIuhhJyzW73d3DL+kZ8X7dfPrPvvy3oa0X/YVoA0j9bA5h93qDt/hBeo4grU0kNfhhNbMBAAkgh52wur+fk+9Ie2dGG9l/Jx/SGqfXPfh/LrPvry3Ie2XfQVoQ85hZ1Zcveko9p7jPcc8VA4AiBdD4q2mmcG6FcoFAERCwG4Ve0akHzR3m3RsS7p1AAD4ImC3gt0muXcazuaG22Ooy/6l6f9wAAAMwqSzhNX8fveMlNzvGirD765PDd972YZLF9auFxNesi/vbUj7ZV8B2pDLujIhQrDunC/d+0P/fUH3SG743skx9PgBAPGhh52w0O+3xtBzlJ5zWGCulfbDM6Sf3R9ahZqzx/l1n315b0PaL/sK0Ib0sFtajWD9rfv8t9fbc/Y77qV9EQ7kfDYAtAQCdhpOH6mZZPkdTaiHIv4AON2TeD0AAOEI2Gl4sf6VxaoFTS5reNJZuRc7Y8wMAFAPVjprttcHrr0KO0ftuqMPf7tu6WSfNGaudOJpafSo6NXZ+OWB16HnzA+tk86pvhUYAKBZ6GE328G/lBQcjA+UjZbPmTl4f1DPuRSkg4J10HHXLfaef33If/+79XxtpX8CAEBTELBbzLSFA693bqgMtGHD3B+8ynuecGlwmuq8yt+fu2ho9QQANBcBu5kanHH9WshctZdf9Z6PnQhOE7YvEmaMA0BqCNgtZuGc4H1TFwbviyKs973oksbyBgAki4Cdkr5d/tsfXd/cepQ8vM5/+9vPNLceAAB/BOxmOVU5q+usEd455LNGDGyLcinWpofrK/6hHbXTlJc/aqT3fuTwqkSnjtZXAQBAQ1iaNGHvfr8h539Pn5HaZ/en9wna1TPKq9OUHy9JR5+QJo4bWh7laXq3S2PfE1jdiuVKWRYx+/LehrRf9hWgDVmaNCvahjV2/PCLK993zm8sv9BgDQBIBQG7xURZLGXJ6sr3tX58fvar8ZQLAEhP7AHbzP7OzI6Y2c/izhue+7YNLf3GrcnUAwDQPEn0sDdJ+lQC+WbayrXR0za7tzuU8obyOQAA8Yk9YDvnnpZ0LO58s25tzCt7fv62aOnivutX3J8DABAN57Bb1KIV4fu//YD3vGOP//6tT3vPQffVLrlyVeX7ay+vXTcAQPOlErDNbJmZdZtZnDeBzLTp76t8/+jOaMfNW+a//dMRe8LV12ff85VoxwEAmiuVgO2c+45zrivKdWdF8ZO7B29bsDz8mI6QpUYlafzHw/evWBO+HwDQOhgSb5aZ4SuETZk0eNtjNZYFPV7jZh69J8P3r98cvt/X+T11HAQAaFQSl3VtlvRTSR8yswNm9n/EXUYmtU2s67CkZoxfdVOdB7ZPiLUeAIBo2uLO0Dm3NO48Eb/vb0+7BgCAoWBIvIVM7ki3/NnnpVs+ACAYN/9I2KDvN+QmIFL9Q+Af+YAX8PcflH55oL48at4tbNbgpuLGA9mX9zak/bKvAG0Y6eYfsQ+JozGuOzhoL5zT2P2yL7tB2vZscLkAgNZFwG62qXdKB8JnfPVul8bN814f3iZNqhoqv+4W6Z5Hohc5Z6a0c4P0+F0D2/YflGZc4b0+FGVt8mnfjF4gACB2DIknzPf7rTEsLnm97FKvd8s2aenq8PRD8d2vSUsvG1xOKJ/hcInhuDzIexvSftlXgDaMNCROwE6Y7/d76qi01+fC6ypRz2cvnitdv1iaN0s6flL66V7p1o3Sz/dFqF+UYH1+T+DlXPxnkX15b0PaL/sK0Iacw25Z7Z11H7p1rRegg4wfI82YIl29oHL7zhekSz5XZ6Fcew0AqaOHnbDQ7zfi0Hh7m/TOs4O3R65DVS+6fbZ0+kxjQ+Hv1oNf95mX9zak/bKvAG1ID7vlzXKRgnYpWNd7yVf5cWeel049FzGvGsEaANA8LJyStum1F/S2ruAAe8sy6fhTXm+59Ojb5W33M+yiiMF6+vciJAIANAtD4gmL9P0G9LKrA+uV86QH76y/LktXezPOywUOi0fsXTMcl315b0PaL/sK0IbMEm8Fkb/fPaMk93bFJuuSep6UJoytTDp6rvRmX/Q6dIyR3vhx5bavb5JuvssnYE/fLHUsiZw3/1lkX97bkPbLvgK0IeewM+XC/ghc1dtuGyZNv0J65WD9WR87Udlb/9Ujg3vakjhnDQAtjHPYraYsaLpu6aEdjQVrP+cu8q7bruhdE6wBoKUxJJ6wur/fU8ekvU24/vn8Iw1dF85wXPblvQ1pv+wrQBtGGhKnh92q2ju8Xu+0dcnkP229l38DwRoA0Dz0sBMW6/cb4ZrtmmIe+ubXffblvQ1pv+wrQBvSw86dWW7gMfP4oN2r/Drj579eeRwAIJPoYScs7e83afy6z768tyHtl30FaEN62AAA5AUBGwCADCBgAwCQAamvdDZr1ix1d0e5z2M25f38Ut7PLUm0YdbRftmX9zaMih42AAAZkHoPGwCAZgm8Q+EQRLpFcQLoYQMAcu2ma7xAHUewlgbyWnl1PPlFRcAGAORSxxgvsN7xxWTyX3Ojl/+kjmTyr8aQOAAgd+LqTUdxuP92xUkPldPDBgDkSjODdTPLJWADAHLht8+kF6xLXLf0559MJm8CNgAg81y3NGJ44/nccHvjeWy5LZkfDpzDBgBk2tu7Gs+j/Pzz39zvPTcadH/7jDTyjxvLoxw9bABApo0cUTtN53zp3h/67wuaLNboJLI4evzlCNgAgMyq1Qu2Lu/R0yt95q8bD8Kl/EqP8/6ssfoNBQEbAJBJtYLht+7z315v0PY77qV9tY+LK2gTsAEAmdMZYbGS5XckXw8p2g+ACWMbL4eADQDInCPb4ssrqAcc53B2z5ON58EscQBApvzFNQOv/Xq3pUDruqMPf7tu6WSfNGaudOJpafSo6PXZ+OVo9VmxVPrG5uj5VqOHDQDIlNv71wYPCsYHjgy8njNz8P6gnnMpSAcF66DjrlvsPf/6kP/+Uj3XrfLfHxUBGwCQK9MWDrzeuaEy0IYNc3/wKu95wqXBaarzKn9/7qKh1XOoCNgAgMxo9Lzya0eC9738qvd87ERwmrB9UTRSfwI2ACBXFs4J3jd1YfC+KMJ634suaSzvWgjYAIBM6gtYkvTR9c2tR8nD6/y3v/1MPPkTsAEAmTB5QuX7s0Z4Q8xnlS1NGmXIedPD9ZX/0I7aacrLHzXSez+yaonSiePqK5+ADQDIhEOP+2/v2yWdes57HeUyruu/Mnjb6TOV73t6B6e5MsIs71L5vdult3b6pzn6RO18/BCwAQCZ1zasseOHX1z5vnN+Y/mNfU9jx/shYAMAciVKL3vJ6sr3zoWn/+xX4ym3EQRsAEDh3DfEpU03bk2mHkMRe8A2s2lm9pSZ/cLMXjKzL8ZdBgCgeFaujZ426d5uI+UN5XOUS6KHfVrSKufc/yzpYkn/ycz+IIFyAAAFsnZlvPl9/rZo6eK+61e9nyP2gO2ce905t6f/9UlJv5A0Je5yAAAIs2hF+P5vP+A979jjv3/r095z0H21S6pnj197ee261SPRc9hm9n5JH5X0XNX2ZWbWbWbdR48eTbIKAICCmP6+yvePBlxWVW3eMv/tn47YE66+Pvsen8vG4pBYwDaz90h6QNIK51zF6qvOue8457qcc12dnZ1JVQEAUCA/uXvwtgXLw4/pCFlqVJLGfzx8/4o14fvjlEjANrN2ecH6XufcPyZRBgCgWCZ+Inz/lEmDtz1WY1nQ4zVu5tF7Mnz/+jrubx22HnmYJGaJm6QNkn7hnKtzLhwAAJXe+E19xyU1Y/yqm+o7rt47fiXRw54j6RpJl5rZC/2PBu+PAgBAa/n+9uaW1xZ3hs65nZIs7nwBAKhlcod0+Fh65c8+L7m8WekMAJAZtYa3Dw1xBbNyH/mANP8i6fen1p/Hs5vC9zcyPB97DxsAgDS57uDAuHBOY/fLvuwGaduzweUmiYANAMiUVeukNTeGp+ndLo2b570+vE2a1FG5/7pbpHseiV7mnJnSzg3S43cNbNt/UJpxhfc6Ss/+Cw2umGau1i1KEtbV1eW6uxP+WZIib9J8fqX976cZaMNso/2yz68No/RmrWsg3ZZt0tLV4emH4rtfk5ZeNricWvUJsNs5V3OwnICdMP6zyD7aMNtov+zza8OJ46SjT0Q4NuI548VzpesXS/NmScdPSj/dK926Ufr5vtrHRgnWEy4NvZwrUsBmSBwAkDk9vfUfu3WtF6CDjB8jzZgiXb2gcvvOF6RLPldfmfVee12OgA0AyKQoQ9GlCWjtbdI7VZPFhjJj23VLH7tgoLz22dLpMw0PhQ8JARsAkFlRzx+XgnW9wbP8uDPPS6eei5ZXnKuscR02ACDTltxcO411BQfPW5ZJx5/yAn/p0bfL2+5n2EXRAvGffql2mqFg0lnCmPCSfbRhttF+2RelDYN62dWB9cp50oN31l+Xpau9Gef1lB2CSWcAgGKwLumtndKokYP39TwpTRhbuW30XOnNvuj5d4yR3vixtPlW7yFJX98k3XzX4LRLbpbu+1H0vKMiYAMAcuHsj3nP1T3etmHS9CukVw7Wn/exE5U95l89MrinLSV3ZzCJc9gAgJwpD5quW3poR2PB2s+5i7zrtst/HCQZrCV62ACAHLIuafxo6dhT0rWXe4+kdM5v7LrwqOhhAwBy6fhJL3CvWJNM/svv8PJvRrCW6GEDAHJu/WbvIcVzR62kh76D0MMGABRG6Xps6xq4m1e5VesGbzvnssrj0kIPGwBQSL950z8Ar723+XWJgh42AAAZQMAGACADCNgAAGQAARsAgAxI/eYfZpbrlevT/n6TlvcbK0i0YdbRftlXgDaMdPMPetgAEjFudOXtCl23tPLqwdvOmZB2TYFsoIedsLS/36Tx6z774mzDVlyUgvbLvgK0IT1sAMm76ZqB3nIcynvjAAbQw05Y2t9v0vh1n331tmHp/sBJm/wn0pFj9R9P+2VfAdowUg+blc4ADFlcvekoDvffczjNJSGBVsCQOIAhaWawboVygVZBwAYQyW+fST9oum7pzz+Zbh2AtBCwAdTkuqURwxvP54bbG89jy23p/3AA0sCks4Sl/f0mjQkv2VerDd/eJY0c0WAZPuefGw26v3tHGvnHtdMVvf3yoABtyGVdABoXJVh3zpfu/aH/vqDJYo1OIoujxw9kCT3shKX9/SaNX/fZF9aGtXrBUXrOYYG5VtoPz5B+dv/Q61BRRoHbLy8K0Ib0sAHUr1aw/tZ9/tvr7Tn7HffSvtrHcT4bRUHABjBIZ0ftNMvvSL4eUrQfABPGJl8PIG0EbACDHNkWX15BPeA4e8Y9T8aXF9CqWOkMQIW/uGbgddg5atcdffjbdUsn+6Qxc6UTT0ujR0Wvz8YvR6vPiqXSNzZHzxfIGnrYACrc/kXvOSgYHzgy8HrOzMH7g3rOpSAdFKyDjrtusff860P++0v1XLfKfz+QFwRsAEMybeHA650bKgNt2DD3B6/ynidcGpymOq/y9+cuGlo9gbwhYAN4V6PnlV87Erzv5Ve952MngtOE7YuCGePIMwI2gCFZOCd439SFwfuiCOt9L7qksbyBrCNgA/DVt8t/+6Prm1uPkofX+W9/+5nm1gNICwEbgCRp8oTK92eN8IaYzypbmjTKkPOmh+sr/6EdtdOUlz9qpPd+ZNUSpRPH1Vc+0OpYmjRhaX+/SWNZxOwrtWFYMD59RmqfrcB01TPKq9OUHy9JR58YHFhr5VGepne7NPY9wfUtz6so7ZdnBWhDliYFEI+2YY0dP/ziyved8xvLLyxYA3lFwAYwJFEWS1myuvJ9rQ7SZ78aT7lAnsUesM1spJk9b2YvmtlLZvaVuMsA0NruG+LSphu3JlMPIE+S6GH/TtKlzrmZki6Q9Ckzu7jGMQBStnJt9LTN7u0OpbyhfA4gS2IP2M7zZv/b9v5HvmcMADmwdmW8+X3+tmjp4r7rV9yfA2gViZzDNrNhZvaCpCOSfuSce65q/zIz6zYz1iUCMmrRivD9337Ae96xx3//1qe956D7apdcWbVG+LWX164bkEeJXtZlZuMkPSjpC865nwWkyXXvuwCXI6RdhcQVpQ1rXWM94wpp/8HKbaVjgoasa93RK2x/UN5RrgXnsq58KUAbpn9Zl3OuV9J2SZ9KshwAyfvJ3YO3LVgefkxHyFKjkjT+4+H7V6wJ3w8USRKzxDv7e9Yys7MkzZf0r3GXAyBeEz8Rvn/KpMHbHquxLOjxGjfz6D0Zvn99Hfe3DluPHMiytgTyfK+ke8xsmLwfBPc75x5JoBwAMXrjN/Udl9SM8atuqu+4Ru/4BbSq2AO2c26vpI/GnS+AYvn+9rRrALQWVjoDENnkjnTLn31euuUDaeLmHwlL+/tNGjNUs6+6DWvNwq53CPwjH/AC/v6D0i8P1JdHPXUrWvvlUQHaMNIs8STOYQPIsbBLsRbOaex+2ZfdIG17NrhcoMgI2AAqrFonrbkxPE3vdmncPO/14W3SpKqh8utuke4ZwlTTOTOlnRukx+8a2Lb/oHfttyQdirA2+RdiXjENaDUMiScs7e83aQzHZZ9fG0ZdnKSUbss2aenq8PRD8d2vSUsvG1xOrfr4KWL75U0B2jDSkDgBO2Fpf79J4z+L7PNrw4njpKNPRDg24vnsxXOl6xdL82ZJx09KP90r3bpR+vm+2sdGCdYTLg2+nKuI7Zc3BWhDzmEDqE9Pb/3Hbl3rBegg48dIM6ZIVy+o3L7zBemSz9VXJtdeowjoYScs7e83afy6z76wNow6FN3eJr3z7ODtUVWX0z5bOn2msaHwd/MucPvlRQHakB42gMZEPX9cCtb1XvJVftyZ56VTz0XLq9n35QbSxMIpAEItubl2GusKDp63LJOOP+UF/tKjb5e33c+wi6IF4j/9Uu00QJ4wJJ6wtL/fpDEcl31R2jCol10dWK+cJz14Z/3uE0VqAAAgAElEQVR1Wbram3FeT9lBaL/sK0AbMku8FaT9/SaN/yyyL2obvrVTGjWy6tguqedJacLYyu2j50pv9kWvQ8cY6Y0fV277+ibp5rsGB+wlN0v3/Sh63rRf9hWgDTmHDSA+Z3/Me64OoG3DpOlXSK8crD/vYycqe8y/emRwT1vinDWKjXPYAIakPGi6bumhHY0Faz/nLvKu2y7/cUCwRtExJJ6wtL/fpDEcl331tuH40dKxp2KujI/O+Y1dF077ZV8B2jDSkDg9bAB1OX7S6/WuWJNM/svv6D9H3kCwBvKEHnbC0v5+k8av++yLsw3juKNW3EPftF/2FaAN6WEDaK7S9djWNXA3r3Kr1g3eds5llccB8EcPO2Fpf79J49d99uW9DWm/7CtAG9LDBgAgLwjYAABkAAEbAIAMSH2ls1mzZqm7O4appS0q7+eX8n5uSaINs472y768t2FU9LABAMiA1HvYAIAWsjuG3uys/Pf600APGwCK7vAdXqCOI1hLA3kdTmgZvIIiYANAUZ16wwusB76UTP4HbvLyP3U4mfwLhiFxACiiuHrTUew9x3tmqLwh9LABoGiaGaxbodycIGADQFHsGZF+0Nxt0rEt6dYhowjYAFAEu01y7zSczQ23x1CX/UvT/+GQQZzDBoC82zOy4SzK76T2N/d7zw3fTnXPCOnC3zWYSXHQwwaAvHO1g2LnfOneH/rvC7rtacO3Q42hx18kBGwAyLMaQ8+l+5D39Eqf+evGg3D5vc2tSzrvzxqrHwYQsAEgr2oEw2/d57+93qDtd9xL+yIcSNCOhIANAHl0+kjNJMvvaEI9FPEHwOmexOuRdQRsAMijFyfHllXQ5LKGJ52Ve7EzxszyiVniAJA3rw9ce+XXuy0FWtcdffjbdUsn+6Qxc6UTT0ujR0WvzsYvD7wOq48OrZPOuTF6xgVDDxsA8ubgX0oKDsYHykbL58wcvD+o51wK0kHBOui46xZ7z78+5L//3Xq+ttI/ASQRsAGgcKYtHHi9c0NloA0b5v7gVd7zhEuD01TnVf7+3EVDqycqEbABIE8anHH9WshctZdf9Z6PnQhOE7YvEmaMByJgA0DBLJwTvG/qwuB9UYT1vhdd0ljeRUfABoCc6tvlv/3R9c2tR8nD6/y3v/1Mc+uRVQRsAMiLU5Wzus4a4Z1DPmvEwLYol2Jteri+4h/aUTtNefmjRnrvRw6vSnTqaH0VyDkCNgDkxd73+m7u2yWdes57HeUyruu/Mnjb6TOV73t6B6e5clXtvEvl926X3toZkGjvpNoZFRABGwAKoG1YY8cPv7jyfef8xvIb+57Gji8iAjYAFEyUXvaS1ZXvnQtP/9mvxlMugiUSsM1smJn9s5k9kkT+AIBk3bdtaOk3bk2mHhiQVA/7i5J+kVDeAAAfK9dGT9vs3u5QyhvK5yiS2AO2mU2VdLmku+POGwAQbG3MK3t+/rZo6eK+61fcnyMvkuhhf0PSlyT9j6AEZrbMzLrNrPvoUabvA0AaFq0I3//tB7znHXv892992nsOuq92SfXs8Wsvr103DBZrwDazRZKOOOd2h6Vzzn3HOdflnOvq7OSWagDQDNPfV/n+0aDLqqrMW+a//dMRe8LV12ff43PZGGqLu4c9R9IVZvaKpC2SLjWzv4+5DABAHX7ic6JywfLwYzpClhqVpPEfD9+/Yk34fkQXa8B2zt3snJvqnHu/pCWSfuyc+0ycZQAAAswMP8U4xWc9ksdqLAt6vMbNPHpPhu9fvzl8v6/ze+o4KP+4DhsA8qJtYl2HJTVj/Kqb6jywfUKs9ciLtqQyds5tl7Q9qfwBAK3t+9vTrkG+0MMGgAKZ3JFu+bPPS7f8LCNgA0CezApfQ/TQEFcwK/eRD0jzL5J+f2r9eTy7qUaCGvUvssSGxAEArcl1B5+3XjinsftlX3aDtO3Z4HJRPwI2AOTN1DulA+Ezvnq3S+Pmea8Pb5MmVQ2VX3eLdM8Q7gYxZ6a0c4P0+F0D2/YflGZc4b2O1LOf9s3oBRYQQ+IAkDeTa9+YunR7S9ftBest27xed+kxlGAtSbterDx+8+PeQi2lXnWkc+eTvjC0QgvGXK17piWsq6vLdXfnd5zEzNKuQqLS/vfTDLRhthW2/U4dlfb6XHhdJeolXYvnStcvlubNko6flH66V7p1o/TzfRHqGOW/+PN7Ai/nynsbStrtnKvZEgyJA0Aetde/7PPWtV6ADjJ+jDRjinT1gsrtO1+QLvlcnYVy7XVNBGwAyKtZTtod3jstTUBrb5PeqZosNpQFVVy39LELBnrT7bOl02ci9q6ZGR4JARsA8ixC0JYGgnW9q56VH3fmeenUcxHzIlhHxqQzAMi76bUX9C5NFvNzyzLp+FNeb7n06Nvlbfcz7KKIwXr69yIkQgmTzhKW98kSaf/7aQbaMNtov34BvezqwHrlPOnBO+uvz9LV3ozzcoHD4hF713lvQzHpDADwrllO2jNKcm8P2tXzpDRhbOW20XOlN/uiZ98xRnrjx9LmW72HJH19k3TzXT6Jp2+WOpZEzxySCNgAUBwX9kfgqt522zBp+hXSKwfrz/rYicre+q8eGdzTlsQ56wZwDhsAiqYsaLpu6aEdjQVrP+cu8q7brhgOJ1g3hB42ABTRLCedOibtnaBrL5euvTzBss4/0tB14fDQwwaAomrv8AL3tHXJ5D9tvZc/wToW9LABoOgmrfAeUqRrtmti6DsR9LABAANmuYHHzOODdq/y64yf/3rlcUgEPWwAgL+2cYMC8Jq/T6kuoIcNAEAWELABAMgAAjYAABmQ+lriZpbrGQppf79JK8Aav7RhxtF+2VeANoy0ljg9bAAAMiA3s8Qj3SS9hnrvAwsAQNIy3cO+6ZqBe7PGoZTXyqvjyQ8AgLhk8hx26TZuSZv8J9KRY43lkfb3mzTOn2Vf3tuQ9su+ArRhPu+HHVdvOorD/beGY6gcAJC2TA2JNzNYt0K5AACUZCJg//aZ9IOm65b+/JPp1gEAUFwtH7BdtzRieOP53HB743lsuS39Hw4AgGJq6Ulnb++SRo5oMH+f88+NBt3fvSON/ONoadP+fpPGhJfsy3sb0n7ZV4A2zP7CKVGCded86d4f+u8LmizW6CSyOHr8AAAMRcv2sGv1gqP0nMMCc620H54h/ez+oddhUDn5/2WYdhUSRxtmG+2XfQVow+z2sGsF62/d57+93p6z33Ev7at9HOezAQDN0nIBu7OjdprldyRfDynaD4AJY5OvBwAALRewj2yLL6+gHnCcPeOeJ+PLCwCAIC210tlfXDPwOuwcteuOPvztuqWTfdKYudKJp6XRo6LXZ+OXo9VnxVLpG5uj5wsAwFC1VA/79i96z0HB+MCRgddzZg7eH9RzLgXpoGAddNx1i73nXx/y31+q57pV/vsBAIhLSwXsWqYtHHi9c0NloA0b5v7gVd7zhEuD01TnVf7+3EVDqycAAHFrmYDd6Hnl144E73v5Ve/52IngNGH7omDGOAAgSS0TsKNYOCd439SFwfuiCOt9L7qksbwBAGhUSwbsvl3+2x9d39x6lDy8zn/72880tx4AgOJqiYA9eULl+7NGeEPMZ5UtTRplyHnTw/WV/9CO2mnKyx810ns/smqJ0onj6isfAIBaWmJp0rBgfPqM1D7be+2XrnpGeXWa8uMl6egTgwNrrTzK0/Rul8a+J7i+g/LK/5J6aVchcbRhttF+2VeANszu0qTl2oY1dvzwiyvfd85vLL+wYA0AQFJaPmCXi7JYypLVle9r/TD77FfjKRcAgCQlErDN7BUz+xcze8HMmnrB031DXNp049Zk6gEAQJyS7GF/3Dl3QZRx+ZVro2fa7N7uUMobyucAAGAoWmJIfO3KePP7/G3R0sV916+4PwcAACVJBWwnaZuZ7TazZdU7zWyZmXXXO1y+aEX4/m8/4D3v2OO/f+vT3nPQfbVLrqxaI/zay2vXDQCAJCRyWZeZvc85d9DMJkn6kaQvOOeeDkgbelmXJM24Qtp/sHJb6ZigIetad/QK2x+Ud5RrwbmsK39ow2yj/bKvAG2Y3mVdzrmD/c9HJD0o6aJG8vvJ3YO3LVgefkxHyFKjkjT+4+H7V6wJ3w8AQDPFHrDN7GwzG116LelPJP0s7JiJnwjPc8qkwdseq7Es6PEaN/PoPRm+f30d97cOW48cAIBGtCWQ52RJD/YP07RJ+q5z7rGwA974TX0FJTVj/Kqb6juu0Tt+AQAQJPaA7ZzbJ2lm3Pk20/e3p10DAAAqtcRlXVFM7ki3/NnnpVs+AKDYWuLmH6XXtWZh1zsE/pEPeAF//0Hplwfqy6PeuqX9/SaNGarZl/c2pP2yrwBtGGmWeBLnsBMTdinWwjmN3S/7shukbc8GlwsAQJpaKmCvWietuTE8Te92adw87/XhbdKkqqHy626R7nkkeplzZko7N0iP3zWwbf9B79pvSToUYW3yL8S8YhoAANVaakhcir44SSndlm3S0tXh6Yfiu1+Tll42uJxa9QmS9vebNIbjsi/vbUj7ZV8B2jDSkHjLBeyJ46SjT0Q4LuL57MVzpesXS/NmScdPSj/dK926Ufr5vtrHRgnWEy4Nv5wr7e83afxnkX15b0PaL/sK0IbZPIfd01v/sVvXegE6yPgx0owp0tULKrfvfEG65HP1lcm11wCAZmi5HnZJ1KHo9jbpnWcHb4+qupz22dLpM40Phb+bf/5/GaZdhcTRhtlG+2VfAdowmz3skqjnj0vBut5LvsqPO/O8dOq5aHk1+77cAIBia+mFU5bcXDuNdQUHz1uWScef8gJ/6dG3y9vuZ9hF0QLxn36pdhoAAOLUskPiJUG97OrAeuU86cE766/H0tXejPN6yg6T9vebNIbjsi/vbUj7ZV8B2jCbs8T9vLVTGjWy6rguqedJacLYyu2j50pv9kUvv2OM9MaPK7d9fZN0812DA/aSm6X7fhQ9b6kQ/9DSrkLiaMNso/2yrwBtmO1z2OXO/pj3XB1A24ZJ06+QXjlYf97HTlT2mH/1yOCetsQ5awBAulr6HHa18qDpuqWHdjQWrP2cu8i7brv8xwHBGgCQtkwMiVcbP1o69lQStanUOb+x68KlQgzlpF2FxNGG2Ub7ZV8B2jDSkHimetglx096vd4Va5LJf/kd/efIGwzWAADEJZM9bD9x3FEriaHvtL/fpPHrPvvy3oa0X/YVoA3z28P2U7oe27oG7uZVbtW6wdvOuazyOAAAWlVuetitKu3vN2n8us++vLch7Zd9BWjDYvWwAQDIMwI2AAAZQMAGACADUl/pbNasWerujmGKd4vK+/mlvJ9bkmjDrKP9si/vbRgVPWwAADKAgA0AQAakPiQOvGt3DMNes/I/PAigmOhhI12H7/ACdRzBWhrI63BC69YCQEoI2EjHqTe8wHrgS8nkf+AmL/9Th5PJHwCajCFxNF9cveko9p7jPTNUDiDj6GGjuZoZrFuhXACICQEbzbFnRPpBc7dJx7akWwcAqBMBG8nbbZJ7p+Fsbrg9hrrsX5r+DwcAqAPnsJGsPSMbzqL81qd/c7/33PD9z/eMkC78XYOZAEDz0MNGslztoNg5X7r3h/77gu5T3vD9y2Po8QNAMxGwkZwaQ8/W5T16eqXP/HXjQbiUX+lx3p81Vj8AaCUEbCSjRjD81n3+2+sN2n7HvbQvwoEEbQAZQcBG/E4fqZlk+R1NqIci/gA43ZN4PQCgUQRsxO/FybFlFTS5rOFJZ+Ve7IwxMwBIBrPEEa/XB6698uvdlgKt644+/O26pZN90pi50omnpdGjoldn45cHXofVR4fWSefcGD1jAGgyetiI18G/lBQcjA+UjZbPmTl4f1DPuRSkg4J10HHXLfaef33If/+79XxtpX8CAGgRBGw01bSFA693bqgMtGHD3B+8ynuecGlwmuq8yt+fu2ho9QSAVkPARnwanHH9WshctZdf9Z6PnQhOE7YvEmaMA2hhBGw01cI5wfumLgzeF0VY73vRJY3lDQBpI2AjEX27/Lc/ur659Sh5eJ3/9refaW49AKBeBGzE41TlrK6zRnjnkM8aMbAtyqVYmx6ur/iHdtROU17+qJHe+5HDqxKdOlpfBQAgYQRsxGPve3039+2STj3nvY5yGdf1Xxm87fSZyvc9vYPTXLmqdt6l8nu3S2/tDEi0d1LtjAAgBQRsJK5tWGPHD7+48n3n/MbyG/uexo4HgDQkErDNbJyZ/YOZ/auZ/cLM/iiJcpA9UXrZS1ZXvncuPP1nvxpPuQDQypLqYa+X9Jhz7t9JminpFwmVgxy6b9vQ0m/cmkw9AKCVxB6wzWyMpLmSNkiSc+4d55zPWUfkycq10dM2u7c7lPKG8jkAoJmS6GHPkHRU0kYz+2czu9vMzk6gHLSQtTGv7Pn526Kli/uuX3F/DgCISxIBu03ShZL+1jn3UUlvSfqr8gRmtszMus2s++hRLqMpokUrwvd/+wHvecce//1bn/aeg+6rXVI9e/zay2vXDQBaURIB+4CkA865/ot59A/yAvi7nHPfcc51Oee6Oju5tWERTH9f5ftHgy6rqjJvmf/2T0fsCVdfn32Pz2VjAJAFsQds59whSa+a2Yf6N31C0s/jLgfZ8pO7B29bsDz8mI6QpUYlafzHw/evWBO+HwCyJKn7YX9B0r1mNlzSPknXJ1QOWsXMo9KLwaMlU3zWI3msxrKgx2vczKP3ZPj+9ZvD9/s6v6eOgwAgeYkEbOfcC5K48rVI2ibWdVhSM8avuqnOA9snxFoPAIgLK50hl76/Pe0aAEC8CNhomskd6ZY/+7x0yweARhCwEZ9Z4WuIHhriCmblPvIBaf5F0u9PrT+PZzfVSFCj/gCQpqQmnQG+XHfweeuFcxq7X/ZlN0jbng0uFwCyjICNeE29UzoQPuOrd7s0bp73+vA2aVLVUPl1t0j3PBK9yDkzpZ0bpMfvGti2/6A04wrvdaSe/bRvRi8QAFLAkDjiNbn2jalLt7d03V6w3rLN63WXHkMJ1pK068XK4zc/7i3UUupVRzp3PukLQysUAJrMXK17Fyasq6vLdXfnd7zSzNKuQqJ8//2cOirt9bnwukrUS7oWz5WuXyzNmyUdPyn9dK9060bp5/si1C/KP63ze0Iv5ypkG+YI7Zd9eW9DSbudczX/R2RIHPFrr3+52a1rvQAdZPwYacYU6eoFldt3viBd8rk6C+XaawAZQMBGMmY5aXf4r+LSBLT2NumdqsliQ1lQxXVLH7tgoDfdPls6fSZi75qZ4QAygoCN5EQI2tJAsK531bPy4848L516LmJeBGsAGcKkMyRreu0FvUuTxfzcskw6/pTXWy49+nZ52/0MuyhisJ7+vQiJAKB1MOksYXmfLBHp309AL7s6sF45T3rwzvrrsnS1N+O8XOCw+BB617RhttF+2Zf3NhSTztAyZjlpzyjJvT1oV8+T0oSxldtGz5Xe7IuefccY6Y0fS5tv9R6S9PVN0s13+SSevlnqWBI9cwBoEQRsNMeF/RG4qrfdNkyafoX0ysH6sz52orK3/qtHBve0JXHOGkCmcQ4bzVUWNF239NCOxoK1n3MXeddtVwyHE6wBZBw9bDTfLCedOibtnaBrL5euvTzBss4/0tB14QDQKuhhIx3tHV7gnrYumfynrffyJ1gDyAl62EjXpBXeQ4p0zXZNDH0DyCl62Ggds9zAY+bxQbtX+XXGz3+98jgAyCl62GhNbeMGBeA1f59SXQCgBdDDBgAgAwjYAABkAAEbAIAMSH0tcTPL9UyhtL/fpBVgjV/aMONov+wrQBtGWkucHjYAABnALHEAiIq1ApAietgAEObwHV6gjiNYSwN5HV4TT34oDM5hJyzt7zdpnD/Lvry3Yd3td+oNae/EeCvj5/xDUvvkug/Pe/tJhfgb5H7YAFCXuHrTUew9x3tmqBw1MCQOAOWaGaxboVxkBgEbACRpz4j0g+Zuk45tSbcOaFkEbADYbZJ7p+Fsbrg9hrrsX5r+Dwe0JCadJSzt7zdpTHjJvry3Yc322zNScr9rqAzzmS7kuhvKUrLh0oW165X39pMK8TfIwikAUFOEYN05X7r3h/77/IJ12PbIYujxI1/oYScs7e83afy6z768t2Fo+9UYeo7Scw4LzLXSfniG9LP7Q6tQc/Z43ttPKsTfID1sAAhUI1h/6z7/7fX2nP2Oe2lfhAM5n41+BGwAxXP6SM0ky+9oQj0U8QfA6Z7E64HWR8AGUDwv1r+yWLWgyWUNTzor92JnjJkhq1jpDECxvD5w7VXYOWrXHX3423VLJ/ukMXOlE09Lo0dFr87GLw+8Dj1nfmiddM6N0TNG7tDDBlAsB/9SUnAwPlA2Wj5n5uD9QT3nUpAOCtZBx1232Hv+9SH//e/W87WV/glQGARsACgzbeHA650bKgNt2DD3B6/ynidcGpymOq/y9+cuGlo9UTwEbADF0eCM69dC5qq9/Kr3fOxEcJqwfZEwY7zQCNgAUGbhnOB9UxcG74sirPe96JLG8kb+EbABFFLfLv/tj65vbj1KHl7nv/3tZ5pbD7QuAjaAYjhVOavrrBHeOeSzRgxsi3Ip1qaH6yv+oR2105SXP2qk937k8KpEp47WVwFkHkuTJizt7zdpLIuYfXlvw3fbL+T87+kzUvvs/vQ+Qbt6Rnl1mvLjJenoE9LEcUPLozxN73Zp7HsCq1uxXGne208qxN8gS5MCQBRtwxo7fvjFle875zeWX2iwRmERsAGgTJTFUpasrnxfqwP42a/GUy6KLfaAbWYfMrMXyh4nzGxF3OUAQFru2za09Bu3JlMPFEvsAds592/OuQuccxdImiWpT9KDcZcDAEOxcm30tM3u7Q6lvKF8DuRL0kPin5D0S+fcrxIuBwBCrY15Zc/P3xYtXdx3/Yr7cyA7kg7YSyRtrt5oZsvMrNvM4ryfDQDEZlGNE3nffsB73rHHf//Wp73noPtql1y5qvL9tZfXrhuKKbHLusxsuKSDkj7snDscki7X8/ULcDlC2lVIHG2YbVEu65KkGVdI+w9WHdvfpQgasq51R6+w/UF5R7otJ5d15UorXNa1QNKesGANAK3iJ3cP3rZgefgxHSFLjUrS+I+H71+xJnw/UC7JgL1UPsPhAJCKmeErhE2ZNHjbYzWWBT1e42YevSfD96+v53/I83vqOAh5kEjANrNRkj4p6R+TyB8AhqxtYl2HJTVj/Kqb6jywfUKs9UB2tCWRqXOuTxL/qgAgwPe3p10DZA0rnQFAv8kd6ZY/+7x0y0dr4+YfCUv7+00aM1SzL+9tOKj9aswWr3cI/CMf8AL+/oPSLw/Ul0fNGeKzBv9bzHv7SYX4G4w0SzyRIXEAyKqwS7EWzmnsftmX3SBteza4XCAMARtAsUy9UzoQPuOrd7s0bp73+vA2aVLVUPl1t0j3PBK9yDkzpZ0bpMfvGti2/6B37bckHYqyNvm0b0YvELnEkHjC0v5+k8ZwXPblvQ1926/GsLjk9bJLvd4t26Slq8PTD8V3vyYtvWxwOaF8hsOl/LefVIi/wUhD4gTshKX9/SaN/yyyL+9t6Nt+p45Ke30uvK4S9Xz24rnS9YulebOk4yeln+6Vbt0o/XxfhPpFCdbn9wRezpX39pMK8TfIOWwA8NXeWfehW9d6ATrI+DHSjCnS1Qsqt+98Qbrkc3UWyrXXED3sxKX9/SaNX/fZl/c2DG2/iEPj7W3SO88O3h65DlW96PbZ0ukzjQ2Fv1uPnLefVIi/QXrYABBqlosUtEvBut5LvsqPO/O8dOq5iHnVCNYoFhZOAVBs02sv6G1dwQH2lmXS8ae83nLp0bfL2+5n2EURg/X070VIhCJhSDxhaX+/SWM4Lvvy3oaR2i+gl10dWK+cJz14Z/11Wbram3FeLnBYPGLvOu/tJxXib5BZ4q0g7e83afxnkX15b8PI7bdnlOTerthkXVLPk9KEsZVJR8+V3uyLXoeOMdIbP67c9vVN0s13+QTs6ZuljiWR8857+0mF+BvkHDYARHZhfwSu6m23DZOmXyG9crD+rI+dqOyt/+qRwT1tSZyzRijOYQNAubKg6bqlh3Y0Fqz9nLvIu267ondNsEYNDIknLO3vN2kMx2Vf3tuw7vY7dUza24Trn88/0tB14XlvP6kQf4ORhsTpYQOAn/YOr9c7bV0y+U9b7+XfQLBGsdDDTlja32/S+HWffXlvw1jbL8I12zXFPPSd9/aTCvE3SA8bAGI1yw08Zh4ftHuVX2f8/NcrjwPqRA87YWl/v0nj13325b0Nab/sK0Ab0sMGACAvCNgAAGQAARsAgAxohZXOeiT9qonlTewvsylSOr/U1M+Ygry3Ie0XI9ovdk3/fAVow3OjJEp90lmzmVl3lJP7WZb3z8jnyzY+X7bl/fNJrfsZGRIHACADCNgAAGRAEQP2d9KuQBPk/TPy+bKNz5dtef98Uot+xsKdwwYAIIuK2MMGACBzCNgAAGRAoQK2mX3KzP7NzF42s79Kuz5xMrO/M7MjZvaztOuSBDObZmZPmdkvzOwlM/ti2nWKm5mNNLPnzezF/s/4lbTrFDczG2Zm/2xmj6RdlySY2Stm9i9m9oKZdaddn7iZ2Tgz+wcz+9f+v8U/SrtOcTGzD/W3W+lxwsxWpF2vcoU5h21mwyT9f5I+KemApH+StNQ59/NUKxYTM5sr6U1J/805d17a9Ymbmb1X0nudc3vMbLSk3ZKuzEv7SZJ5q0Oc7Zx708zaJe2U9EXn3LMpVy02ZrZSUpekMc65RWnXJ25m9oqkLudcLhdOMbN7JP3EOXe3mQ2XNMo515t2veLWHy9ekzTbOdfMhb1CFamHfZGkl51z+5xz70jaIunTKdcpNs65pyUdS7seSXHOve6c29P/+qSkX0iakm6t4uU8b/a/be9/5OYXtZlNlXS5pLvTrguGzszGSD53FtgAAAJLSURBVJoraYMkOefeyWOw7vcJSb9spWAtFStgT5H0atn7A8rZf/hFYWbvl/RRSc+lW5P49Q8ZvyDpiKQfOefy9Bm/IelLkv5H2hVJkJO0zcx2m9mytCsTsxmSjkra2H9a424zOzvtSiVkiaTNaVeiWpECtt9itLnpvRSFmb1H0gOSVjjnTqRdn7g558445y6QNFXSRWaWi9MbZrZI0hHn3O6065KwOc65CyUtkPSf+k9V5UWbpAsl/a1z7qOS3pKUq7lAktQ/1H+FpO+lXZdqRQrYByRNK3s/VdLBlOqCOvSf131A0r3OuX9Muz5J6h9q3C7pUylXJS5zJF3Rf453i6RLzezv061S/JxzB/ufj0h6UN6puLw4IOlA2ajPP8gL4HmzQNIe59zhtCtSrUgB+58kfdDMpvf/gloiaWvKdUJE/ROyNkj6hXNubdr1SYKZdZrZuP7XZ0maL+lf061VPJxzNzvnpjrn3i/vb+/HzrnPpFytWJnZ2f0TItU/VPwnknJz1YZz7pCkV83sQ/2bPiEpN5M+yyxVCw6HS61xe82mcM6dNrMbJD0uaZikv3POvZRytWJjZpslzZM00cwOSPqyc25DurWK1RxJ10j6l/5zvJK02jn3gxTrFLf3Srqnf4bq70m63zmXy8ufcmqypAf7bwXZJum7zrnH0q1S7L4g6d7+Ts8+SdenXJ9YmdkoeVcS/ce06+KnMJd1AQCQZUUaEgcAILMI2AAAZAABGwCADCBgAwCQAQRsAAAygIANAEAGELABAMiA/x8yMOc/us4UiAAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHwCAYAAABkPlyAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X+4FdWd7/nP93IOIIZfBw6YAGOgkyczHQO2nBa7iQwxpA0IRmd6umGMXs1kuJO5hiDY6Zbn6Scmz41mVCB07OncXGnw3jagaduI2lGiEQwYtQ+00jHpnseAiYj8OMIJ6DERuGv+qLM9e+9TVbvO3lW7dlW9X8+zn7131aq11t6Lw3evVatWmXNOAACgtf27tCsAAABqI2ADAJABBGwAADKAgA0AQAYQsAEAyAACNgAAGUDABgAgAwjYAABkAAEbaDFm9kEz+0czO2Fmh83sbjNrC0k/zsz+pj9tn5n9i5n9+2bWGUDyCNhA6/l/JR2V9H5JF0r6nyX9334JzWy4pCclnS/pDySNlfRnku4wsxVNqS2ApiBgA61nuqQHnHO/cc4dlvS4pI8GpL1W0v8g6X9zzh1wzp12zj0uaYWk/2RmoyXJzJyZfah0kJltNrP/VPZ+sZm9aGa9Zvasmc0s2/cBM3vQzI6Z2YHyHwJmdquZPWBm/9XMTpnZy2bWVbb/z83s9f59/2Zmn4znKwKKh4ANtJ4Nkpaa2SgzmyJpobyg7edTkn7gnHu7avuDkkZJuqRWYWZ2kaS/lfQfJE2Q9J8lbTOzEWb27yQ9IuklSVMkfVLSSjO7vCyLKyVtlTRO0jZJd/fn+xFJN0r6fefcaEmXS3q1Vn0A+CNgA61np7we9UlJByV1S/p+QNqJkt6o3uicOyOpR1JnhPL+T0n/2Tn3vHPurHPuXkm/lRfsf19Sp3Pua865d51z+yX9F0lLy47f5Zz7R+fcWUn/TdKs/u1nJY2Q9Ltm1u6ce9U594sI9QHgg4ANtJD+Hu0Tkv5B0rnyAvJ4Sf9PwCE98s51V+fT1n/ssQjFni9pdf9weK+Z9UqaJukD/fs+ULVvjaTJZccfLnvdJ2mkmbU5516RtFLSrZKOmtlWM/tAhPoA8EHABlpLh7xgebdz7rfOuTclbZK0KCD9k5IWmtm5Vdv/V0mnJb3Q/75P3hB5yXllr1+T9HXn3Liyxyjn3Jb+fQeq9o12zgXVp4Jz7rvOuY/LC/xOwT88ANRAwAZaiHOuR9IBSV8wszYzGyfp38s7h+znv8kbNv9e/+Vg7f3nl/9K0h3OuV/3p3tR0v9uZsPM7NPyZp6X/BdJ/5eZzTHPuWZ2Rf+EtRckneyfPHZO//EXmNnv1/osZvYRM7vMzEZI+o2kd+QNkwOoAwEbaD3/i6RPyxvOfkXSGUk3+SV0zv1W0gJ5PeHn5QXFxyV9U9JXy5J+SdISSb2SrlHZOXHnXLe889h3SzrRX+b1/fvO9h93obwfEj2S7pF3+VgtIyR9o/+Yw5ImyRtOB1AHc86lXQcAMTGzdkk/kPS6pOsdf+BAbtDDBnLEOXda3vnrX0j6SMrVARAjetgAAGQAPWwAADIg8IYCzTJx4kT3wQ9+MO1qJGbPnj1pVyFRs2fPTrsKiaMNs432y768t6GkHudczUWOUh8S7+rqct3d3anWIUlmlnYVEhXrv589MXxXs+P/90wbZhvtl315b0NJe5xzXbUSMSSOdB250wvUcQRraSCvI2vjyQ8AWgQBG+k4/aYXWA9+OZn8D97s5X/6SDL5A0CTpX4OGwUUV286in39K3AmMFQOAM1EDxvN1cxg3QrlAkBMCNhojr0j0g+ae0w6vjXdOgBAnQjYSN4ek9y7DWdz4x0x1OXAsvR/OABAHTiHjWTtHdlwFlZ2scNfP+A9u0avBNw7Qrrotw1mAgDNQw8byXK1g2LnAum+H/jvs4ArE4O2RxZDjx8AmomAjeTUGHq2Lu/R0yt99i8bD8Kl/EqPC/6ksfoBQCshYCMZNYLht+73315v0PY77uX9EQ4kaAPICAI24nfmaM0kK+5sQj0U8QfAmZ7E6wEAjSJgI34vTY4tq6DJZQ1POiv3Us019wEgdcwSR7zeGLj2yq93Wwq0rjv68Lfrlk71SWPmSSefkUaPil6dTV8ZeB1WHx1eL513U/SMAaDJ6GEjXof+XFJwMD5YNlo+d9bg/UE951KQDgrWQcddv8R7/tVh//3v1fP1Vf4JAKBFELDRVNMWDbzetbEy0IYNc3/4au95wmXBaarzKn9//uKh1RMAWg0BG/FpcMb16yFz1V55zXs+fjI4Tdi+SJgxDqCFEbDRVIvmBu+buih4XxRhve/FlzaWNwCkjYCNRPTt9t/+2Ibm1qPkkfX+2995trn1AIB6EbARj9OVs7rOGeGdQz5nxMC2KJdibX6kvuIf3lk7TXn5o0Z670cOr0p0+lh9FQCAhBGwEY997/fd3LdbOv289zrKZVw3fHXwtjNnK9/39A5Oc9Xq2nmXyu/dIb29KyDRvkm1MwKAFBCwkbi2YY0dP/ySyvedCxrLb+z7GjseANJAwEZTRellL11T+d658PSf+1o85QJAKyNgo+Xcv31o6TdtS6YeANBKEgnYZvZpM/s3M3vFzP4iiTLQWlati5622b3doZQ3lM8BAM0Ue8A2s2GS/lrSQkm/K2mZmf1u3OWgtayLeWXPL9weLV3cd/2K+3MAQFyS6GFfLOkV59x+59y7krZK+kwC5SDDFq8M3//tB73nnXv99297xnsOuq92SfXs8euuqF03AGhFSQTsKZJeK3t/sH/be8xsuZl1m1n3sWNc91oE0z9Q+f6xoMuqqsxf7r/9MxF7wtXXZ9/rc9kYAGRBEgHbb0Hminm+zrnvOOe6nHNdnZ3ci7gIfnzP4G0LV4Qf0xGy1Kgkjf9E+P6Va8P3A0CWJBGwD0qaVvZ+qqRDCZSDVjIrfKRkis96JI/XWBb0RI2befSeCt+/YUv4fl8ze+o4CACSl0TA/idJHzaz6WY2XNJSSVx4k3dtE+s6LKkZ41ffXOeB7RNirQcAxKUt7gydc2fM7EZJT0gaJulvnXMvx10OEOb7O9KuAQDEK/aALUnOuX+U9I9J5I3smtwhHTmeXvlzLkivbABoFCudIT6zw9cQPTzEFczKfexD0oKLpd+ZWn8ez22ukaBG/QEgTYn0sIEgrjv4vPWiuY3dL/vyG6XtzwWXCwBZRsBGvKbeJR0Mn/HVu0MaN997fWS7NKmjcv/1t0r3Phq9yLmzpF0bpSfuHth24JA040rvdaSe/bS/il4gAKSAIXHEa3LtG1OXbm/pur1gvXW71+suPYYSrCVp90uVx295wluopdSrntwRfrwkadIXh1YoADSZuVr3LkxYV1eX6+7O73ilmd86Mvnh++/n9DFpn8+F11WiXtK1ZJ50wxJp/mzpxCnpJ/uk2zZJP9sfoX5R/mnN7Am9nKuQbZgjtF/25b0NJe1xztX8H5EhccSvvf7V67at8wJ0kPFjpBlTpGsWVm7f9aJ06efrLJRrrwFkAAEbyZjtpD3hv4pLE9Da26R3qyaLDWVBFdctffzCgd50+xzpzNmIvWtmhgPICAI2khMhaEsDwbreVc/Kjzv7gnT6+Yh5EawBZAiTzpCs6bUX9C5NFvNz63LpxNNeb7n06Nvtbfcz7OKIwXr69yIkAoDWwaSzhOV9skSkfz8BvezqwHrVfOmhu+qvy7I13ozzcoHD4kPoXdOG2Ub7ZV/e21BMOkPLmO2kvaMk986gXT1PSRPGVm4bPU96qy969h1jpDd/JG25zXtI0jc2S7fc7ZN4+hapY2n0zAGgRRCw0RwX9Ufgqt522zBp+pXSqw3cgPX4ycre+i8fHdzTlsQ5awCZxjlsNFdZ0HTd0sM7GwvWfs5f7F23XTEcTrAGkHH0sNF8s510+ri0b4Kuu0K67ooEy5p5tKHrwgGgVdDDRjraO7zAPW19MvlP2+DlT7AGkBP0sJGuSSu9hxTpmu2aGPoGkFP0sNE6ZruBx6wTg3av9uuMz3yj8jgAyCl62GhNbeMGBeC1f5dSXQCgBdDDBgAgAwjYAABkAAEbAIAMIGADAJABqd/8w8xyPbU37e83aQVYlJ82zDjaL/sK0Ibc/AMAEnP2hPRiR8Wm1eultTdVpZt5SGp/f/Pqhdyih52wtL/fpPHrPvvy3oaxtl8LLu6T9/aTCvE3GKmHzTlsAAhz5E4vUMcRrKWBvI6sjSc/FAY97ISl/f0mjV/32Zf3Nqy7/U6/Ke2bGG9l/Mw8LLVPrvvwvLefVIi/Qc5hA0Bd4upNR7HvPO+ZpXVRA0PiAFCumcG6FcpFZhCwAUCS9o5IP2juMen41nTrgJZFwAaAPSa5dxvO5sY7YqjLgWXp/3BAS2LSWcLS/n6TxoSX7Mt7G9Zsv70jJffbhsown+lCrruhLCUbLl1Uu155bz+pEH+DXNYFADVFCNadC6T7fuC/zy9Yh22PLIYeP/KFHnbC0v5+k8av++zLexuGtl+NoecoPeewwFwr7UdnSD99ILQKNWeP5739pEL8DdLDBoBANYL1t+73315vz9nvuJf3RziQ89noR8AGUDxnjtZMsuLOJtRDEX8AnOlJvB5ofQRsAMXzUv0ri1ULmlzW8KSzci91xpgZsoqVzgAUyxsD116FnaN23dGHv123dKpPGjNPOvmMNHpU9Ops+srA69Bz5ofXS+dV3woMRUIPG0CxHPpzScHB+GDZaPncWYP3B/WcS0E6KFgHHXf9Eu/5V4f9979Xz9dX+SdAYRCwAaDMtEUDr3dtrAy0YcPcH77ae55wWXCa6rzK35+/eGj1RPEQsAEUR4Mzrl8Pmav2ymve8/GTwWnC9kXCjPFCI2ADQJlFc4P3TV0UvC+KsN734ksbyxv5R8AGUEh9u/23P7ahufUoeWS9//Z3nm1uPdC6CNgAiuF05ayuc0Z455DPGTGwLcqlWJsfqa/4h3fWTlNe/qiR3vuRw6sSnT5WXwWQeSxNmrC0v9+ksSxi9uW9Dd9rv5Dzv2fOSu1z+tP7BO3qGeXVacqPl6RjT0oTxw0tj/I0vTukse8LrG7FcqV5bz+pEH+DLE0KAFG0DWvs+OGXVL7vXNBYfqHBGoVFwAaAMlEWS1m6pvJ9rQ7g574WT7kottgDtpn9rZkdNbOfxp03ALSC+7cPLf2mbcnUA8WSRA97s6RPJ5AvANRt1broaZvd2x1KeUP5HMiX2AO2c+4ZScfjzhcAGrEu5pU9v3B7tHRx3/Ur7s+B7OAcNgD4WLwyfP+3H/Sed+7137/tGe856L7aJVetrnx/3RW164ZiSiVgm9lyM+s2szhvQAcAdZv+gcr3j+2Kdtz85f7bPxOxJ1x9ffa9X412HIonlYDtnPuOc64rynVnANAMP75n8LaFK8KP6QhZalSSxn8ifP/KteH7gXIMiQMohlnhK4RNmTR42+M1lgU9UeNmHr2nwvdv2BK+39fMnjoOQh4kcVnXFkk/kfQRMztoZv9H3GUAwJC1TazrsKRmjF99c50Htk+ItR7Ijra4M3TOLYs7TwDIm+/vSLsGyBqGxAGg3+SOdMufc0G65aO1cfOPhKX9/SaNGw9kX97bcFD7hdwERKp/CPxjH/IC/oFD0i8O1pdHzbuFzR78bzHv7ScV4m8w0s0/Yh8SB4Asc93BQXvR3Mbul335jdL254LLBcIQsAEUy9S7pIPhM756d0jj5nuvj2yXJlUNlV9/q3Tvo9GLnDtL2rVReuLugW0HDkkzrvReH46yNvm0v4peIHKJIfGEpf39Jo3huOzLexv6tl+NYXHJ62WXer1bt0vL1oSnH4rvfl1advngckL5DIdL+W8/qRB/g5GGxAnYCUv7+00a/1lkX97b0Lf9Th+T9vlceF0l6vnsJfOkG5ZI82dLJ05JP9kn3bZJ+tn+CPWLEqxn9gRezpX39pMK8TfIOWwA8NXeWfeh29Z5ATrI+DHSjCnSNQsrt+96Ubr083UWyrXXED3sxKX9/SaNX/fZl/c2DG2/iEPj7W3Su88N3h65DlW96PY50pmzjQ2Fv1ePnLefVIi/QXrYABBqtosUtEvBut5LvsqPO/uCdPr5iHnVCNYoFhZOAVBs02sv6G1dwQH21uXSiae93nLp0bfb2+5n2MURg/X070VIhCJhSDxhaX+/SWM4Lvvy3oaR2i+gl10dWK+aLz10V/11WbbGm3FeLnBYPGLvOu/tJxXib5BZ4q0g7e83afxnkX15b8PI7bd3lOTeqdhkXVLPU9KEsZVJR8+T3uqLXoeOMdKbP6rc9o3N0i13+wTs6VukjqWR8857+0mF+BvkHDYARHZRfwSu6m23DZOmXym9eqj+rI+frOyt//LRwT1tSZyzRijOYQNAubKg6bqlh3c2Fqz9nL/Yu267ondNsEYNDIknLO3vN2kMx2Vf3tuw7vY7fVza14Trn2cebei68Ly3n1SIv8FIQ+L0sAHAT3uH1+udtj6Z/Kdt8PJvIFijWOhhJyzt7zdp/LrPvry3YaztF+Ga7ZpiHvrOe/tJhfgbpIcNALGa7QYes04M2r3arzM+843K44A60cNOWNrfb9L4dZ99eW9D2i/7CtCG9LABAMgLAjYAABlAwAYAIANSX+ls9uzZ6u6Oco+5bMr7+aW8n1uSaMOso/2yL+9tGBU9bAAAMiD1HjZQFIF3ZRqCeu/HDCD76GEDCbr52oF7JMehlNeqa+LJD0B2ELCBBHSM8QLrnV9KJv+1N3n5T+pIJn8ArYchcSBmcfWmozjSf4tGhsqB/KOHDcSomcG6FcoF0DwEbCAGv3k2/aDpuqU//VS6dQCQHAI20CDXLY0Y3ng+N97ReB5bb0//hwOAZHAOG2jAO7sbz6P8/PNfP+A9Nxp0f/OsNPIPG8sDQGuhhw00YOSI2mk6F0j3/cB/X9BksUYnkcXR4wfQWgjYQJ1q9YKty3v09Eqf/cvGg3Apv9Ljgj9prH4AsoWADdShVjD81v3+2+sN2n7Hvby/9nEEbSA/CNjAEHVGWKxkxZ3J10OK9gNgwtjk6wEgeQRsYIiObo8vr6AecJw9456n4ssLQHqYJQ4MwZ9dO/Dar3dbCrSuO/rwt+uWTvVJY+ZJJ5+RRo+KXp9NX4lWn5XLpG9uiZ4vgNZDDxsYgjv61wYPCsYHjw68njtr8P6gnnMpSAcF66Djrl/iPf/qsP/+Uj3Xr/bfDyA7CNhAjKYtGni9a2NloA0b5v7w1d7zhMuC01TnVf7+/MVDqyeA7CFgAxE1el759aPB+155zXs+fjI4Tdi+KJgxDmQbARuI0aK5wfumLgreF0VY73vxpY3lDaD1EbCBOvQFLEn62Ibm1qPkkfX+2995trn1AJAcAjYQweQJle/PGeENMZ9TtjRplCHnzY/UV/7DO2unKS9/1Ejv/ciqJUonjquvfADpI2ADERx+wn97327p9PPe6yiXcd3w1cHbzpytfN/TOzjNVRFmeZfK790hvb3LP82xJ2vnA6A1EbCBBrUNa+z44ZdUvu9c0Fh+Y9/X2PEAWhMBG4hRlF720jWV750LT/+5r8VTLoBsI2ADTXb/EJc23bQtmXoAyJbYA7aZTTOzp83s52b2spl9Ke4ygGZbtS562mb3dodS3lA+B4DWkkQP+4yk1c65/0nSJZL+o5n9bgLlAE2zblW8+X3h9mjp4r7rV9yfA0DzxB6wnXNvOOf29r8+JennkqbEXQ7QyhavDN//7Qe95517/fdve8Z7Drqvdkn17PHrrqhdNwDZlOg5bDP7oKTfk/R81fblZtZtZt3Hjh1LsgpAU0z/QOX7xwIuq6o2f7n/9s9E7AlXX599r89lYwDyIbGAbWbvk/SgpJXOuYpVkJ1z33HOdTnnujo7O5OqAtA0P75n8LaFK8KP6QhZalSSxn8ifP/KteH7AeRLIgHbzNrlBev7nHP/kEQZQDNN/GT4/imTBm97vMayoCdq3Myj91T4/g113N86bD1yAK0tiVniJmmjpJ8755iTilx489f1HZfUjPGrb67vuEbv+AUgPUn0sOdKulbSZWb2Yv+jwfsUASj3/R1p1wBAs7XFnaFzbpckiztfoNVN7pCOHE+v/DkXpFc2gOSx0hkQUa3h7cNDXMGs3Mc+JC24WPqdqfXn8dzm8P0sXwpkW+w9bKDIXHdwYFw0t7H7ZV9+o7T9ueByAeQbARsYgtXrpbU3hafp3SGNm++9PrJdmtRRuf/6W6V7H41e5txZ0q6N0hN3D2w7cEiacaX3OkrP/osxr5gGoPnM1bpVUMK6urpcd3d+uwfepPn8SvvfTzNUt2GU3qx1DaTbul1atiY8/VB89+vSsssHl1OrPkHy3ob8DWZf3ttQ0h7nXM2TVgTshOX9H1ra/36aoboNJ46Tjj0Z4biI54yXzJNuWCLNny2dOCX9ZJ902ybpZ/trHxslWE+4LPxyrry3IX+D2Zf3NlTEgM2QODBEPb31H7ttnRegg4wfI82YIl2zsHL7rhelSz9fX5lcew3kAwEbqEOUoejSBLT2NundqsliQ5mx7bqlj184UF77HOnM2caHwgFkCwEbqFPU88elYF1v8Cw/7uwL0unno+VFsAbyheuwgQYsvaV2GusKDp63LpdOPO0F/tKjb7e33c+wi6MF4j/+cu00ALKFSWcJy/tkibT//TRDrTYM6mVXB9ar5ksP3VV/PZat8Wac11N2mLy3IX+D2Zf3NhSTzoDmsC7p7V3SqJGD9/U8JU0YW7lt9Dzprb7o+XeMkd78kbTlNu8hSd/YLN1y9+C0S2+R7v9h9LwBZAcBG4jBuR/3nqt7vG3DpOlXSq8eqj/v4ycre8y/fHRwT1vinDWQd5zDBmJUHjRdt/TwzsaCtZ/zF3vXbZf/OCBYA/lHDxuImXVJ40dLx5+WrrvCeySlc0Fj14UDyA562EACTpzyAvfKtcnkv+JOL3+CNVAc9LCBBG3Y4j2keO6oxdA3UFz0sIEmKV2PbV0Dd/Mqt3r94G3nXV55HIDioocNpODXb/kH4HX3Nb8uALKBHjYAABlAwAYAIAMI2AAAZAABGwCADEj95h9mluuV69P+fpNWgEX5acOMo/2yrwBtyM0/cu3sCenFjopNq9dLa2+qSjfzkNT+/ubVCwCQCHrYCYv1+90Twy/p2fF+3fy6z768tyHtl30FaMNIPWzOYbe6I3d6gTqOYC0N5HUkoTUzAQCJoIedsLq/39NvSvsmxlsZPzMPS+2T6z6cX/fZl/c2pP2yrwBtyDnszIqrNx3FvvO855iHygEA8WJIvNU0M1i3QrkAgEgI2K1i74j0g+Yek45vTbcOAABfBOxWsMck927D2dx4Rwx1ObAs/R8OAIBBmHSWsJrf796RkvttQ2X43fWp4Xsv23Dpotr1YsJL9uW9DWm/7CtAG3JZVyZECNadC6T7fuC/L+geyQ3fOzmGHj8AID70sBMW+v3WGHqO0nMOC8y10n50hvTTB0KrUHP2OL/usy/vbUj7ZV8B2pAedkurEay/db//9np7zn7Hvbw/woGczwaAlkDATsOZozWTrLizCfVQxB8AZ3oSrwcAIBwBOw0v1b+yWLWgyWUNTzor91JnjJkBAOrBSmfN9sbAtVdh56hdd/Thb9ctneqTxsyTTj4jjR4VvTqbvjLwOvSc+eH10nnVtwIDADQLPexmO/TnkoKD8cGy0fK5swbvD+o5l4J0ULAOOu76Jd7zrw7773+vnq+v8k8AAGgKAnaLmbZo4PWujZWBNmyY+8NXe88TLgtOU51X+fvzFw+tngCA5iJgN1ODM65fD5mr9spr3vPxk8FpwvZFwoxxAEgNAbvFLJobvG/qouB9UYT1vhdf2ljeAIBkEbBT0rfbf/tjG5pbj5JH1vtvf+fZ5tYDAOCPgN0spytndZ0zwjuHfM6IgW1RLsXa/Eh9xT+8s3aa8vJHjfTejxxelej0sfoqAABoCEuTJuy97zfk/O+Zs1L7nP70PkG7ekZ5dZry4yXp2JPSxHFDy6M8Te8Oaez7AqtbsVwpyyJmX97bkPbLvgK0IUuTZkXbsMaOH35J5fvOBY3lFxqsAQCpIGC3mCiLpSxdU/m+1o/Pz30tnnIBAOmJPWCb2Ugze8HMXjKzl83sq3GXUXT3bx9a+k3bkqkHAKB5kuhh/1bSZc65WZIulPRpM7ukxjG5t2pd9LTN7u0OpbyhfA4AQHxiD9jO81b/2/b+R75nDESwLuaVPb9we7R0cd/1K+7PAQCIJpFz2GY2zMxelHRU0g+dc89X7V9uZt1mFuc9pXJl8crw/d9+0Hveudd//7ZnvOeg+2qXXLW68v11V9SuGwCg+RK9rMvMxkl6SNIXnXM/DUiT6953lMu6JGnGldKBQ1XH9v+cCRqyrnVHr7D9QXlHui0nl3XlSt7bkPbLvgK0YfqXdTnneiXtkPTpJMvJgx/fM3jbwhXhx3SELDUqSeM/Eb5/5drw/QCA1pHELPHO/p61zOwcSQsk/Wvc5WTOrPAVwqZMGrzt8RrLgp6ocTOP3lPh+zdsCd/va2ZPHQcBABrVlkCe75d0r5kNk/eD4AHn3KMJlJMtbRPrOiypGeNX31znge0TYq0HACCa2AO2c26fpN+LO1/E6/s70q4BAGAoWOmshUzuSLf8ORekWz4AIBg3/0jYoO+3xmzxeofAP/YhL+AfOCT94mB9edScIT57cFMxQzX78t6GtF/2FaANI80ST+IcNhoQdinWormN3S/78hul7c8FlwsAaF0E7Gabepd0MHzGV+8Oadx87/WR7dKkqqHy62+V7h3CNL65s6RdG6Un7h7YduCQd+23JB2Osjb5tL+KXiAAIHYMiSfM9/utMSwueb3sUq9363Zp2Zrw9EPx3a9Lyy4fXE4on+FwieG4PMh7G9J+2VeANow0JE7ATpjv93v6mLTP58LrKlHPZy+ZJ92wRJo/WzpxSvrJPum2TdLP9keoX5RgPbMn8HIu/rPIvry3Ie2XfQVoQ85ht6z2zroP3bbOC9BBxo+RZkyRrllYuX3Xi9Kln6+zUK69BoDU0cNOWOj3G3FovL1Neve5wdsj16GqF90+RzpztrGh8Pfqwa//wb/SAAAgAElEQVT7zMt7G9J+2VeANqSH3fJmu0hBuxSs673kq/y4sy9Ip5+PmFeNYA0AaB4WTknb9NoLeltXcIC9dbl04mmvt1x69O32tvsZdnHEYD39exESAQCahSHxhEX6fgN62dWB9ar50kN31V+XZWu8GeflAofFI/auGY7Lvry3Ie2XfQVoQ2aJt4LI3+/eUZJ7p2KTdUk9T0kTxlYmHT1Peqsveh06xkhv/qhy2zc2S7fc7ROwp2+ROpZGzpv/LLIv721I+2VfAdqQc9iZclF/BK7qbbcNk6ZfKb16qP6sj5+s7K3/8tHBPW1JnLMGgBbGOexWUxY0Xbf08M7GgrWf8xd7121X9K4J1gDQ0hgST1jd3+/p49K+Jlz/PPNoQ9eFMxyXfXlvQ9ov+wrQhpGGxOlht6r2Dq/XO219MvlP2+Dl30CwBgA0Dz3shMX6/Ua4ZrummIe++XWffXlvQ9ov+wrQhvSwc2e2G3jMOjFo92q/zvjMNyqPAwBkEj3shKX9/SaNX/fZl/c2pP2yrwBtSA8bAIC8IGADAJABBGwAADIg9ZXOZs+ere7uKPd5zKa8n1/K+7kliTbMOtov+/LehlHRwwYAIANS72EDANAsgXcoHIJItyhOAD1sAECu3XytF6jjCNbSQF6rroknv6gI2ACAXOoY4wXWO7+UTP5rb/Lyn9SRTP7VGBIHAOROXL3pKI7036446aFyetgAgFxpZrBuZrkEbABALvzm2fSCdYnrlv70U8nkTcAGAGSe65ZGDG88nxvvaDyPrbcn88OBc9gAgEx7Z3fjeZSff/7rB7znRoPub56VRv5hY3mUo4cNAMi0kSNqp+lcIN33A/99QZPFGp1EFkePvxwBGwCQWbV6wdblPXp6pc/+ZeNBuJRf6XHBnzRWv6EgYAMAMqlWMPzW/f7b6w3afse9vL/2cXEFbQI2ACBzOiMsVrLizuTrIUX7ATBhbOPlELABAJlzdHt8eQX1gOMczu55qvE8mCUOAMiUP7t24LVf77YUaF139OFv1y2d6pPGzJNOPiONHhW9Ppu+Eq0+K5dJ39wSPd9q9LABAJlyR//a4EHB+ODRgddzZw3eH9RzLgXpoGAddNz1S7znXx3231+q5/rV/vujImADAHJl2qKB17s2VgbasGHuD1/tPU+4LDhNdV7l789fPLR6DhUBGwCQGY2eV379aPC+V17zno+fDE4Tti+KRupPwAYA5MqiucH7pi4K3hdFWO978aWN5V0LARsAkEl9AUuSPrahufUoeWS9//Z3no0nfwI2ACATJk+ofH/OCG+I+ZyypUmjDDlvfqS+8h/eWTtNefmjRnrvR1YtUTpxXH3lE7ABAJlw+An/7X27pdPPe6+jXMZ1w1cHbztztvJ9T+/gNFdFmOVdKr93h/T2Lv80x56snY8fAjYAIPPahjV2/PBLKt93Lmgsv7Hva+x4PwRsAECuROllL11T+d658PSf+1o85TYikYBtZsPM7J/N7NEk8gcAoBH3D3Fp003bkqnHUCTVw/6SpJ8nlDcAoIBWrYueNunebiPlDeVzlIs9YJvZVElXSLon7rwBAMW1blW8+X3h9mjp4r7rV72fI4ke9jclfVnSfw9KYGbLzazbzLqPHTuWQBUAAEW3eGX4/m8/6D3v3Ou/f9sz3nPQfbVLqmePX3dF7brVI9aAbWaLJR11zu0JS+ec+45zrss519XZ2RlnFQAABTX9A5XvHwu4rKra/OX+2z8TsSdcfX32vT6XjcUh7h72XElXmtmrkrZKuszM/i7mMgAAGOTHPidiF64IP6YjZKlRSRr/ifD9K9eG749TrAHbOXeLc26qc+6DkpZK+pFz7rNxlgEAKKaJnwzfP2XS4G2P11gW9ESNm3n0ngrfv6GO+1uHrUcehuuwAQCZ8Oav6zsuqRnjV99c33H13vGrrb7DanPO7ZC0I6n8AQBI0/d3NLc8etgAgNyY3JFu+XMuSC5vAjYAIDNqDW8fHuIKZuU+9iFpwcXS70ytP4/nNofvb2R4PrEhcQAA0uC6gwPjormN3S/78hul7c8Fl5skAjYAIFNWr5fW3hSepneHNG6+9/rIdmlS1VD59bdK9w7hbhdzZ0m7NkpP3D2w7cAhacaV3usoPfsvNrhimrlatyhJWFdXl+vuTvhnSYrMLO0qJCrtfz/NQBtmG+2XfX5tGKU3a10D6bZul5atCU8/FN/9urTs8sHl1KpPgD3OuZqD5QTshPGfRfbRhtlG+2WfXxtOHCcdezLCsRHPGS+ZJ92wRJo/WzpxSvrJPum2TdLP9tc+NkqwnnBZ6OVckQI2Q+IAgMzp6a3/2G3rvAAdZPwYacYU6ZqFldt3vShd+vn6yqz32utyBGwAQCZFGYouTUBrb5PerZosNpQZ265b+viFA+W1z5HOnG14KHxICNgAgMyKev64FKzrDZ7lx519QTr9fLS84lxljeuwAQCZtvSW2mmsKzh43rpcOvG0F/hLj77d3nY/wy6OFoj/+Mu10wwFk84SxoSX7KMNs432y74obRjUy64OrFfNlx66q/66LFvjzTivp+wQTDoDABSDdUlv75JGjRy8r+cpacLYym2j50lv9UXPv2OM9OaPpC23eQ9J+sZm6Za7B6ddeot0/w+j5x0VARsAkAvnftx7ru7xtg2Tpl8pvXqo/ryPn6zsMf/y0cE9bSm5O4NJnMMGAORMedB03dLDOxsL1n7OX+xdt13+4yDJYC3RwwYA5JB1SeNHS8eflq67wnskpXNBY9eFR0UPGwCQSydOeYF75dpk8l9xp5d/M4K1RA8bAJBzG7Z4DymeO2olPfQdhB42AKAwStdjW9fA3bzKrV4/eNt5l1celxZ62ACAQvr1W/4BeN19za9LFPSwAQDIAAI2AAAZQMAGACADUl9L3MxyvRBu2t9v0vK+TrNEG2Yd7Zd9BWjDSGuJ08MGACADmCUOIDZZvsYVaHX0sAE05OZrB+4hHIdSXquuiSc/IC84h52wtL/fpHH+LPvqbcPS7QaTNvmPpKPH6z+e9su+ArQh98MGkIy4etNRHOm/hSFD5Sg6hsQBDEkzg3UrlAu0CgI2gEh+82z6QdN1S3/6qXTrAKSFgA2gJtctjRjeeD433tF4HltvT/+HA5AGJp0lLO3vN2lMeMm+Wm34zm5p5IgGy/A5/9xo0P3tu9LIP6ydrujtlwcFaEMWTgHQuCjBunOBdN8P/PcFTRZrdBJZHD1+IEvoYScs7e83afy6z76wNqzVC47Scw4LzLXSfnSG9NMHhl6HijIK3H55UYA2pIcNoH61gvW37vffXm/P2e+4l/fXPo7z2SgKAjaAQTo7aqdZcWfy9ZCi/QCYMDb5egBpI2ADGOTo9vjyCuoBx9kz7nkqvryAVsVKZwAq/Nm1A6/DzlG77ujD365bOtUnjZknnXxGGj0qen02fSVafVYuk765JXq+QNbQwwZQ4Y4vec9Bwfjg0YHXc2cN3h/Ucy4F6aBgHXTc9Uu8518d9t9fquf61f77gbwgYAMYkmmLBl7v2lgZaMOGuT98tfc84bLgNNV5lb8/f/HQ6gnkDQEbwHsaPa/8+tHgfa+85j0fPxmcJmxfFMwYR54RsAEMyaK5wfumLgreF0VY73vxpY3lDWQdARuAr77d/tsf29DcepQ8st5/+zvPNrceQFoI2AAkSZMnVL4/Z4Q3xHxO2dKkUYacNz9SX/kP76ydprz8USO99yOrliidOK6+8oFWx9KkCUv7+00ayyJmX6kNw4LxmbNS+xwFpqueUV6dpvx4STr25ODAWiuP8jS9O6Sx7wuub3leRWm/PCtAG7I0KYB4tA1r7Pjhl1S+71zQWH5hwRrIKwI2gCGJsljK0jWV72t1kD73tXjKBfIskYBtZq+a2b+Y2YtmxoUWQMHcP8SlTTdtS6YeQJ4k2cP+hHPuwijj8gDSt2pd9LTN7u0OpbyhfA4gSxgSByBJWrcq3vy+cHu0dHHf9SvuzwG0iqQCtpO03cz2mNny6p1mttzMuhkuB7Jr8crw/d9+0Hveudd//7ZnvOeg+2qXXFW1Rvh1V9SuG5BHiVzWZWYfcM4dMrNJkn4o6YvOuWcC0uZ6vn4BLkdIuwqJK0ob1rrGesaV0oFDldtKxwQNWde6o1fY/qC8o1wLzmVd+VKANkzvsi7n3KH+56OSHpJ0cRLlAGieH98zeNvCFeHHdIQsNSpJ4z8Rvn/l2vD9QJHEHrDN7FwzG116LemPJP007nIAxGviJ8P3T5k0eNvjNZYFPVHjZh69p8L3b6jj/tZh65EDWdaWQJ6TJT3UP0zTJum7zrnHEygHQIze/HV9xyU1Y/zqm+s7rtE7fgGtKvaA7ZzbL8nntvYAEN33d6RdA6C1cFkXgMgmd6Rb/pwL0i0fSBM3/0hY2t9v0pihmn3VbVhrFna9Q+Af+5AX8A8ckn5xsL486qlb0dovjwrQhpFmiSdxDhtAjoVdirVobmP3y778Rmn7c8HlAkVGwAZQYfV6ae1N4Wl6d0jj5nuvj2yXJlUNlV9/q3Tvo9HLnDtL2rVReuLugW0HDnnXfkvS4Qhrk38x5hXTgFbDkHjC0v5+k8ZwXPb5tWHUxUlK6bZul5atCU8/FN/9urTs8sHl1KqPnyK2X94UoA0jDYkTsBOW9vebNP6zyD6/Npw4Tjr2ZIRjI57PXjJPumGJNH+2dOKU9JN90m2bpJ/tr31slGA94bLgy7mK2H55U4A25Bw2gPr09NZ/7LZ1XoAOMn6MNGOKdM3Cyu27XpQu/Xx9ZXLtNYqAHnbC0v5+k8av++wLa8OoQ9HtbdK7zw3eHlV1Oe1zpDNnGxsKfy/vArdfXhSgDelhA2hM1PPHpWBd7yVf5cedfUE6/Xy0vJp9X24gTSycAiDU0ltqp7Gu4OB563LpxNNe4C89+nZ72/0MuzhaIP7jL9dOA+QJQ+IJS/v7TRrDcdkXpQ2DetnVgfWq+dJDd9Vfl2VrvBnn9ZQdhPbLvgK0IbPEW0Ha32/S+M8i+6K24du7pFEjq47tknqekiaMrdw+ep70Vl/0OnSMkd78UeW2b2yWbrl7cMBeeot0/w+j5037ZV8B2pBz2ADic+7HvefqANo2TJp+pfTqofrzPn6yssf8y0cH97Qlzlmj2DiHDWBIyoOm65Ye3tlYsPZz/mLvuu3yHwcEaxQdQ+IJS/v7TRrDcdlXbxuOHy0dfzrmyvjoXNDYdeG0X/YVoA0jDYnTwwZQlxOnvF7vyrXJ5L/izv5z5A0EayBP6GEnLO3vN2n8us++ONswjjtqxT30TftlXwHakB42gOYqXY9tXQN38yq3ev3gbeddXnkcAH/0sBOW9vebNH7dZ1/e25D2y74CtCE9bAAA8oKADQBABhCwAQDIgNRXOps9e7a6u2OYWtqi8n5+Ke/nliTaMOtov+zLextGRQ8bAIAMIGADAJABqQ+JAwBayJ4Yhp9n53+YPg30sAGg6I7c6QXqOIK1NJDXkYTWrS0oAjYAFNXpN73AevDLyeR/8GYv/9NHksm/YBgSB4Aiiqs3HcW+87xnhsobQg8bAIqmmcG6FcrNCQI2ABTF3hHpB809Jh3fmm4dMoqADQBFsMck927D2dx4Rwx1ObAs/R8OGcQ5bADIu70jG86i/Nanf/2A99zw/c/3jpAu+m2DmRQHPWwAyDtXOyh2LpDu+4H/vqD7lDd8//IYevxFQsAGgDyrMfRsXd6jp1f67F82HoRL+ZUeF/xJY/XDAAI2AORVjWD4rfv9t9cbtP2Oe3l/hAMJ2pEQsAEgj84crZlkxZ1NqIci/gA405N4PbKOgA0AefTS5NiyCppc1vCks3IvdcaYWT4xSxwA8uaNgWuv/Hq3pUDruqMPf7tu6VSfNGaedPIZafSo6NXZ9JWB12H10eH10nk3Rc+4YOhhA0DeHPpzScHB+GDZaPncWYP3B/WcS0E6KFgHHXf9Eu/5V4f9979Xz9dX+SeAJAI2ABTOtEUDr3dtrAy0YcPcH77ae55wWXCa6rzK35+/eGj1RCUCNgDkSYMzrl8Pmav2ymve8/GTwWnC9kXCjPFABGwAKJhFc4P3TV0UvC+KsN734ksby7voCNgAkFN9u/23P7ahufUoeWS9//Z3nm1uPbKKgA0AeXG6clbXOSO8c8jnjBjYFuVSrM2P1Ff8wztrpykvf9RI7/3I4VWJTh+rrwI5R8AGgLzY937fzX27pdPPe6+jXMZ1w1cHbztztvJ9T+/gNFetrp13qfzeHdLbuwIS7ZtUO6MCImADQAG0DWvs+OGXVL7vXNBYfmPf19jxRZRIwDazcWb292b2r2b2czP7gyTKAQAMXZRe9tI1le+dC0//ua/FUy6CJdXD3iDpcefc/yhplqSfJ1QOACAB928fWvpN25KpBwbEHrDNbIykeZI2SpJz7l3nnM/ZDgBAnFati5622b3doZQ3lM9RJEn0sGdIOiZpk5n9s5ndY2bnJlAOAKDMuphX9vzC7dHSxX3Xr7g/R14kEbDbJF0k6W+cc78n6W1Jf1GewMyWm1m3mXUfO8b0fQBIw+KV4fu//aD3vHOv//5tz3jPQffVLqmePX7dFbXrhsGSCNgHJR10zvVfRKC/lxfA3+Oc+45zrss519XZyS3VAKAZpn+g8v1jQZdVVZm/3H/7ZyL2hKuvz77X57Ix1BZ7wHbOHZb0mpl9pH/TJyX9LO5yAABD8+N7Bm9buCL8mI6QpUYlafwnwvevXBu+H9EldT/sL0q6z8yGS9ov6YaEygEAlMw6Jr0UPGo5xWc9ksdrLAt6osbNPHpPhe/fsCV8v6+ZPXUclH+JBGzn3IuSuOIOAJqpbWJdhyU1Y/zqm+s8sH1CrPXIC1Y6AwAk4vs70q5BvhCwAaBAJnekW/6cC9ItP8sI2ACQJ7PD1xA9PMQVzMp97EPSgoul35lafx7Pba6RoEb9iyypSWcAgBbluoPPWy+a29j9si+/Udr+XHC5qB8BGwDyZupd0sHwGV+9O6Rx873XR7ZLk6qGyq+/Vbr30ehFzp0l7dooPXH3wLYDh6QZV3qvI/Xsp/1V9AILiCFxAMibybVvTF26vaXr9oL11u1er7v0GEqwlqTdL1Uev+UJb6GWUq860rnzSV8cWqEFY67WPdMS1tXV5bq78ztOYmZpVyFRaf/7aQbaMNsK236nj0n7fC68rhL1kq4l86QblkjzZ0snTkk/2Sfdtkn62f4IdYzyX/zMnsDLufLehpL2OOdqtgRD4gCQR+31L/u8bZ0XoIOMHyPNmCJds7By+64XpUs/X2ehXHtdEwEbAPJqtpP2hPdOSxPQ2tukd6smiw1lQRXXLX38woHedPsc6czZiL1rZoZHQsAGgDyLELSlgWBd76pn5cedfUE6/XzEvAjWkTHpDADybnrtBb1Lk8X83LpcOvG011suPfp2e9v9DLs4YrCe/r0IiVDCpLOE5X2yRNr/fpqBNsw22q9fQC+7OrBeNV966K7667NsjTfjvFzgsHjE3nXe21BMOgMAvGe2k/aOktw7g3b1PCVNGFu5bfQ86a2+6Nl3jJHe/JG05TbvIUnf2CzdcrdP4ulbpI6l0TOHJAI2ABTHRf0RuKq33TZMmn6l9Oqh+rM+frKyt/7LRwf3tCVxzroBnMMGgKIpC5quW3p4Z2PB2s/5i73rtiuGwwnWDaGHDQBFNNtJp49L+ybouiuk665IsKyZRxu6LhweetgAUFTtHV7gnrY+mfynbfDyJ1jHgh42ABTdpJXeQ4p0zXZNDH0ngh42AGDAbDfwmHVi0O7Vfp3xmW9UHodE0MMGAPhrGzcoAK/9u5TqAnrYAABkAQEbAIAMIGADAJABqa8lbma5nqGQ9vebtAKs8UsbZhztl30FaMNIa4nTwwYAIANyM0s80k3Sa6j3PrAAACQt0z3sm68duDdrHEp5rbomnvwAAIhLJs9hl27jlrTJfyQdPd5YHml/v0nj/Fn25b0Nab/sK0Ab5vN+2HH1pqM40n9rOIbKAQBpy9SQeDODdSuUCwBASSYC9m+eTT9oum7pTz+Vbh0AAMXV8gHbdUsjhjeez413NJ7H1tvT/+EAACimlp509s5uaeSIBvP3Of/caND97bvSyD+Mljbt7zdpTHjJvry3Ie2XfQVow+wvnBIlWHcukO77gf++oMlijU4ii6PHDwDAULRsD7tWLzhKzzksMNdK+9EZ0k8fGHodBpWT/1+GaVchcbRhttF+2VeANsxuD7tWsP7W/f7b6+05+x338v7ax3E+GwDQLC0XsDs7aqdZcWfy9ZCi/QCYMDb5egAA0HIB++j2+PIK6gHH2TPueSq+vAAACNJSK5392bUDr8POUbvu6MPfrls61SeNmSedfEYaPSp6fTZ9JVp9Vi6Tvrkler4AAAxVS/Ww7/iS9xwUjA8eHXg9d9bg/UE951KQDgrWQcddv8R7/tVh//2leq5f7b8fAIC4tFTArmXaooHXuzZWBtqwYe4PX+09T7gsOE11XuXvz188tHoCABC3lgnYjZ5Xfv1o8L5XXvOej58MThO2LwpmjAMAktQyATuKRXOD901dFLwvirDe9+JLG8sbAIBGtWTA7tvtv/2xDc2tR8kj6/23v/Nsc+sBACiulgjYkydUvj9nhDfEfE7Z0qRRhpw3P1Jf+Q/vrJ2mvPxRI733I6uWKJ04rr7yAQCopSWWJg0LxmfOSu1zvNd+6apnlFenKT9eko49OTiw1sqjPE3vDmns+4LrOyiv/C+pl3YVEkcbZhvtl30FaMPsLk1arm1YY8cPv6TyfeeCxvILC9YAACSl5QN2uSiLpSxdU/m+1g+zz30tnnIBAEhS7AHbzD5iZi+WPU6a2cq4ywly/xCXNt20LZl6AAAQp9gDtnPu35xzFzrnLpQ0W1KfpIfCjlm1Lnr+ze7tDqW8oXwOAACGIukh8U9K+oVz7pdhidatirfQL9weLV3cd/2K+3MAAFCSdMBeKmnQbTHMbLmZdZtZXeuDLa4xwP7tB73nnXv99297xnsOuq92yVVVa4Rfd0XtugEAkITELusys+GSDkn6qHPuSEi60Mu6JGnGldKBQ5XbSscEDVnXuqNX2P6gvKNcC85lXflDG2Yb7Zd9BWjD1C/rWihpb1iwjurH9/hkviL8mI6QpUYlafwnwvevXBu+HwCAZkoyYC+Tz3C4n4mfDN8/ZdLgbY/XWBb0RI2befSeCt+/oY77W4etRw4AQCMSCdhmNkrSpyT9Q5T0b/66znISmjF+9c31HdfoHb8AAAjSlkSmzrk+SRNqJmxR39+Rdg0AAKiUmZXOJnekW/6cC9ItHwBQbC1x84/S61qzsOsdAv/Yh7yAf+CQ9IuD9eVRb93S/n6TxgzV7Mt7G9J+2VeANow0SzyRIfGkhF2KtWhuY/fLvvxGaftzweUCAJCmlgrYq9dLa28KT9O7Qxo333t9ZLs0qWqo/PpbpXsfjV7m3FnSro3SE3cPbDtwyLv2W5IOR1ib/Isxr5gGAEC1lhoSl6IvTlJKt3W7tGxNePqh+O7XpWWXDy6nVn2CpP39Jo3huOzLexvSftlXgDaMNCTecgF74jjp2JMRjot4PnvJPOmGJdL82dKJU9JP9km3bZJ+tr/2sVGC9YTLwi/nSvv7TRr/WWRf3tuQ9su+ArRhNs9h9/TWf+y2dV6ADjJ+jDRjinTNwsrtu16ULv18fWVy7TUAoBlaroddEnUour1Neve5wdujqi6nfY505mzjQ+Hv5Z//X4ZpVyFxtGG20X7ZV4A2zGYPuyTq+eNSsK73kq/y486+IJ1+Plpezb4vNwCg2Fp64ZSlt9ROY13BwfPW5dKJp73AX3r07fa2+xl2cbRA/Mdfrp0GAIA4teyQeElQL7s6sF41X3rorvrrsWyNN+O8nrLDpP39Jo3huOzLexvSftlXgDbM5ixxP2/vkkaNrDquS+p5SpowtnL76HnSW33Ry+8YI735o8pt39gs3XL34IC99Bbp/h9Gz1sqxD+0tKuQONow22i/7CtAG2b7HHa5cz/uPVcH0LZh0vQrpVcP1Z/38ZOVPeZfPjq4py1xzhoAkK6WPoddrTxoum7p4Z2NBWs/5y/2rtsu/3FAsAYApC0TQ+LVxo+Wjj+dRG0qdS5o7LpwqRBDOWlXIXG0YbbRftlXgDaMNCSeqR52yYlTXq935dpk8l9xZ/858gaDNQAAcclkD9tPHHfUSmLoO+3vN2n8us++vLch7Zd9BWjD/Paw/ZSux7augbt5lVu9fvC28y6vPA4AgFaVmx52q0r7+00av+6zL+9tSPtlXwHasFg9bAAA8oyADQBABhCwAQDIgFZY6axH0i+bWN7E/jKbIqXzS039jCnIexvSfjGi/WLX9M9XgDY8P0qi1CedNZuZdUc5uZ9lef+MfL5s4/NlW94/n9S6n5EhcQAAMoCADQBABhQxYH8n7Qo0Qd4/I58v2/h82Zb3zye16Gcs3DlsAACyqIg9bAAAMoeADQBABhQqYJvZp83s38zsFTP7i7TrEycz+1szO2pmP027Lkkws2lm9rSZ/dzMXjazL6Vdp7iZ2Ugze8HMXur/jF9Nu05xM7NhZvbPZvZo2nVJgpm9amb/YmYvmlkM9xBsLWY2zsz+3sz+tf9v8Q/SrlNczOwj/e1Wepw0s5Vp16tcYc5hm9kwSf+fpE9JOijpnyQtc879LNWKxcTM5kl6S9J/dc5dkHZ94mZm75f0fufcXjMbLWmPpKvy0n6SZN7qEOc6594ys3ZJuyR9yTn3XMpVi42ZrZLUJWmMc25x2vWJm5m9KqnLOZfLhVPM7F5JP3bO3WNmwyWNcs71pl2vuPXHi9clzXHONXNhr1BF6mFfLOkV59x+59y7krZK+kzKdYqNc+4ZScfTrkdSnHNvOOf29r8+JennkqakW6t4Oc9b/W/b+x+5+UVtZlMlXSHpnn58C9IAAAJTSURBVLTrgqEzszGS5knaKEnOuXfzGKz7fVLSL1opWEvFCthTJL1W9v6gcvYfflGY2Qcl/Z6k59OtSfz6h4xflHRU0g+dc3n6jN+U9GVJ/z3tiiTISdpuZnvMbHnalYnZDEnHJG3qP61xj5mdm3alErJU0pa0K1GtSAHbbzHa3PReisLM3ifpQUkrnXMn065P3JxzZ51zF0qaKuliM8vF6Q0zWyzpqHNuT9p1Sdhc59xFkhZK+o/9p6ryok3SRZL+xjn3e5LelpSruUCS1D/Uf6Wk76Vdl2pFCtgHJU0rez9V0qGU6oI69J/XfVDSfc65f0i7PknqH2rcIenTKVclLnMlXdl/jnerpMvM7O/SrVL8nHOH+p+PSnpI3qm4vDgo6WDZqM/fywvgebNQ0l7n3JG0K1KtSAH7nyR92Mym9/+CWippW8p1QkT9E7I2Svq5c25d2vVJgpl1mtm4/tfnSFog6V/TrVU8nHO3OOemOuc+KO9v70fOuc+mXK1Ymdm5/RMi1T9U/EeScnPVhnPusKTXzOwj/Zs+KSk3kz7LLFMLDodLrXF7zaZwzp0xsxslPSFpmKS/dc69nHK1YmNmWyTNlzTRzA5K+opzbmO6tYrVXEnXSvqX/nO8krTGOfePKdYpbu+XdG//DNV/J+kB51wuL3/KqcmSHuq/FWSbpO865x5Pt0qx+6Kk+/o7Pfsl3ZByfWJlZqPkXUn0H9Kui5/CXNYFAECWFWlIHACAzCJgAwCQAQRsAAAygIANAEAGELABAMgAAjYAABlAwAYAIAP+fzFY3dTllVswAAAAAElFTkSuQmCC\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -1164,9 +1166,9 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHwCAYAAABkPlyAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X+4FNWd7/vP97A3IIZfGzaYANfAJE/unRhxZI84Q+QSQ8aAYPTeuTNwjR7NzeXc3GMIipMZeZ55YvKcaK4KhIlzJydHBjxnDGjGMaJOlGgEA0adDaNMTGbuY8BERH5sYQcUE4Gz7h+1293du6q6uruqq6vq/Xqefrq7atVaq3ux+fZatWqVOecEAADa279LuwIAAKA2AjYAABlAwAYAIAMI2AAAZAABGwCADCBgAwCQAQRsAAAygIANAEAGELCBNmNmHzSzfzSzY2Z20MzuNrOOkPTjzOxvBtKeNLN/MbN/38o6A0geARtoP/+vpMOS3i/pAkn/s6T/2y+hmQ2X9KSkcyX9gaSxkv5M0h1mtrwltQXQEgRsoP1Ml/SAc+43zrmDkh6X9NGAtNdI+h8k/W/OuX3OuVPOucclLZf0n8xstCSZmTOzD5UOMrONZvafyt4vMrMXzazfzJ41s/PL9n3AzB40syNmtq/8h4CZ3WpmD5jZfzWzE2b2spn1lO3/czN7fWDfv5nZJ+P5ioDiIWAD7WedpCVmNsrMpkhaIC9o+/mUpB84596u2v6gpFGSLq5VmJldKOlvJf0HSRMk/WdJW8xshJn9O0mPSHpJ0hRJn5S0wswuK8viCkmbJY2TtEXS3QP5fkTSDZJ+3zk3WtJlkl6tVR8A/gjYQPvZLq9HfVzSfkm9kr4fkHaipDeqNzrnTkvqk9Qdobz/U9J/ds4975w745y7V9Jv5QX735fU7Zz7mnPuXefcXkn/RdKSsuN3OOf+0Tl3RtJ/kzRzYPsZSSMk/a6ZdTrnXnXO/SJCfQD4IGADbWSgR/uEpH+QdLa8gDxe0v8TcEifvHPd1fl0DBx7JEKx50paOTAc3m9m/ZKmSfrAwL4PVO1bJWly2fEHy16flDTSzDqcc69IWiHpVkmHzWyzmX0gQn0A+CBgA+2lS16wvNs591vn3JuSNkhaGJD+SUkLzOzsqu3/q6RTkl4YeH9S3hB5yTllr1+T9HXn3Liyxyjn3KaBffuq9o12zgXVp4Jz7rvOuY/LC/xOwT88ANRAwAbaiHOuT9I+SV8wsw4zGyfp38s7h+znv8kbNv/ewOVgnQPnl/9K0h3OuV8PpHtR0v9uZsPM7NPyZp6X/BdJ/5eZzTbP2WZ2+cCEtRckHR+YPHbWwPHnmdnv1/osZvYRM7vUzEZI+o2kd+QNkwNoAAEbaD//i6RPyxvOfkXSaUk3+iV0zv1W0nx5PeHn5QXFxyV9U9JXy5J+SdJiSf2SrlbZOXHnXK+889h3Szo2UOZ1A/vODBx3gbwfEn2S7pF3+VgtIyR9Y+CYg5ImyRtOB9AAc86lXQcAMTGzTkk/kPS6pOscf+BAbtDDBnLEOXdK3vnrX0j6SMrVARAjetgAAGQAPWwAADIg8IYCrTJx4kT3wQ9+MO1qJGbXrl1pVyFRs2bNSrsKiaMNs432y768t6GkPudczUWOUh8S7+npcb29vanWIUlmlnYVEpX2v59WiKsNXQz/zAdX6Y5P3tuQv8Hsy3sbStrlnKv5182QOJCgm6/xAnUcwVoazOumq+PJD0B2ELCBBHSN8QLrnV9KJv/VN3r5T+pKJn8A7Sf1c9hA3sTVm47i0FbvOYmhcgDthR42EKNWBut2KBdA6xCwgRj85tn0g6brlf70U+nWAUByCNhAk1yvNGJ48/nccEfzeWy+Pf0fDgCSwTlsoAnv7Gw+j/Lzz3/9gPfcbND9zbPSyD9sLg8A7YUeNtCEkSNqp+meL933A/99QZPFmp1EFkePH0B7IWADDarVC7Ye79HXL332L5sPwqX8So/z/qS5+gHIFgI20IBawfBb9/tvbzRo+x338t7axxG0gfwgYAN16o6wWMnyO5OvhxTtB8CEscnXA0DyCNhAnQ5vjS+voB5wnD3jvqfiywtAepglDtThz64ZfO3Xuy0FWtcbffjb9UonTkpj5krHn5FGj4penw1fiVafFUulb26Kni+A9kMPG6jDHQNrgwcF4/2HB1/PmTl0f1DPuRSkg4J10HHXLfaef3XQf3+pnmtX+u8HkB0EbCBG0xYOvt6xvjLQhg1zf/gq73nCpcFpqvMqf3/uovrqCSB7CNhARM2eV379cPC+V17zno8eD04Tti8KZowD2UbABmK0cE7wvqkLg/dFEdb7XnRJc3kDaH8EbKABJwOWJH1sXWvrUfLIWv/t7zzb2noASA4BG4hg8oTK92eN8IaYzypbmjTKkPPGRxor/+HttdOUlz9qpPd+ZNUSpRPHNVY+gPQRsIEIDj7hv/3kTunU897rKJdxXf/VodtOn6l839c/NM2VEWZ5l8rv3ya9vcM/zZEna+cDoD0RsIEmdQxr7vjhF1e+757fXH5j39fc8QDaEwEbiFGUXvaSVZXvnQtP/7mvxVMugGwjYAMtdn+dS5tu2JJMPQBkSyIB28w+bWb/ZmavmNlfJFEG0Eo3rYmettW93XrKq+dzAGgvsQdsMxsm6a8lLZD0u5KWmtnvxl0O0Eprboo3vy/cHi1d3Hf9ivtzAGidJHrYF0l6xTm31zn3rqTNkj6TQDlA21q0Inz/tx/0nrfv9t+/5RnvOei+2iXVs8evvbx23QBkUxIBe4qk18re7x/Y9h4zW2ZmvWbWe+TIkQSqALTW9A9Uvn8s4LKqavOW+W//TMSecPX12ff6XDYGIB+SCNjms61iHqxz7jvOuR7nXE93d3cCVQBa68f3DN22YHn4MV0hS41K0vhPhO9fsTp8P4B8SSJg75c0rez9VEkHEigHaJmJnwzfP2XS0G2P11gW9FiNm3n0nwjfv66B+1uHrUcOoL0lEbD/SdKHzWy6mQ2XtEQSF6Yg0978dWPHJTVj/KqbGzuu2Tt+AUhPR9wZOudOm9kNkp6QNEzS3zrnXo67HKDIvr8t7RoAaLXYA7YkOef+UdI/JpE30K4md0mHjqZX/uzz0isbQPJY6QyIqNbw9sE6VzAr97EPSfMvkn5nauN5PLcxfD/LlwLZlkgPGygq1xscGBfOae5+2ZfdIG19LrhcAPlGwAbqsHKttPrG8DT926Rx87zXh7ZKk7oq9193q3Tvo9HLnDNT2rFeeuLuwW37DkgzrvBeR+nZfzHmFdMAtJ65WrcKSlhPT4/r7c1v98DM77L0/Ej7308rVLdhlN6s9Qym27xVWroqPH09vvt1aellQ8upVZ8geW9D/gazL+9tKGmXc67mSSsCdsLy/g8t7X8/rVDdhhPHSUeejHBcxHPGi+dK1y+W5s2Sjp2QfrJHum2D9LO9tY+NEqwnXBp+OVfe25C/wezLexsqYsBmSByoU19/48duWeMF6CDjx0gzpkhXL6jcvuNF6ZLPN1Ym114D+UDABhoQZSi6NAGts0N6t2qyWD0ztl2v9PELBsvrnC2dPtP8UDiAbCFgAw2Kev64FKwbDZ7lx515QTr1fLS8CNZAvnAdNtCEJbfUTmM9wcHz1mXSsae9wF96nNzpbfcz7KJogfiPv1w7DYBsYdJZwvI+WSLtfz+tUKsNg3rZ1YH1ynnSQ3c1Xo+lq7wZ542UHSbvbcjfYPblvQ3FpDOgNaxHenuHNGrk0H19T0kTxlZuGz1Xeutk9Py7xkhv/kjadJv3kKRvbJRuuXto2iW3SPf/MHreALKDgA3E4OyPe8/VPd6OYdL0K6RXm7jB7NHjlT3mXz46tKctcc4ayDvOYQMxKg+arld6eHtzwdrPuYu867bLfxwQrIH8o4cNxMx6pPGjpaNPS9de7j2S0j2/uevCAWQHPWwgAcdOeIF7xepk8l9+p5c/wRooDnrYQILWbfIeUjx31GLoGyguethAi5Sux7aewbt5lVu5dui2cy6rPA5AcdHDBlLw67f8A/Ca+1pfFwDZQA8bAIAMIGADAJABBGwAADKAgA0AQAakfvMPM8v1yvVpf79JK8Ci/LRhxtF+2VeANuTmHwCQmDPHpBe7KjatXCutvrEq3fkHpM73t65eyC162AlL+/tNGr/usy/vbRhr++2K4buaFe+/p7y3n1SIv8FIPWzOYQNAmEN3eoE6jmAtDeZ1KKF1a5Fb9LATlvb3mzR+3Wdf3tuw4fY79aa0Z2K8lfFz/kGpc3LDh+e9/aRC/A1yDhsAGhJXbzqKPed4zzEPlSN/GBIHgHKtDNbtUC4yg4ANAJK0e0T6QXOXSUc3p1sHtC0CNgDsMsm923Q2N9wRQ132LU3/hwPaEpPOEpb295s0JrxkX97bsGb77R4pud82VYbfndeavv+5DZcurF2vvLefVIi/QS7rAoCaIgTr7vnSfT/w3xd0n/Km718eQ48f+UIPO2Fpf79J49d99uW9DUPbr8bQc5Sec1hgrpX2ozOknz4QWoWas8fz3n5SIf4G6WEDQKAawfpb9/tvb7Tn7Hfcy3sjHMj5bAwgYAMontOHayZZfmcL6qGIPwBO9yVeD7Q/AjaA4nmp8ZXFqgVNLmt60lm5l7pjzAxZxUpnAIrljcFrr8LOUbve6MPfrlc6cVIaM1c6/ow0elT06mz4yuDr0HPmB9dK51TfCgxFQg8bQLEc+HNJwcF4f9lo+ZyZQ/cH9ZxLQTooWAcdd91i7/lXB/33v1fP12/yT4DCIGADQJlpCwdf71hfGWjDhrk/fJX3POHS4DTVeZW/P3dRffVE8RCwARRHkzOuXw+Zq/bKa97z0ePBacL2RcKM8UIjYANAmYVzgvdNXRi8L4qw3veiS5rLG/lHwAZQSCd3+m9/bF1r61HyyFr/7e8829p6oH0RsAEUw6nKWV1njfDOIZ81YnBblEuxNj7SWPEPb6+dprz8USO99yOHVyU6daSxCiDzWJo0YWl/v0ljWcTsy3sbvtd+Ied/T5+ROmcPpPcJ2tUzyqvTlB8vSUeelCaOqy+P8jT926Sx7wusbsVypXlvP6kQf4MsTQoAUXQMa+744RdXvu+e31x+ocEahUXABoAyURZLWbKq8n2tDuDnvhZPuSi22AO2mf2tmR02s5/GnTcAtIP7t9aXfsOWZOqBYkmih71R0qcTyBcAGnbTmuhpW93brae8ej4H8iX2gO2ce0bS0bjzBYBmrIl5Zc8v3B4tXdx3/Yr7cyA7OIcNAD4WrQjf/+0Hveftu/33b3nGew66r3bJlSsr3197ee26oZhSCdhmtszMes0szhvQAUDDpn+g8v1jO6IdN2+Z//bPROwJV1+ffe9Xox2H4kklYDvnvuOc64ly3RkAtMKP7xm6bcHy8GO6QpYalaTxnwjfv2J1+H6gHEPiAIphZvgKYVMmDd32eI1lQY/VuJlH/4nw/es2he/3dX5fAwchD5K4rGuTpJ9I+oiZ7Tez/yPuMgCgbh0TGzosqRnjV93c4IGdE2KtB7KjI+4MnXNL484TAPLm+9vSrgGyhiFxABgwuSvd8mefl275aG/c/CNhaX+/SePGA9mX9zYc0n4hNwGRGh8C/9iHvIC/74D0i/2N5VHzbmGzhv5bzHv7SYX4G4x084/Yh8QBIMtcb3DQXjinuftlX3aDtPW54HKBMARsAMUy9S5pf/iMr/5t0rh53utDW6VJVUPl190q3fto9CLnzJR2rJeeuHtw274D0owrvNcHo6xNPu2voheIXGJIPGFpf79JYzgu+/Lehr7tV2NYXPJ62aVe7+at0tJV4enr8d2vS0svG1pOKJ/hcCn/7ScV4m8w0pA4ATthaX+/SeM/i+zLexv6tt+pI9Ienwuvq0Q9n714rnT9YmneLOnYCekne6TbNkg/2xuhflGC9fl9gZdz5b39pEL8DXIOGwB8dXY3fOiWNV6ADjJ+jDRjinT1gsrtO16ULvl8g4Vy7TVEDztxaX+/SePXffblvQ1D2y/i0Hhnh/Tuc0O3R65DVS+6c7Z0+kxzQ+Hv1SPn7ScV4m+QHjYAhJrlIgXtUrBu9JKv8uPOvCCdej5iXjWCNYqFhVMAFNv02gt6W09wgL11mXTsaa+3XHqc3Olt9zPsoojBevr3IiRCkTAknrC0v9+kMRyXfXlvw0jtF9DLrg6sV86THrqr8bosXeXNOC8XOCwesXed9/aTCvE3yCzxdpD295s0/rPIvry3YeT22z1Kcu9UbLIeqe8pacLYyqSj50pvnYxeh64x0ps/qtz2jY3SLXf7BOzpm6SuJZHzznv7SYX4G+QcNgBEduFABK7qbXcMk6ZfIb16oPGsjx6v7K3/8tGhPW1JnLNGKM5hA0C5sqDpeqWHtzcXrP2cu8i7bruid02wRg0MiScs7e83aQzHZV/e27Dh9jt1VNrTguufzz/c1HXheW8/qRB/g5GGxOlhA4Cfzi6v1zttbTL5T1vn5d9EsEax0MNOWNrfb9L4dZ99eW/DWNsvwjXbNcU89J339pMK8TdIDxsAYjXLDT5mHhuye6VfZ/z8NyqPAxpEDzthaX+/SePXffblvQ1pv+wrQBvSwwYAIC8I2AAAZAABGwCADEh9pbNZs2aptzfKPeayKe/nl/J+bkmiDbOO9su+vLdhVPSwAQDIgNR72AAAtErg3dHq0Oh90ZtFDxsAkGs3XzN4r/I4lPK66ep48ouKgA0AyKWuMV5gvfNLyeS/+kYv/0ldyeRfjSFxAEDuxNWbjuLQwK1Skx4qp4cNAMiVVgbrVpZLwAYA5MJvnk0vWJe4XulPP5VM3gRsAEDmuV5pxPDm87nhjubz2Hx7Mj8cOIcNAMi0d3Y2n0f5+ee/fsB7bjbo/uZZaeQfNpdHOXrYAIBMGzmidpru+dJ9P/DfFzRZrNlJZHH0+MsRsAEAmVWrF2w93qOvX/rsXzYfhEv5lR7n/Ulz9asHARsAkEm1guG37vff3mjQ9jvu5b21j4sraBOwAQCZ0x1hsZLldyZfDynaD4AJY5svh4ANAMicw1vjyyuoBxzncHbfU83nwSxxAECm/Nk1g6/9erelQOt6ow9/u17pxElpzFzp+DPS6FHR67PhK9Hqs2Kp9M1N0fOtRg8bAJApdwysDR4UjPcfHnw9Z+bQ/UE951KQDgrWQcddt9h7/tVB//2leq5d6b8/KgI2ACBXpi0cfL1jfWWgDRvm/vBV3vOES4PTVOdV/v7cRfXVs14EbABAZjR7Xvn1w8H7XnnNez56PDhN2L4omqk/ARsAkCsL5wTvm7oweF8UYb3vRZc0l3ctBGwAQCadDFiS9LF1ra1HySNr/be/82w8+ROwAQCZMHlC5fuzRnhDzGeVLU0aZch54yONlf/w9tppyssfNdJ7P7JqidKJ4xorn4ANAMiEg0/4bz+5Uzr1vPc6ymVc13916LbTZyrf9/UPTXNlhFnepfL7t0lv7/BPc+TJ2vn4IWADADKvY1hzxw+/uPJ99/zm8hv7vuaO90PABgDkSpRe9pJVle+dC0//ua/FU24zCNgAgMK5v86lTTdsSaYe9Yg9YJvZNDN72sx+bmYvm9mX4i4DAFA8N62Jnjbp3m4z5dXzOcol0cM+LWmlc+5/knSxpP9oZr+bQDkAgAJZc1O8+X3h9mjp4r7rV6OfI/aA7Zx7wzm3e+D1CUk/lzQl7nIAAAizaEX4/m8/6D1v3+2/f8sz3nPQfbVLqmePX3t57bo1ItFz2Gb2QUm/J+n5qu3LzKzXzHqPHDmSZBUAAAUx/QOV7x8LuKyq2rxl/ts/E7EnXH199r0+l43FIbGAbWbvk/SgpBXOuYrVV51z33HO9Tjnerq7u5OqAgCgQH58z9BtC5aHH9MVstSoJI3/RPj+FavD98cpkYBtZp3ygvV9zrl/SKIMAECxTPxk+P4pk4Zue7zGsqDHatzMo/9E+P51DdzfOmw98jBJzBI3Sesl/dw51+BcOAAAKr3568aOS2rG+FU3N3Zco3f8SqKHPUfSNZIuNbMXBx5N3h8FAID28v1trS2vI+4MnXM7JFnc+QIAUMvkLunQ0fTKn31ecnmz0hkAIDNqDW8frHMFs3If+5A0/yLpd6Y2nsdzG8P3NzM8H3sPGwCANLne4MC4cE5z98u+7AZp63PB5SaJgA0AyJSVa6XVN4an6d8mjZvnvT60VZrUVbn/ululex+NXuacmdKO9dITdw9u23dAmnGF9zpKz/6LTa6YZq7WLUoS1tPT43p7E/5ZkiJv0nx+pf3vpxVow2yj/bLPrw2j9GatZzDd5q3S0lXh6evx3a9LSy8bWk6t+gTY5ZyrOVhOwE4Y/1lkH22YbbRf9vm14cRx0pEnIxwb8Zzx4rnS9YulebOkYyekn+yRbtsg/Wxv7WOjBOsJl4ZezhUpYDMkDgDInL7+xo/dssYL0EHGj5FmTJGuXlC5fceL0iWfb6zMRq+9LkfABgBkUpSh6NIEtM4O6d2qyWL1zNh2vdLHLxgsr3O2dPpM00PhdSFgAwAyK+r541KwbjR4lh935gXp1PPR8opzlTWuwwYAZNqSW2qnsZ7g4HnrMunY017gLz1O7vS2+xl2UbRA/Mdfrp2mHkw6SxgTXrKPNsw22i/7orRhUC+7OrBeOU966K7G67J0lTfjvJGyQzDpDABQDNYjvb1DGjVy6L6+p6QJYyu3jZ4rvXUyev5dY6Q3fyRtus17SNI3Nkq33D007ZJbpPt/GD3vqAjYAIBcOPvj3nN1j7djmDT9CunVA43nffR4ZY/5l48O7WlLyd0ZTOIcNgAgZ8qDpuuVHt7eXLD2c+4i77rt8h8HSQZriR42ACCHrEcaP1o6+rR07eXeIynd85u7LjwqetgAgFw6dsIL3CtWJ5P/8ju9/FsRrCV62ACAnFu3yXtI8dxRK+mh7yD0sAEAhVG6Htt6Bu/mVW7l2qHbzrms8ri00MMGABTSr9/yD8Br7mt9XaKghw0AQAYQsAEAyAACNgAAGUDABgAgA1K/+YeZ5Xrl+rS/36Tl/cYKEm2YdbRf9hWgDSPd/IMeNtrSuNGVt7pzvdJNVw/dds6EtGsKAK1BDzthaX+/SYvz1327LmhAG2Yb7Zd9BWhDethofzdfM9hbjkN5bxwA8oQedsLS/n6T1uiv+9K9ZZM2+Y+kw0eby4M2zDbaL/sK0IaRetisdIaWi6s3HcWhgfvVprmcIADEgSFxtFQrg3U7lAsAcSFgoyV+82z6QdP1Sn/6qXTrAACNImAjca5XGjG8+XxuuKP5PDbfnv4PBwBoBJPOEpb295u0WhNe3tkpjRzRZBk+55+bDbq/fVca+YfR0ha9DbOO9su+ArQhl3UhfVGCdfd86b4f+O8LmizW7CSyOHr8ANBK9LATlvb3m7SwX/e1esFRes5hgblW2o/OkH76QP11GFJOgdswD2i/7CtAG9LDRnpqBetv3e+/vdGes99xL++tfRznswFkBQEbsevuqp1m+Z3J10OK9gNgwtjk6wEAzSJgI3aHt8aXV1APOM6ecd9T8eUFAElhpTPE6s+uGXwddo7a9UYf/na90omT0pi50vFnpNGjotdnw1ei1WfFUumbm6LnCwCtRg8bsbrjS95zUDDef3jw9ZyZQ/cH9ZxLQTooWAcdd91i7/lXB/33l+q5dqX/fgBoFwRstNS0hYOvd6yvDLRhw9wfvsp7nnBpcJrqvMrfn7uovnoCQLshYCM2zZ5Xfv1w8L5XXvOejx4PThO2LwpmjANoZwRstNTCOcH7pi4M3hdFWO970SXN5Q0AaSNgIxEnd/pvf2xda+tR8sha/+3vPNvaegBAowjYiMXkCZXvzxrhDTGfVbY0aZQh542PNFb+w9trpykvf9RI7/3IqiVKJ45rrHwASBpLkyYs7e83aaVlEcOC8ekzUudsBaarnlFenab8eEk68uTQwForj/I0/dukse8Lru+QvArShnlF+2VfAdqQpUnRHjqGNXf88Isr33fPby6/sGANAO2KgI2WirJYypJVle9r/bj+3NfiKRcA2lnsAdvMRprZC2b2kpm9bGZfjbsM5Nv9dS5tumFLMvUAgHaSRA/7t5Iudc7NlHSBpE+b2cU1jkHG3bQmetpW93brKa+ezwEArRR7wHaetwbedg488j1jAFpzU7z5feH2aOnivutX3J8DAOKSyDlsMxtmZi9KOizph86556v2LzOzXjNjbamCWrQifP+3H/Set+/237/lGe856L7aJVdWrRF+7eW16wYA7SjRy7rMbJykhyR90Tn304A0ue59F+ByBEm1r7GecYW070DlttIxQUPWte7oFbY/KO8o14JzWVe+0H7ZV4A2TP+yLudcv6Rtkj6dZDlofz++Z+i2BcvDj+kKWWpUksZ/Inz/itXh+wEgS5KYJd490LOWmZ0lab6kf427HLSXiZ8M3z9l0tBtj9dYFvRYjZt59J8I37+ugftbh61HDgBp6kggz/dLutfMhsn7QfCAc+7RBMpBG3nz140dl9SM8atubuy4Zu/4BQBJiT1gO+f2SPq9uPMF6vH9bWnXAADixUpnaJnJXemWP/u8dMsHgGZw84+Epf39Jq16hmqtWdiNDoF/7ENewN93QPrF/sbyaLRuRWvDvKH9sq8AbRhplngS57CBQGGXYi2c09z9si+7Qdr6XHC5AJBlBGzEauVaafWN4Wn6t0nj5nmvD22VJlUNlV93q3RvHdMU58yUdqyXnrh7cNu+A96135J0MMLa5F+MecU0AIgbQ+IJS/v7TZrfcFzUxUlK6TZvlZauCk9fj+9+XVp62dByatUnSBHbME9ov+wrQBtGGhInYCcs7e83aX7/WUwcJx15MsKxEc9nL54rXb9YmjdLOnZC+ske6bYN0s/21j42SrCecGn45VxFbMM8of2yrwBtyDlspKOvv/Fjt6zxAnSQ8WOkGVOkqxdUbt/xonTJ5xsrk2uvAWQBPeyEpf39Ji3s133UoejODund54Zuj6q6nM7Z0ukzzQ+Fv5d/gdswD2i/7CtAG9LDRrqinj8uBetGL/kqP+7MC9Kp56Pl1er7cgNAM1g4BYlackvtNNYTHDxVmMDUAAAgAElEQVRvXSYde9oL/KXHyZ3edj/DLooWiP/4y7XTAEA7YUg8YWl/v0mLMhwX1MuuDqxXzpMeuqvxuixd5c04b6TsMLRhttF+2VeANmSWeDtI+/tNWtT/LN7eIY0aWXVsj9T3lDRhbOX20XOlt05Gr0PXGOnNH1Vu+8ZG6Za7hwbsJbdI9/8wet4SbZh1tF/2FaANOYeN9nH2x73n6gDaMUyafoX06oHG8z56vLLH/MtHh/a0Jc5ZA8g2zmGjpcqDpuuVHt7eXLD2c+4i77rt8h8HBGsAWceQeMLS/n6T1uhw3PjR0tGnY66Mj+75zV0XLtGGWUf7ZV8B2jDSkDg9bKTi2Amv17tidTL5L79z4Bx5k8EaANoFPeyEpf39Ji3OX/dx3FEriaFv2jDbaL/sK0Ab0sNGtpSux7aewbt5lVu5dui2cy6rPA4A8ooedsLS/n6Txq/77Mt7G9J+2VeANqSHDQBAXhCwAQDIAAI2AAAZkPpKZ7NmzVJvbwzTg9tU3s8v5f3ckkQbZh3tl315b8Oo6GEDAJABqfewY7Mrhl9gs/L/SxUAkE3Z7mEfutML1HEEa2kwr0MJLb8FAECDshmwT73pBdb9X04m//03e/mfOpRM/gAA1Cl7Q+Jx9aaj2HOO98xQOQAgZdnqYbcyWLdDuQAADMhGwN49Iv2gucuko5vTrQMAoLDaP2DvMsm923Q2N9wRQ132LU3/hwMAoJDa+xz27pFNZ1F+B6e/fsB7bvo2jrtHSBf+tslMAACIrr172K52UOyeL933A/99QbdbbPo2jDH0+AEAqEf7BuwaQ8+l+x/39Uuf/cvmg3D5PZWtRzrvT5qrHwAAcWrPgF0jGH7rfv/tjQZtv+Ne3hvhQII2AKBF2i9gnz5cM8nyO1tQD0X8AXC6L/F6AADQfgH7pcmxZRU0uazpSWflXuqOMTMAAPy11yzxNwavvfLr3ZYCreuNPvzteqUTJ6Uxc6Xjz0ijR0WvzoavDL4Oq48OrpXOuTF6xgAA1Km9etgH/lxScDDeXzZaPmfm0P1BPedSkA4K1kHHXbfYe/7VQf/979Xz9Zv8EwAAEJP2Ctg1TFs4+HrH+spAGzbM/eGrvOcJlwanqc6r/P25i+qrJwAAcWufgN3kjOvXQ+aqvfKa93z0eHCasH2RMGMcAJCg9gnYESycE7xv6sLgfVGE9b4XXdJc3gAANKstA/bJnf7bH1vX2nqUPLLWf/s7z7a2HgCA4mqPgH2qclbXWSO8c8hnjRjcFuVSrI2PNFb8w9trpykvf9RI7/3I4VWJTh1prAIAANTQHgF7z/t9N5/cKZ163nsd5TKu6786dNvpM5Xv+/qHprlyZe28S+X3b5Pe3hGQaM+k2hkBANCA9gjYITqGNXf88Isr33fPby6/se9r7ngAABrR9gG7XJRe9pJVle+dC0//ua/FUy4AAElKJGCb2TAz+2czezSJ/MPcv7W+9Bu2JFMPAADilFQP+0uSfh418U1romfc6t5uPeXV8zkAAKhH7AHbzKZKulzSPVGPWRPzyp5fuD1aurjv+hX35wAAoCSJHvY3JX1Z0n8PSmBmy8ys18x6jxyp/1KoRSvC93/7Qe95+27//Vue8Z6D7qtdUj17/NrLa9cNAIAkxBqwzWyRpMPOuV1h6Zxz33HO9Tjnerq7a9+ecvoHKt8/FnRZVZV5y/y3fyZiT7j6+ux7fS4bAwCgFeLuYc+RdIWZvSpps6RLzezvms30xz6D6wuWhx/TFbLUqCSN/0T4/hWrw/cDANBKsQZs59wtzrmpzrkPSloi6UfOuc/WPHBm+LD4FJ/1SB6vsSzosRo38+g/Eb5/3abw/b7O72vgIAAAamuP67A7JjZ0WFIzxq+6ucEDOyfEWg8AAEo6ksrYObdN0rak8k/S97elXQMAACq1Rw87gsld6ZY/+7x0ywcAFFv7BOxZ4WuIHqxzBbNyH/uQNP8i6XemNp7HcxtrJKhRfwAAmpHYkHgSXG/weeuFc5q7X/ZlN0hbnwsuFwCANLVXwJ56l7Q/fMZX/zZp3Dzv9aGt0qSqofLrbpXurWMF8zkzpR3rpSfuHty274A04wrvdaSe/bS/il4gAAANaJ8hcUmaXPvG1KXbW7peL1hv3ur1ukuPeoK1JO18qfL4TU94C7WUetWRzp1P+mJ9hQIAUCdzte4/mbCenh7X21s25nzqiLTH58LrKlEv6Vo8V7p+sTRvlnTshPSTPdJtG6Sf7a19bKSh8PP7Qi/nMrNoFc2otP/9tAJtmG20X/blvQ0l7XLO1Yxq7TUkLkmdtZcqDbJljRegg4wfI82YIl29oHL7jhelSz7fYKFcew0AaIH2C9iSN+N6V/gvqtIEtM4O6d2qyWL1LKjieqWPXzDYm+6cLZ0+E7F3zcxwAECLtGfAliIFbWkwWDe66ln5cWdekE49HzEvgjUAoIXaa9JZtem1F/QuTRbzc+sy6djTXm+59Di509vuZ9hFEYP19O9FSAQAQHzab9JZtYBednVgvXKe9NBdjddj6Spvxnm5wGHxOnrXeZ8skfa/n1agDbON9su+vLehMjvprNosJ+0eJbl3huzqe0qaMLZy2+i50lsno2ffNUZ680fSptu8hyR9Y6N0y90+iadvkrqWRM8cAICYtH/AlqQLByJwVW+7Y5g0/Qrp1QONZ330eGVv/ZePDu1pS+KcNQAgVe19DrtaWdB0vdLD25sL1n7OXeRdt10xHE6wBgCkLBs97HKznHTqqLRngq69XLr28gTLOv9wU9eFAwAQl2z1sEs6u7zAPW1tMvlPW+flT7AGALSJ7PWwy01a4T2kSNds18TQNwCgTWWzh+1nlht8zDw2ZPdKv874+W9UHgcAQJvKdg87SMe4IQF49d+lVBcAAGKQnx42AAA5RsAGACADCNgAAGRA6muJm1muZ3ul/f0mrQBr/NKGGUf7ZV8B2jDSWuL0sAEAyIB8zhIHADQk8C6FdYh0m2LUjR42ABTczdd4gTqOYC0N5nXT1fHkBw/nsBOW9vebNM6fZV/e25D2C1a6vXDSJv+RdPho48cXoA1zcj9sAEDs4upNR3Fo4JbFDJU3hyFxACiYVgbrdig3LwjYAFAQv3k2/aDpeqU//VS6dcgqAjYAFIDrlUYMbz6fG+5oPo/Nt6f/wyGLmHSWsLS/36TlfcKSRBtmHe0nvbNTGjmiyXJ8zj83G3R/+6408g9rpytAG7JwCgAgWrDuni/d9wP/fUGTxZqdRBZHj79I6GEnLO3vN2l5751JtGHWFb39avWCo/ScwwJzrbQfnSH99IH661BRRv7bkB42ABRZrWD9rfv9tzfac/Y77uW9tY/jfHY0BGwAyKHurtpplt+ZfD2kaD8AJoxNvh5ZR8AGgBw6vDW+vIJ6wHH2jPueii+vvGKlMwDImT+7ZvB12Dlq1xt9+Nv1SidOSmPmSsefkUaPil6fDV+JVp8VS6Vvboqeb9HQwwaAnLnjS95zUDDef3jw9ZyZQ/cH9ZxLQTooWAcdd91i7/lXB/33l+q5dqX/fngI2ABQMNMWDr7esb4y0IYNc3/4Ku95wqXBaarzKn9/7qL66olKBGwAyJFmzyu/fjh43yuvec9HjwenCdsXBTPGgxGwAaBgFs4J3jd1YfC+KMJ634suaS7voiNgA0BOndzpv/2xda2tR8kja/23v/Nsa+uRVQRsAMiJyRMq3581whtiPqtsadIoQ84bH2ms/Ie3105TXv6okd77kVVLlE4c11j5ecfSpAlL+/tNWt6XtZRow6wrUvuFBePTZ6TO2cHpqmeUV6cpP16Sjjw5NLDWyqM8Tf82aez7gutbnlcB2pClSQEAno5hzR0//OLK993zm8svLFjDHwEbAAomymIpS1ZVvq/Vyf3c1+IpF8ESCdhm9qqZ/YuZvWhmTNIHgIy5v86lTTdsSaYeGJRkD/sTzrkLoozLAwCad9Oa6Glb3dutp7x6PkeRMCQOADmx5qZ48/vC7dHSxX3Xr7g/R14kFbCdpK1mtsvMllXvNLNlZtbLcDkApGfRivD9337Qe96+23//lme856D7apdcWbVG+LWX164bhkrksi4z+4Bz7oCZTZL0Q0lfdM49E5A21/P1C3A5QtpVSBxtmG1Far9a11jPuELad6ByW+mYoCHrWnf0CtsflHeUa8G5rGuoRHrYzrkDA8+HJT0k6aIkygEARPfje4ZuW7A8/JiukKVGJWn8J8L3r1gdvh/RxR6wzexsMxtdei3pjyT9NO5yAACVJn4yfP+USUO3PV5jWdBjNW7m0X8ifP+6Bu5vHbYeeZF1JJDnZEkPDQzTdEj6rnPu8QTKAQCUefPXjR2X1Izxq25u7Lhm7/iVV7EHbOfcXkk+t0QHABTJ97elXYN84bIuACiQyV3plj/7vHTLzzJu/pGwtL/fpOV9hrFEG2ZdEduv1izsRofAP/YhL+DvOyD9Yn9jeTRStwK0YaRZ4kmcwwYAtLGwS7EWzmnuftmX3SBtfS64XDSOgA0AObNyrbT6xvA0/dukcfO814e2SpOqhsqvu1W699HoZc6ZKe1YLz1x9+C2fQe8a78l6WCEtcm/GPOKaXnDkHjC0v5+k5b34VSJNsy6orZf1MVJSuk2b5WWrgpPX4/vfl1aetnQcmrVx08B2jDSkDgBO2Fpf79Jy/t/9hJtmHVFbb+J46QjT0Y4PuL57MVzpesXS/NmScdOSD/ZI922QfrZ3trHRgnWEy4NvpyrAG3IOWwAKKq+/saP3bLGC9BBxo+RZkyRrl5QuX3Hi9Iln2+sTK69ro0edsLS/n6TlvfemUQbZl3R2y/qUHRnh/Tuc0O3R1VdTuds6fSZ5obC38s7/21IDxsAii7q+eNSsG70kq/y4868IJ16Plperb4vd5axcAoA5NySW2qnsZ7g4HnrMunY017gLz1O7vS2+xl2UbRA/Mdfrp0GgxgST1ja32/S8j6cKtGGWUf7eYJ62dWB9cp50kN3NV6fpau8GeeNlB2kAG3ILPF2kPb3m7S8/2cv0YZZR/sNenuHNGpk1fE9Ut9T0oSxldtHz5XeOhm9Hl1jpDd/VLntGxulW+4eGrCX3CLd/8PoeRegDTmHDQAYdPbHvefqANoxTJp+hfTqgcbzPnq8ssf8y0eH9rQlzlk3g3PYAFAw5UHT9UoPb28uWPs5d5F33Xb5jwOCdXMYEk9Y2t9v0vI+nCrRhllH+wUbP1o6+nSMlQnQPb+568IL0IaRhsTpYQNAQR074fV6V6xOJv/ldw6cI28iWGMQPeyEpf39Ji3vvTOJNsw62q8+cdxRK+6h7wK0IT1sAEB9StdjW8/g3bzKrVw7dNs5l1Ueh2TQw05Y2t9v0vLeO5Now6yj/bKvAG1IDxsAgLwgYAMAkAEEbAAAMiD1lc5mzZql3t4YpiW2qbyfX8r7uSWJNsw62i/78t6GUdHDBgAgAwjYAABkQOpD4gByZFcMQ5ez8j/ECzSCHjaA5hy60wvUcQRraTCvQwmtlwlkFAEbQGNOvekF1v1fTib//Td7+Z86lEz+QMYwJA6gfnH1pqPYc473zFA5Co4eNoD6tDJYt0O5QJsgYAOIZveI9IPmLpOObk63DkBKCNgAattlknu36WxuuCOGuuxbmv4PByAFnMMGEG73yKazKL/l4l8/4D03fd/l3SOkC3/bZCZAdtDDBhDO1Q6K3fOl+37gvy/o/shN3zc5hh4/kCUEbADBagw9W4/36OuXPvuXzQfhUn6lx3l/0lz9gDwhYAPwVyMYfut+/+2NBm2/417eG+FAgjYKgoANYKjTh2smWX5nC+qhiD8ATvclXg8gbQRsAEO9NDm2rIImlzU96azcS90xZga0J2aJA6j0xuC1V36921Kgdb3Rh79dr3TipDRmrnT8GWn0qOjV2fCVwddh9dHBtdI5N0bPGMgYetgAKh34c0nBwXh/2Wj5nJlD9wf1nEtBOihYBx133WLv+VcH/fe/V8/Xb/JPAOQEARtAXaYtHHy9Y31loA0b5v7wVd7zhEuD01TnVf7+3EX11RPIGwI2gEFNzrh+PWSu2iuvec9HjwenCdsXCTPGkWMEbAB1WTgneN/UhcH7ogjrfS+6pLm8gawjYAPwdXKn//bH1rW2HiWPrPXf/s6zra0HkBYCNgDPqcpZXWeN8M4hnzVicFuUS7E2PtJY8Q9vr52mvPxRI733I4dXJTp1pLEKAG2OgA3As+f9vptP7pROPe+9jnIZ1/VfHbrt9JnK9339Q9NcubJ23qXy+7dJb+8ISLRnUu2MgAwiYAOoqWNYc8cPv7jyfff85vIb+77mjgeyKJGAbWbjzOzvzexfzeznZvYHSZQDoPWi9LKXrKp871x4+s99LZ5ygTxLqoe9TtLjzrn/UdJMST9PqBwAbej+rfWl37AlmXoAeRJ7wDazMZLmSlovSc65d51zPmesALSTm9ZET9vq3m495dXzOYAsSaKHPUPSEUkbzOyfzeweMzs7gXIAxGhNzCt7fuH2aOnivutX3J8DaBdJBOwOSRdK+hvn3O9JelvSX5QnMLNlZtZrZr1HjnAJBpBFi1aE7//2g97z9t3++7c84z0H3Ve7pHr2+LWX164bkEdJBOz9kvY75wYuBNHfywvg73HOfcc51+Oc6+nu5rZ4QBZM/0Dl+8eCLquqMm+Z//bPROwJV1+ffa/PZWNAEcQesJ1zByW9ZmYfGdj0SUk/i7scAK3143uGbluwPPyYrpClRiVp/CfC969YHb4fKJKk7of9RUn3mdlwSXslXZ9QOQDiMvOI9FLwiNcUn/VIHq+xLOixGjfz6D8Rvn/dpvD9vs7va+AgoP0lErCdcy9K4qpJIEs6JjZ0WFIzxq+6ucEDOyfEWg+gXbDSGYC29P1tadcAaC8EbACRTe5Kt/zZ56VbPpAmAjaAQbPC1xA9WOcKZuU+9iFp/kXS70xtPI/nNtZIUKP+QJYlNekMQE653uDz1gvnNHe/7MtukLY+F1wuUGQEbACVpt4l7Q+f8dW/TRo3z3t9aKs0qWqo/LpbpXsfjV7knJnSjvXSE3cPbtt3QJpxhfc6Us9+2l9FLxDIIIbEAVSaXPvG1KXbW7peL1hv3ur1ukuPeoK1JO18qfL4TU94C7WUetWRzp1P+mJ9hQIZY67Wfe8S1tPT43p78zvWZWZpVyFRaf/7aYVCtuGpI9Ienwuvq0S9pGvxXOn6xdK8WdKxE9JP9ki3bZB+tjdC/aL893B+X+DlXIVsv5zJextK2uWcq/nXxJA4gKE6G18yeMsaL0AHGT9GmjFFunpB5fYdL0qXfL7BQrn2GgVAwAbgb5aTdoX3bEoT0Do7pHerJovVs6CK65U+fsFgb7pztnT6TMTeNTPDURAEbADBIgRtaTBYN7rqWflxZ16QTj0fMS+CNQqESWcAwk2vvaB3abKYn1uXScee9nrLpcfJnd52P8Muihisp38vQiIgP5h0lrC8T5ZI+99PK9CGCuxlVwfWK+dJD93VeF2WrvJmnJcLHBaP2Lum/bIv720oJp0BiM0sJ+0eJbl3huzqe0qaMLZy2+i50lsno2ffNUZ680fSptu8hyR9Y6N0y90+iadvkrqWRM8cyAkCNoBoLhyIwFW97Y5h0vQrpFcPNJ710eOVvfVfPjq0py2Jc9YoNM5hA6hPWdB0vdLD25sL1n7OXeRdt10xHE6wRsHRwwZQv1lOOnVU2jNB114uXXt5gmWdf7ip68KBvKCHDaAxnV1e4J62Npn8p63z8idYA5LoYQNo1qQV3kOKdM12TQx9A77oYQOIzyw3+Jh5bMjulX6d8fPfqDwOgC962ACS0TFuSABe/Xcp1QXIAXrYAABkAAEbAIAMIGADAJABqa8lbma5nmWS9vebtAKs8UsbZhztl30FaMNIa4nTwwYAIAOYJZ4lXOMKAIVFD7vdHbrTC9RxBGtpMK9Dq+PJDwDQEpzDTljD3++pN6U9E+OtjJ/zD0qdkxs+nPNn2Zf3NqT9sq8Abcj9sDMrrt50FHvO8Z4ZKgeAtsaQeLtpZbBuh3IBAJEQsNvF7hHpB81dJh3dnG4dAAC+CNjtYJdJ7t2ms7nhjhjqsm9p+j8cAABDMOksYTW/390jJffbpsown6kKrrepLCUbLl1Yu15MeMm+vLch7Zd9BWhDFk7JhAjBunu+dN8P/Pf5Beuw7ZHF0OMHAMSHHnbCQr/fGkPPUXrOYYG5VtqPzpB++kBoFWrOHufXffblvQ1pv+wrQBvSw25rNYL1t+73395oz9nvuJf3RjiQ89kA0BYI2Gk4fbhmkuV3tqAeivgD4HRf4vUAAIQjYKfhpcZXFqsWNLms6Uln5V7qjjEzAEAjWOms1d4YvPYq7By1640+/O16pRMnpTFzpePPSKNHRa/Ohq8Mvg49Z35wrXTOjdEzBgDEih52qx34c0nBwXh/2Wj5nJlD9wf1nEtBOihYBx133WLv+VcH/fe/V8/Xb/JPAABoCQJ2m5m2cPD1jvWVgTZsmPvDV3nPEy4NTlOdV/n7cxfVV08AQGsRsFupyRnXr4fMVXvlNe/56PHgNGH7ImHGOACkhoDdZhbOCd43dWHwvijCet+LLmkubwBAsgjYKTm503/7Y+taW4+SR9b6b3/n2dbWAwDgj4DdKqcqZ3WdNcI7h3zWiMFtUS7F2vhIY8U/vL12mvLyR4303o8cXpXo1JHGKgAAaApLkybsve835Pzv6TNS5+yB9D5Bu3pGeXWa8uMl6ciT0sRx9eVRnqZ/mzT2fYHVrViulGURsy/vbUj7ZV8B2pClSbOiY1hzxw+/uPJ99/zm8gsN1gCAVBCw20yUxVKWrKp8X+vH5+e+Fk+5AID0xB6wzewjZvZi2eO4ma2Iu5wiu39rfek3bEmmHgCA1ok9YDvn/s05d4Fz7gJJsySdlPRQ3OVkzU1roqdtdW+3nvLq+RwAgPgkPST+SUm/cM79MuFy2t6amFf2/MLt0dLFfdevuD8HACCapAP2Ekmbqjea2TIz6zWzOO8plSuLapxE+PaD3vP23f77tzzjPQfdV7vkypWV76+9vHbdAACtl9hlXWY2XNIBSR91zh0KSZfr+fpRLuuSpBlXSPsOVB078HMmaMi61h29wvYH5R3ptpxc1pUreW9D2i/7CtCGqV/WtUDS7rBgjUE/vmfotgXLw4/pCllqVJLGfyJ8/4rV4fsBAO0jyYC9VD7D4YU1M3yFsCmThm57vMayoMdq3Myj/0T4/nWNtM75fQ0cBABoViIB28xGSfqUpH9IIv9M6pjY0GFJzRi/6uYGD+ycEGs9AADRdCSRqXPupCT+Z29j39+Wdg0AAPVgpbM2Mrkr3fJnn5du+QCAYNz8I2FDvt8as8UbHQL/2Ie8gL/vgPSL/Y3lUXOG+KyhTcUM1ezLexvSftlXgDaMNEs8kSFxNC7sUqyFc5q7X/ZlN0hbnwsuFwDQvgjYrTb1Lml/+Iyv/m3SuHne60NbpUlVQ+XX3Srd+2j0IufMlHasl564e3DbvgPetd+SdDDK2uTT/ip6gQCA2DEknjDf77fGsLjk9bJLvd7NW6Wlq8LT1+O7X5eWXja0nFA+w+ESw3F5kPc2pP2yrwBtGGlInICdMN/v99QRaY/PhddVop7PXjxXun6xNG+WdOyE9JM90m0bpJ/tjVC/KMH6/L7Ay7n4zyL78t6GtF/2FaANOYfdtjq7Gz50yxovQAcZP0aaMUW6ekHl9h0vSpd8vsFCufYaAFJHDzthod9vxKHxzg7p3eeGbo9ch6pedOds6fSZ5obC36sHv+4zL+9tSPtlXwHakB5225vlIgXtUrBu9JKv8uPOvCCdej5iXjWCNQCgdVg4JW3Tay/obT3BAfbWZdKxp73eculxcqe33c+wiyIG6+nfi5AIANAqDIknLNL3G9DLrg6sV86THrqr8bosXeXNOC8XOCwesXfNcFz25b0Nab/sK0AbMku8HUT+fnePktw7FZusR+p7SpowtjLp6LnSWyej16FrjPTmjyq3fWOjdMvdPgF7+iapa0nkvPnPIvvy3oa0X/YVoA05h50pFw5E4KredscwafoV0qsHGs/66PHK3vovHx3a05bEOWsAaGOcw243ZUHT9UoPb28uWPs5d5F33XZF75pgDQBtjSHxhDX8/Z46Ku1pwfXP5x9u6rpwhuOyL+9tSPtlXwHaMNKQOD3sdtXZ5fV6p61NJv9p67z8mwjWAIDWoYedsFi/3wjXbNcU89A3v+6zL+9tSPtlXwHakB527sxyg4+Zx4bsXunXGT//jcrjAACZRA87YWl/v0nj13325b0Nab/sK0Ab0sMGACAvCNgAAGQAARsAgAxoh5XO+iT9soXlTRwosyVSOr/U0s+Ygry3Ie0XI9ovdi3/fAVow3OjJEp90lmrmVlvlJP7WZb3z8jnyzY+X7bl/fNJ7fsZGRIHACADCNgAAGRAEQP2d9KuQAvk/TPy+bKNz5dtef98Upt+xsKdwwYAIIuK2MMGACBzCNgAAGRAoQK2mX3azP7NzF4xs79Iuz5xMrO/NbPDZvbTtOuSBDObZmZPm9nPzexlM/tS2nWKm5mNNLMXzOylgc/41bTrFDczG2Zm/2xmj6ZdlySY2atm9i9m9qKZ9aZdn7iZ2Tgz+3sz+9eBv8U/SLtOcTGzjwy0W+lx3MxWpF2vcoU5h21mwyT9f5I+JWm/pH+StNQ597NUKxYTM5sr6S1J/9U5d17a9Ymbmb1f0vudc7vNbLSkXZKuzEv7SZJ5q0Oc7Zx7y8w6Je2Q9CXn3HMpVy02ZnaTpB5JY5xzi9KuT9zM7FVJPc65XC6cYmb3Svqxc+4eMxsuaZRzrj/tesVtIF68Lmm2c66VC3uFKlIP+yJJrzjn9jrn3pW0WdJnUq5TbJxzz0g6mnY9kuKce8M5t3vg9QlJP5c0Jd1axct53hp42znwyF6IdlEAAAJeSURBVM0vajObKulySfekXRfUz8zGSJorab0kOefezWOwHvBJSb9op2AtFStgT5H0Wtn7/crZf/hFYWYflPR7kp5PtybxGxgyflHSYUk/dM7l6TN+U9KXJf33tCuSICdpq5ntMrNlaVcmZjMkHZG0YeC0xj1mdnbalUrIEkmb0q5EtSIFbL/FaHPTeykKM3ufpAclrXDOHU+7PnFzzp1xzl0gaaqki8wsF6c3zGyRpMPOuV1p1yVhc5xzF0paIOk/DpyqyosOSRdK+hvn3O9JeltSruYCSdLAUP8Vkr6Xdl2qFSlg75c0rez9VEkHUqoLGjBwXvdBSfc55/4h7fokaWCocZukT6dclbjMkXTFwDnezZIuNbO/S7dK8XPOHRh4PizpIXmn4vJiv6T9ZaM+fy8vgOfNAkm7nXOH0q5ItSIF7H+S9GEzmz7wC2qJpC0p1wkRDUzIWi/p5865NWnXJwlm1m1m4wZenyVpvqR/TbdW8XDO3eKcm+qc+6C8v70fOec+m3K1YmVmZw9MiNTAUPEfScrNVRvOuYOSXjOzjwxs+qSk3Ez6LLNUbTgcLrXH7TVbwjl32sxukPSEpGGS/tY593LK1YqNmW2SNE/SRDPbL+krzrn16dYqVnMkXSPpXwbO8UrSKufcP6ZYp7i9X9K9AzNU/52kB5xzubz8KacmS3po4FaQHZK+65x7PN0qxe6Lku4b6PTslXR9yvWJlZmNkncl0X9Iuy5+CnNZFwAAWVakIXEAADKLgA0AQAYQsAEAyAACNgAAGUDABgAgAwjYAABkAAEbAIAM+P8BYrfnP4SxJKkAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHwCAYAAABkPlyAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X+4FdWd7/nP93IOIIZfBw6YAGOgkyczHQO2nBa7iQwxpA0IRmd6umGMXs1kuJO5hiDY6Zbn6Scmz41mVCB07OncXGnw3jagaduI2lGiEQwYtQ+00jHpnseAiYj8OAIBxUTgrvmjzvbsvU9V7dp7V+3aVfV+Pc9+9t5Vq9ZaZ69zznevVatWmXNOAACgvf27tCsAAABqI2ADAJABBGwAADKAgA0AQAYQsAEAyAACNgAAGUDABgAgAwjYAABkAAEbaDNm9kEz+0czO2ZmB83sbjPrCEk/xsz+pj/tKTP7FzP7962sM4DkEbCB9vP/Sjos6f2SLpT0P0v6v/0SmtlQSU9KOl/SH0gaLenPJN1hZstaUlsALUHABtrPVEkPOOd+45w7KOlxSR8NSHutpP9B0v/mnNvnnDvtnHtc0jJJ/8nMRkqSmTkz+1DpIDPbaGb/qez9QjN70cyOm9mzZja9bN8HzOxBMztiZvvKvwiY2a1m9oCZ/VczO2lmL5tZT9n+Pzez1/v3/ZuZfTKejwgoHgI20H7WSVpsZiPMbJKk+fKCtp9PSfqBc+7tqu0PShoh6ZJahZnZRZL+VtJ/kDRO0n+WtMXMhpnZv5P0iKSXJE2S9ElJy83s8rIsrpS0WdIYSVsk3d2f70ck3Sjp951zIyVdLunVWvUB4I+ADbSf7fJ61Cck7ZfUK+n7AWnHS3qjeqNz7oykPkndEcr7PyX9Z+fc8865s865eyX9Vl6w/31J3c65rznn3nXO7ZX0XyQtLjt+h3PuH51zZyX9N0kz+reflTRM0u+aWadz7lXn3C8i1AeADwI20Eb6e7RPSPoHSefKC8hjJf0/AYf0yTvXXZ1PR/+xRyIUe76klf3D4cfN7LikKZI+0L/vA1X7VkmaWHb8wbLXpyQNN7MO59wrkpZLulXSYTPbbGYfiFAfAD4I2EB76ZIXLO92zv3WOfempA2SFgSkf1LSfDM7t2r7/yrptKQX+t+fkjdEXnJe2evXJH3dOTem7DHCObepf9++qn0jnXNB9angnPuuc+7j8gK/U/AXDwA1ELCBNuKc65O0T9IXzKzDzMZI+vfyziH7+W/yhs2/1385WGf/+eW/knSHc+7X/elelPS/m9kQM/u0vJnnJf9F0v9lZrPMc66ZXdE/Ye0FSSf6J4+d03/8BWb2+7V+FjP7iJldZmbDJP1G0jvyhskBNICADbSf/0XSp+UNZ78i6Yykm/wSOud+K2mevJ7w8/KC4uOSvinpq2VJvyRpkaTjkq5R2Tlx51yvvPPYd0s61l/m9f37zvYfd6G8LxJ9ku6Rd/lYLcMkfaP/mIOSJsgbTgfQAHPOpV0HADExs05JP5D0uqTrHX/gQG7QwwZyxDl3Wt75619I+kjK1QEQI3rYAABkAD1sAAAyIPCGAq0yfvx498EPfjDtaiRm165daVchUTNnzky7ComjDbON9su+vLehpD7nXM1FjlIfEu/p6XG9vb2p1iFJZpZ2FRKV9u9PK9CG2RZn+7kY/lUNrLQej7y3n5T/v0FJu5xzNX8zGBIHgBA3X+sF6jiCtTSQ14pr4skPxUHABgAfXaO8wHrnl5LJf/VNXv4TupLJH/mT+jlsAGg3cfWmozi01XuOe6gc+UMPGwDKtDJYt0O5yA4CNgBI+s2z6QdN1yv96afSrQPaFwEbQOG5XmnY0ObzufGO5vPYfHv6XxzQnjiHDaDQ3tnZfB7l55//+gHvudmg+5tnpeF/2FweyBd62AAKbfiw2mm650n3/cB/X9BksWYnkcXR40e+ELABFFatXrD1eI++49Jn/7L5IFzKr/S44E+aqx+KhYANoJBqBcNv3e+/vdGg7Xfcy3trH0fQRgkBG0DhdEdYrGTZncnXQ4r2BWDc6OTrgfZHwAZQOIe3xpdXUA84zp5x31Px5YXsYpY4gEL5s2sHXvv1bkuB1vVGH/52vdLJU9KoOdKJZ6SRI6LXZ8NXotVn+RLpm5ui54v8oYcNoFDu6F8bPCgY7z888Hr2jMH7g3rOpSAdFKyDjrt+kff8q4P++0v1XLvSfz+Kg4ANAGWmLBh4vWN9ZaANG+b+8NXe87jLgtNU51X+/vyF9dUTxUPABlAYzZ5Xfv1w8L5XXvOej54IThO2LwpmjBcbARsAyiyYHbxv8oLgfVGE9b4XXtpc3sg/AjaAQjoVsCTpY+taW4+SR9b6b3/n2dbWA+2LgA2gECaOq3x/zjBviPmcsqVJoww5b3yksfIf3l47TXn5I4Z774dXLVE6fkxj5SP7CNgACuHgE/7bT+2UTj/vvY5yGdcNXx287czZyvd9xwenuSrCLO9S+ce3SW/v8E9z5Mna+SCfCNgACq9jSHPHD72k8n33vObyG/2+5o5HPhGwAaBMlF724lWV750LT/+5r8VTLoqNgA0Adbq/zqVNN2xJph4olkQCtpl92sz+zcxeMbO/SKIMAKjHijXR07a6t1tPefX8HMiX2AO2mQ2R9NeS5kv6XUlLzOx34y4HAOqxZkW8+X3h9mjp4r7rV9w/B7IjiR72xZJecc7tdc69K2mzpM8kUA4AJGbh8vD9337Qe96+23//lme856D7apdUzx6/7oradUMxJRGwJ0l6rez9/v5t7zGzpWbWa2a9R44cSaAKAFCfqR+ofP9YwGVV1eYu9d/+mYg94errs+/1uWwMkJIJ2OazrWIOpXPuO865HudcT3d3dwJVAID6/PiewdvmLws/pitkqVFJGvuJ8P3LV4fvB8olEbD3S5pS9n6ypAMJlAMAkY3/ZPj+SRMGb3u8xrKgx2rczOP4yfD96xq4v3XYeuTItyQC9j9J+rCZTTWzoZIWS+KiBgCpevPXjR2X1Izxq29u7Lhm7/iF7OqIO0Pn3Bkzu1HSE5KGSPpb59zLcZcDAFn2/W1p1wBZE3vAliTn3D9K+sck8gaApEzskg4dTa/8WRekVzbaHyudASiMWsPbB+tcwazcxz4kzbtY+p3Jjefx3Mbw/SxfWmyJ9LABIKtcb3BgXDC7uftlX36jtPW54HKBMARsAIWycq20+qbwNMe3SWPmeq8PbZUmdFXuv/5W6d5Ho5c5e4a0Y730xN0D2/YdkKZd6b2O0rP/YswrpiF7zNW6zUzCenp6XG9vfr9amvldlp4faf/+tAJtmG1+7RelN2s9A+k2b5WWrApPX4/vfl1acvngcmrVx0/e20/K/9+gpF3OuZonPAjYCcv7L1ravz+tQBtmm1/7jR8jHXkywrERzxkvmiPdsEiaO1M6dlL6yR7ptg3Sz/bWPjZKsB53WfDlXHlvPyn/f4OKGLAZEgdQOH3HGz92yxovQAcZO0qaNkm6Zn7l9h0vSpd+vrEyufYaEgEbQEFFGYouTUDr7JDerZosVs+MbdcrffzCgfI6Z0lnzjY3FI7iIWADKKyo549LwbrR4Fl+3NkXpNPPR8uLYI1yXIcNoNAW31I7jfUEB89bl0rHnvYCf+lxaqe33c+Qi6MF4j/+cu00KBYmnSUs75Ml0v79aQXaMNuitF9QL7s6sF41V3rorsbrsmSVN+O8kbKD5L39pPz/DYpJZwAQjfVIb++QRgwfvK/vKWnc6MptI+dIb52Knn/XKOnNH0mbbvMekvSNjdItdw9Ou/gW6f4fRs8bxUHABgBJ537ce67u8XYMkaZeKb3axE2Cj56o7DH/8tHBPW2Jc9YIxzlsAChTHjRdr/Tw9uaCtZ/zF3rXbZd/OSBYoxZ62ABQxXqksSOlo09L113hPZLSPa+568JRHPSwAcDHsZNe4F6+Opn8l93p5U+wRlT0sAEgxLpN3kOK545aDH2jUfSwASCi0vXY1jNwN69yK9cO3nbe5ZXHAY2ihw0ADfj1W/4BeM19ra8LioEeNgAAGUDABgAgAwjYAABkAAEbAIAMSP3mH2aW65Xr0/58k1aARflpw4yj/bKvAG3IzT8AAAh09pj0YlfFppVrpdU3VaWbfkDqfH/r6hWAHnbC0v58k8a3++zLexvSftkXaxvuiuHzmhnv71TUHjbnsAEA+XboTi9QxxGspYG8DiW0bm0AetgJS/vzTRrf7rMv721I+2Vfw214+k1pz/h4K+Nn+kGpc2LDh3MOGwBQXHH1pqPYc573HPNQeTWGxAEA+dLKYN3CcgnYAIB82D0svWBdssuko5sTyZqADQDIvl0muXebzubGO2Koy74liXxxYNJZwtL+fJPGhJfsy3sb0n7ZV7MNdw+X3G+bKsPvzmtN3//chkoX1a4Xl3UBAIohQrDunifd9wP/fUH3KW/6/uUx9PjL0cNOWNqfb9L4dp99eW9D2i/7QtuwxtBzlJ5zWGCulfaj06SfPhBahZqzx+lhAwDyrUaw/tb9/tsb7Tn7Hffy3ggHxnQ+m4ANAMieM4drJll2ZwvqoYhfAM70NV0OARsAkD0vNb6yWLWgyWVNTzor91J301mw0hkAIFveGLj2KuwcteuNPvzteqWTp6RRc6QTz0gjR0SvzoavDLwOPWd+cK10XvWtwKKjhw0AyJYDfy4pOBjvLxstnz1j8P6gnnMpSAcF66Djrl/kPf/qoP/+9+r5+gr/BBERsAEAuTJlwcDrHesrA23YMPeHr/aex10WnKY6r/L35y+sr571ImADALKjyRnXr4fMVXvlNe/56IngNGH7Immi/gRsAECuLJgdvG/yguB9UYT1vhde2lzetRCwAQCZdGqn//bH1rW2HiWPrPXf/s6z8eRPwAYAZMPpylld5wzzziGfM2xgW5RLsTY+0ljxD2+vnaa8/BHDvffDh1YlOn2kofJZmjRhaX++SSv8sog5kPc2pP2y7702DDn/e+as1DmrP71P0K6eUV6dpvx4STrypDR+TH15lKc5vk0a/b7A6lYsV8rSpACAwugY0tzxQy+pfN89r7n8QoN1gwjYAIBcibJYyuJVle9rDcR87mvxlNuM2AO2mf2tmR02s5/GnTcAAHG4f2t96TdsSaYe9Uiih71R0qcTyBcAUGAr1kRPm3Rvt5ny6vk5ysUesJ1zz0g6Gne+AIBiW9Pcyp6DfOH2aOnivutXoz8H57ABALm0cHn4/m8/6D1v3+2/f8sz3nPQfbVLrlpZ+f66K2rXrRGpBGwzW2pmvWYW583LAAAFNvUDle8f2xHtuLlL/bd/JmJPuPr67Hu/Gu24eqUSsJ1z33HO9US57gwAgCh+fM/gbfOXhR/TFbLUqCSN/UT4/uWrw/fHiSFxAEA2zAhfIWzShMHbHq+xLOixGjfzOH4yfP+6TeH7fU3va+CgZC7r2iTpJ5I+Ymb7zez/iLsMAEABdYxv6LCkZoxffXODB3aOa+iwjgaLC+ScWxJ3ngAAtJvvb2tteQyJAwByY2JXuuXPuiC5vLn5R8LS/nyTVqgbD+RU3tuQ9su+QW0YchMQqfEh8I99yAv4+w5Iv9jfWB417xY2c/DvY9Sbf8Q+JA4AQJpcb3DQXjC7uftlX36jtPW54HKTRMAGAGTL5Luk/eEzvo5vk8bM9V4f2ipNqBoqv/5W6d5Hoxc5e4a0Y730xN0D2/YdkKZd6b0+GGVt8il/Fb1AHwyJJyztzzdphRyOy5m8tyHtl32+bVhjWFzyetmlXu/mrdKSVeHp6/Hdr0tLLh9cTiif4XAp+pA4ATthaX++SSvsP4scyXsb0n7Z59uGp49Ie3wuvK4S9Xz2ojnSDYukuTOlYyeln+yRbtsg/WxvhPpFCdbT+wIv5+IcNgAgvzq7Gz50yxovQAcZO0qaNkm6Zn7l9h0vSpd+vsFCG7z2uhw97ISl/fkmrbDf7nMk721I+2VfaBtGHBrv7JDefW7w9sh1qOpFd86Szpxtbij8vXrQwwYA5N5MFylol4J1o5d8lR939gXp9PMR86oRrOvBwikAgGybWntBb+sJDrC3LpWOPe31lkuPUzu97X6GXBwxWE/9XoRE0TEknrC0P9+kFX44Lgfy3oa0X/ZFasOAXnZ1YL1qrvTQXY3XZckqb8Z5ucBh8Yi9a2aJt4m0P9+k8c8i+/LehrRf9kVuw90jJPdOxSbrkfqeksaNrkw6co701qnodegaJb35o8pt39go3XK3T8CeuknqWhw5b85hAwCK5aL+CFzV2+4YIk29Unr1QONZHz1R2Vv/5aODe9qSYj1nXY1z2ACAfCkLmq5Xenh7c8Haz/kLveu2K3rXCQZriSHxxKX9+SaN4bjsy3sb0n7Z13Abnj4q7Wn++ueaph9u6rrwqEPi9LABAPnU2eX1eqesTSb/Keu8/JsI1vWgh52wtD/fpPHtPvvy3oa0X/bF2oYRrtmuKeahb3rYAABUm+kGHjOODdq90q8zPv2NyuNSQg87YWl/vknj23325b0Nab/sK0Ab0sMGACAvCNgAAGQAARsAgAxIfaWzmTNnqrc3yv3Jsinv55fyfm5Jog2zjvbLvry3YVT0sAEAyIDUe9iILtKN0mto9F6wAIB00cNuczdfO3B/1jiU8lpxTTz5AQBag4DdprpGeYH1zi8lk//qm7z8J3Qlkz8AIF4MibehuHrTURzqvz0cQ+UA0N7oYbeZVgbrdigXABANAbtN/ObZ9IOm65X+9FPp1gEA4I+A3QZcrzRsaPP53HhH83lsvj39Lw4AgME4h52yd3Y2n0f5+ee/fsB7bjbo/uZZafgfNpcHACA+9LBTNnxY7TTd86T7fuC/L2iyWLOTyOLo8QMA4kPATlGtXrD1eI++49Jn/7L5IFzKr/S44E+aqx8AoHUI2CmpFQy/db//9kaDtt9xL++tfRxBGwDaAwE7Bd0RFitZdmfy9ZCifQEYNzr5egAAwhGwU3B4a3x5BfWA4+wZ9z0VX14AgMYwS7zF/uzagdd+vdtSoHW90Ye/Xa908pQ0ao504hlp5Ijo9dnwlWj1Wb5E+uam6PkCAOJFD7vF7uhfGzwoGO8/PPB69ozB+4N6zqUgHRSsg467fpH3/KuD/vtL9Vy70n8/AKA1CNhtZsqCgdc71lcG2rBh7g9f7T2Puyw4TXVe5e/PX1hfPQEArUXAbqFmzyu/fjh43yuvec9HTwSnCdsXBTPGASA9BOw2s2B28L7JC4L3RRHW+154aXN5AwCSRcBOyamAJUkfW9faepQ8stZ/+zvPtrYeAAB/BOwWmTiu8v05w7wh5nPKliaNMuS88ZHGyn94e+005eWPGO69H161ROn4MY2VDwBoDgG7RQ4+4b/91E7p9PPe6yiXcd3w1cHbzpytfN93fHCaqyLM8i6Vf3yb9PYO/zRHnqydDwAgfgTsNtAxpLnjh15S+b57XnP5jX5fc8cDAOJHwG4zUXrZi1dVvncuPP3nvhZPuQCA9BCwM+j+Opc23bAlmXoAAFon9oBtZlPM7Gkz+7mZvWxmX4q7jCxasSZ62lb3duspr56fAwAQnyR62GckrXTO/U+SLpH0H83sdxMoJ1PWrIg3vy/cHi1d3Hf9ivvnAABEE3vAds694Zzb3f/6pKSfS5oUdzl5t3B5+P5vP+g9b9/tv3/LM95z0H21S6pnj193Re26AQBaL9Fz2Gb2QUm/J+n5qu1LzazXzHqPHDmSZBUyY+oHKt8/FnBZVbW5S/23fyZiT7j6+ux7fS4bAwCkL7GAbWbvk/SgpOXOuYpVrJ1z33HO9Tjnerq7u5OqQqb8+J7B2+YvCz+mK2SpUUka+4nw/ctXh+8HALSPRAK2mXXKC9b3Oef+IYkysmb8J8P3T5oweNvjNZYFPVbjZh7HT4bvX9fA/a3D1iMHACQniVniJmm9pJ8755hT3O/NXzd2XFIzxq++ubHjmr3jFwCgMUn0sGdLulbSZWb2Yv+jyftMIW7f35Z2DQAA9eiIO0Pn3A5JFne+RTCxSzp0NL3yZ12QXtkAgHCsdNZCtYa3D9a5glm5j31Imnex9DuTG8/juY3h+1m+FADSE3sPG81xvcGBccHs5u6XffmN0tbngssFALQvAnaLrVwrrb4pPM3xbdKYud7rQ1ulCV2V+6+/Vbr30ehlzp4h7VgvPXH3wLZ9B6RpV3qvo/TsvxjzimkAgPqYq3Wrp4T19PS43t78du+8SfOVovRmrWcg3eat0pJV4enr8d2vS0suH1xOrfr4Sfv3pxX82jBP8t6GtF/25b0NJe1yztU86UjATpjfL9r4MdKRJyMcG/Gc8aI50g2LpLkzpWMnpZ/skW7bIP1sb+1jowTrcZcFX86V9u9PK+T9n0Xe25D2y768t6EiBmyGxFPQd7zxY7es8QJ0kLGjpGmTpGvmV27f8aJ06ecbK5NrrwEgfQTslEQZii5NQOvskN6tmixWz4xt1yt9/MKB8jpnSWfONjcUDgBoLQJ2iqKePy4F60aDZ/lxZ1+QTj8fLS+CNQC0D67DTtniW2qnsZ7g4HnrUunY017gLz1O7fS2+xlycbRA/Mdfrp0GANA6TDpLWJTJEkG97OrAetVc6aG7Gq/LklXejPNGyg6S9u9PK+R9wkve25D2y768t6GYdJYd1iO9vUMaMXzwvr6npHGjK7eNnCO9dSp6/l2jpDd/JG26zXtI0jc2SrfcPTjt4luk+38YPW8AQGsQsNvEuR/3nqt7vB1DpKlXSq8eaDzvoycqe8y/fHRwT1vinDUAtDPOYbeZ8qDpeqWHtzcXrP2cv9C7brv8ywHBGgDaGz3sNmQ90tiR0tGnpeuu8B5J6Z7X3HXhAIDWoIfdpo6d9AL38tXJ5L/sTi9/gjUAZAM97Da3bpP3kOK5oxZD3wCQTfSwM6R0Pbb1DNzNq9zKtYO3nXd55XEAgGyih51Rv37LPwCvua/1dQEAJI8eNgAAGUDABgAgAwjYAABkAAEbAIAMSP3mH2aW65Xr0/58k1aARflpw4yj/bKvAG3IzT+AtnX2mPRiV8WmlWul1TdVpZt+QOp8f+vqBaBt0cNOWNqfb9L4dl+HXTF8VjPj/33KexvyN5h9BWjDSD1szmEDSTp0pxeo4wjW0kBehxJasxZA26KHnbC0P9+k8e0+wOk3pT3j469MtekHpc6JTWWR9zbkbzD7CtCGnMMGUhFXbzqKPed5zwkMlQNoLwyJA3FqZbBuh3IBtAwBG4jD7mHpB81dJh3dnG4dACSGgA00a5dJ7t2ms7nxjhjqsm9J+l8cACSCSWcJS/vzTVrhJ7zsHi653zaVv99d15q+97kNlS6KVq+8tyF/g9lXgDbksi4gcRGCdfc86b4f+O8Lukd50/cuj6HHD6C90MNOWNqfb9IK/e2+xtBzlJ5zWGCulfaj06SfPhBahUizx/PehvwNZl8B2pAeNpCYGsH6W/f7b2+05+x33Mt7IxzI+WwgNwjYQL3OHK6ZZNmdLaiHIn4BONOXeD0AJI+ADdTrpeZWFisXNLms6Uln5V7qjjEzAGlhpTOgHm8MXHsVdo7a9UYf/na90slT0qg50olnpJEjoldnw1cGXoeeMz+4Vjqv+lZgALKEHjZQjwN/Lik4GO8vGy2fPWPw/qCecylIBwXroOOuX+Q9/+qg//736vn6Cv8EADKDgA3EaMqCgdc71lcG2rBh7g9f7T2Puyw4TXVe5e/PX1hfPQFkDwEbiKrJGdevh8xVe+U17/noieA0YfsiYcY4kGkEbCBGC2YH75u8IHhfFGG974WXNpc3gPZHwAYacGqn//bH1rW2HiWPrPXf/s6zra0HgOQQsIEoTlfO6jpnmHcO+ZxhA9uiXIq18ZHGin94e+005eWPGO69Hz60KtHpI41VAEDqWJo0YWl/vkkrzLKIIed/z5yVOmf1p/UJ2tUzyqvTlB8vSUeelMaPqS+P8jTHt0mj3xdY3UHLlea9DfkbzL4CtCFLkwKt0DGkueOHXlL5vntec/mFBmsAmUXABmIUZbGUxasq39fqPHzua/GUCyDbYg/YZjbczF4ws5fM7GUz+2rcZQBZdv/W+tJv2JJMPQBkSxI97N9Kusw5N0PShZI+bWaX1DgGaGsr1kRP2+rebj3l1fNzAGgvsQds53mr/21n/yPfMwaQe2tiXtnzC7dHSxf3Xb/i/jkAtE4i57DNbIiZvSjpsKQfOueer9q/1Mx6zSzOexIBbWPh8vD9337Qe96+23//lme856D7apdctbLy/XVX1K4bgGxK9LIuMxsj6SFJX3TO/TQgTa573wW4HCHtKiSu1mVdkjTtSmnfgarj+r+OBg1Z17qjV9j+oLwj3ZaTy7pyJe/tJxWiDdO/rMs5d1zSNkmfTrIcIG0/vmfwtvnLwo/pCllqVJLGfiJ8//LV4fsB5EsSs8S7+3vWMrNzJM2T9K9xlwO01IzwFcImTRi87fEay4Ieq3Ezj+Mnw/ev2xS+39f0vgYOAtAOOhLI8/2S7jWzIfK+EDzgnHs0gXKA1ukY39BhSc0Yv/rmBg/sHBdrPQC0TuwB2zm3R9LvxZ0vgAHf35Z2DQC0GiudATGZ2JVu+bMuSLd8AMni5h8JS/vzTVrhZqjWmC3e6BD4xz7kBfx9B6Rf7G8sj5ozxGf6/y7mvQ35G8y+ArRhpFniSZzDBgor7FKsBbObu1/25TdKW58LLhdAvhGwgXpMvkvaHz7j6/g2acxc7/WhrdKEqqHy62+V7q1jGubsGdKO9dITdw9s23fAu/Zbkg5GWZt8yl9FLxBAW2JIPGFpf75JK+RwXI1hccnrZZd6vZu3SktWhaevx3e/Li25fHA5oQKGw6X8tyF/g9lXgDaMNCROwE5Y2p9v0gr5z+L0EWmPz4XXVaKez140R7phkTR3pnTspPSTPdJtG6Sf7Y1QtyjBenpf6OVceW9D/gazrwBtyDlsIBGd3Q0fumWNF6CDjB0lTZskXTO/cvuOF6VLP99goVx7DeQCPeyEpf35Jq3Q3+4jDo13dkjvPjd4e+Tyq3rRnbOkM2ebHwp/ry45b0P+BrOvAG1IDxtI1MzaNwWRBoJ1o5d8lR939gX+uws/AAAgAElEQVTp9PMR84oQrAFkBwunAM2YWntBb+sJDrC3LpWOPe31lkuPUzu97X6GXBwxWE/9XoREALKEIfGEpf35Jo3hOAX2sqsD61VzpYfuarweS1Z5M84r6hY0LF5H7zrvbcjfYPYVoA2ZJd4O0v58k8Y/i367R0junYpN1iP1PSWNG12ZdOQc6a1T0cvvGiW9+aPKbd/YKN1yt0/AnrpJ6locPXPlvw35G8y+ArQh57CBlrmoPwJX9bY7hkhTr5RePdB41kdPVPbWf/no4J62JM5ZAznHOWwgTmVB0/VKD29vLlj7OX+hd912Re+aYA3kHkPiCUv7800aw3EBTh+V9rTg+ufph5u6LlzKfxvyN5h9BWjDSEPi9LCBJHR2eb3eKWuTyX/KOi//JoM1gOygh52wtD/fpPHtvg4RrtmuKYGh77y3IX+D2VeANqSHDbSVmW7gMePYoN0r/Trj09+oPA5AYdHDTljan2/S+HaffXlvQ9ov+wrQhvSwAQDICwI2AAAZQMAGACADUl/pbObMmertjXKfwGzK+/mlvJ9bkmjDrKP9si/vbRgVPWwAADIg9R52bNr0GlcAAOKQ7R72oTu9QB1HsJYG8jq0Op78AACISTYD9uk3vcC6/8vJ5L//Zi//04eSyR8AgDplb0g8rt50FHvO854ZKgcApCxbPexWBut2KBcAgH7ZCNi7h6UfNHeZdHRzunUAABRW+wfsXSa5d5vO5sY7YqjLviXpf3EAABRSe5/D3j286SysbDn1v37Ae3bNrtOye5h00W+bzAQAgOjau4ftagfF7nnSfT/w32cB9z4J2h5ZDD1+AADq0b4Bu8bQs/V4j77j0mf/svkgXMqv9LjgT5qrHwAAcWrPgF0jGH7rfv/tjQZtv+Ne3hvhQII2AKBF2i9gnzlcM8myO1tQD0X8AnCmL/F6AADQfgH7pYmxZRU0uazpSWflXuqOMTMAAPy11yzxNwauvfLr3ZYCreuNPvzteqWTp6RRc6QTz0gjR0SvzoavDLwOq48OrpXOuyl6xgAA1Km9etgH/lxScDDeXzZaPnvG4P1BPedSkA4K1kHHXb/Ie/7VQf/979Xz9RX+CQAAiEl7BewapiwYeL1jfWWgDRvm/vDV3vO4y4LTVOdV/v78hfXVEwCAuLVPwG5yxvXrIXPVXnnNez56IjhN2L5ImDEOAEhQ+wTsCBbMDt43eUHwvijCet8LL20ubwAAmtWWAfvUTv/tj61rbT1KHlnrv/2dZ1tbDwBAcbVHwD5dOavrnGHeOeRzhg1si3Ip1sZHGiv+4e2105SXP2K493740KpEp480VgEAAGpoj4C95/2+m0/tlE4/772OchnXDV8dvO3M2cr3fccHp7lqZe28S+Uf3ya9vSMg0Z4JtTMCAKAB7RGwQ3QMae74oZdUvu+e11x+o9/X3PEAADSi7QN2uSi97MWrKt87F57+c1+Lp1wAAJKUSMA2syFm9s9m9mgS+Ye5f2t96TdsSaYeAADEKake9pck/Txq4hVromfc6t5uPeXV83MAAFCP2AO2mU2WdIWke6IesybmlT2/cHu0dHHf9SvunwMAgJIketjflPRlSf89KIGZLTWzXjPrPXKk/kuhFi4P3//tB73n7bv99295xnsOuq92SfXs8euuqF03AACSEGvANrOFkg4753aFpXPOfcc51+Oc6+nurn17yqkfqHz/WNBlVVXmLvXf/pmIPeHq67Pv9blsDACAVoi7hz1b0pVm9qqkzZIuM7O/azbTH/sMrs9fFn5MV8hSo5I09hPh+5evDt8PAEArxRqwnXO3OOcmO+c+KGmxpB855z5b88AZ4cPik3zWI3m8xrKgx2rczOP4yfD96zaF7/c1va+BgwAAqK09rsPuGN/QYUnNGL/65gYP7BwXaz0AACjpSCpj59w2SduSyj9J39+Wdg0AAKjUHj3sCCZ2pVv+rAvSLR8AUGztE7Bnhq8herDOFczKfexD0ryLpd+Z3Hgez22skaBG/QEAaEZiQ+JJcL3B560XzG7uftmX3yhtfS64XAAA0tReAXvyXdL+8Blfx7dJY+Z6rw9tlSZUDZVff6t0bx0rmM+eIe1YLz1x98C2fQekaVd6ryP17Kf8VfQCAQBoQPsMiUvSxNo3pi7d3tL1esF681av11161BOsJWnnS5XHb3rCW6il1KuOdO58whfrKxQAgDqZq3X/yYT19PS43t6yMefTR6Q9PhdeV4l6SdeiOdINi6S5M6VjJ6Wf7JFu2yD9bG/tYyMNhU/vC72cy8yiVTSj0v79aQXaMNtov+zLextK2uWcqxnV2mtIXJI6ay9VGmTLGi9ABxk7Spo2SbpmfuX2HS9Kl36+wUK59hoA0ALtF7Alb8b1rvBvVKUJaJ0d0rtVk8XqWVDF9Uofv3CgN905SzpzNmLvmpnhAIAWac+ALUUK2tJAsG501bPy486+IJ1+PmJeBGsAQAu116SzalNrL+hdmizm59al0rGnvd5y6XFqp7fdz5CLIwbrqd+LkAgAgPi036SzagG97OrAetVc6aG7Gq/HklXejPNygcPidfSu8z5ZIu3fn1agDbON9su+vLehMjvprNpMJ+0eIbl3Bu3qe0oaN7py28g50lunomffNUp680fSptu8hyR9Y6N0y90+iadukroWR88cAICYtH/AlqSL+iNwVW+7Y4g09Urp1QONZ330RGVv/ZePDu5pS+KcNQAgVe19DrtaWdB0vdLD25sL1n7OX+hdt10xHE6wBgCkLBs97HIznXT6qLRnnK67QrruigTLmn64qevCAQCIS7Z62CWdXV7gnrI2mfynrPPyJ1gDANpE9nrY5SYs9x5SpGu2a2LoGwDQprLZw/Yz0w08ZhwbtHulX2d8+huVxwEA0Kay3cMO0jFmUABe/Xcp1QUAgBjkp4cNAECOEbABAMgAAjYAABmQ+lriZpbr2V5pf75JK8Aav7RhxtF+2VeANoy0ljg9bAAAMiCfs8QBAA0JvEthHSLdphh1o4cNAAV387VeoI4jWEsDea24Jp784OEcdsLS/nyTxvmz7Mt7G9J+wUq3F07axD+SDh9t/PgCtGFO7ocNAIhdXL3pKA7137KYofLmMCQOAAXTymDdDuXmBQEbAAriN8+mHzRdr/Snn0q3DllFwAaAAnC90rChzedz4x3N57H59vS/OGQRk84Slvbnm7S8T1iSaMOso/2kd3ZKw4c1WY7P+edmg+5v35WG/2HtdAVoQxZOAQBEC9bd86T7fuC/L2iyWLOTyOLo8RcJPeyEpf35Ji3vvTOJNsy6ordfrV5wlJ5zWGCulfaj06SfPlB/HSrKyH8b0sMGgCKrFay/db//9kZ7zn7Hvby39nGcz46GgA0AOdTdVTvNsjuTr4cU7QvAuNHJ1yPrCNgAkEOHt8aXV1APOM6ecd9T8eWVV6x0BgA582fXDrwOO0fteqMPf7te6eQpadQc6cQz0sgR0euz4SvR6rN8ifTNTdHzLRp62ACQM3d8yXsOCsb7Dw+8nj1j8P6gnnMpSAcF66Djrl/kPf/qoP/+Uj3XrvTfDw8BGwAKZsqCgdc71lcG2rBh7g9f7T2Puyw4TXVe5e/PX1hfPVGJgA0AOdLseeXXDwfve+U17/noieA0YfuiYMZ4MAI2ABTMgtnB+yYvCN4XRVjve+GlzeVddARsAMipUzv9tz+2rrX1KHlkrf/2d55tbT2yioANADkxcVzl+3OGeUPM55QtTRplyHnjI42V//D22mnKyx8x3Hs/vGqJ0vFjGis/71iaNGFpf75Jy/uylhJtmHVFar+wYHzmrNQ5Kzhd9Yzy6jTlx0vSkScHB9ZaeZSnOb5NGv2+4PqW51WANmRpUgCAp2NIc8cPvaTyffe85vILC9bwR8AGgIKJsljK4lWV72t1cj/3tXjKRbBEAraZvWpm/2JmL5oZk/QBIGPur3Np0w1bkqkHBiTZw/6Ec+7CKOPyAIDmrVgTPW2re7v1lFfPz1EkDIkDQE6sWRFvfl+4PVq6uO/6FffPkRdJBWwnaauZ7TKzpdU7zWypmfUyXA4A6Vm4PHz/tx/0nrfv9t+/5RnvOei+2iVXVa0Rft0VteuGwRK5rMvMPuCcO2BmEyT9UNIXnXPPBKTN9Xz9AlyOkHYVEkcbZluR2q/WNdbTrpT2HajcVjomaMi61h29wvYH5R3lWnAu6xoskR62c+5A//NhSQ9JujiJcgAA0f34nsHb5i8LP6YrZKlRSRr7ifD9y1eH70d0sQdsMzvXzEaWXkv6I0k/jbscAECl8Z8M3z9pwuBtj9dYFvRYjZt5HD8Zvn9dA/e3DluPvMg6EshzoqSH+odpOiR91zn3eALlAADKvPnrxo5Lasb41Tc3dlyzd/zKq9gDtnNurySfW6IDAIrk+9vSrkG+cFkXABTIxK50y591QbrlZxk3/0hY2p9v0vI+w1iiDbOuiO1XaxZ2o0PgH/uQF/D3HZB+sb+xPBqpWwHaMNIs8STOYQMA2ljYpVgLZjd3v+zLb5S2PhdcLhpHwAaAnFm5Vlp9U3ia49ukMXO914e2ShOqhsqvv1W699HoZc6eIe1YLz1x98C2fQe8a78l6WCEtcm/GPOKaXnDkHjC0v58k5b34VSJNsy6orZf1MVJSuk2b5WWrApPX4/vfl1acvngcmrVx08B2jDSkDgBO2Fpf75Jy/s/e4k2zLqitt/4MdKRJyMcH/F89qI50g2LpLkzpWMnpZ/skW7bIP1sb+1jowTrcZcFX85VgDbkHDYAFFXf8caP3bLGC9BBxo6Spk2SrplfuX3Hi9Kln2+sTK69ro0edsLS/nyTlvfemUQbZl3R2y/qUHRnh/Tuc4O3R1VdTucs6czZ5obC38s7/21IDxsAii7q+eNSsG70kq/y486+IJ1+Plperb4vd5axcAoA5NziW2qnsZ7g4HnrUunY017gLz1O7fS2+xlycbRA/Mdfrp0GAxgST1jan2/S8j6cKtGGWUf7eYJ62dWB9aq50kN3NV6fJau8GeeNlB2kAG3ILPF2kPbnm7S8/7OXaMOso/0GvL1DGjG86vgeqe8padzoyu0j50hvnYpej65R0ps/qtz2jY3SLXcPDtiLb5Hu/2H0vAvQhpzDBgAMOPfj3nN1AO0YIk29Unr1QON5Hz1R2WP+5aODe9oS56ybwTlsACiY8qDpeqWHtzcXrP2cv9C7brv8ywHBujkMiScs7c83aXkfTpVow6yj/YKNHSkdfTrGygTontfcdeEFaMNIQ+L0sAGgoI6d9Hq9y1cnk/+yO/vPkTcRrDGAHnbC0v58k5b33plEG2Yd7VefOO6oFffQdwHakB42AKA+peuxrWfgbl7lVq4dvO28yyuPQzLoYScs7c83aXnvnUm0YdbRftlXgDakhw0AQF4QsAEAyAACNgAAGZD6SmczZ85Ub28M0xLbVN7PL+X93JJEG2Yd7Zd9eW/DqOhhAwCQAQRsAAAyIPUhcQA5siuGocuZ+R/iBRpBDxtAcw7d6QXqOIK1NJDXoYTWywQyioANoDGn3/QC6/4vJ5P//pu9/E8fSiZ/IGMYEgdQv7h601HsOc97ZqgcBUcPG0B9Whms26FcoE0QsAFEs3tY+kFzl0lHN6dbByAlBGwAte0yyb3bdDY33hFDXfYtSf+LA5ACzmEDCLd7eNNZlN9y8a8f8J6bvu/y7mHSRb9tMhMgO+hhAwjnagfF7nnSfT/w3xd0f+Sm75scQ48fyBICNoBgNYaercd79B2XPvuXzQfhUn6lxwV/0lz9gDwhYAPwVyMYfut+/+2NBm2/417eG+FAgjYKgoANYLAzh2smWXZnC+qhiF8AzvQlXg8gbQRsAIO9NDG2rIImlzU96azcS90xZga0J2aJA6j0xsC1V36921Kgdb3Rh79dr3TylDRqjnTiGWnkiOjV2fCVgddh9dHBtdJ5N0XPGMgYetgAKh34c0nBwXh/2Wj57BmD9wf1nEtBOihYBx13/SLv+VcH/fe/V8/XV/gnAHKCgA2gLlMWDLzesb4y0IYNc3/4au953GXBaarzKn9//sL66gnkDQEbwIAmZ1y/HjJX7ZXXvOejJ4LThO2LhBnjyDECNoC6LJgdvG/yguB9UYT1vhde2lzeQNYRsAH4OrXTf/tj61pbj5JH1vpvf+fZ1tYDSAsBG4DndOWsrnOGeeeQzxk2sC3KpVgbH2ms+Ie3105TXv6I4d774UOrEp0+0lgFgDZHwAbg2fN+382ndkqnn/deR7mM64avDt525mzl+77jg9NctbJ23qXyj2+T3t4RkGjPhNoZARlEwAZQU8eQ5o4feknl++55zeU3+n3NHQ9kUSIB28zGmNnfm9m/mtnPzewPkigHQOtF6WUvXlX53rnw9J/7WjzlAnmWVA97naTHnXP/o6QZkn6eUDkA2tD9W+tLv2FLMvUA8iT2gG1moyTNkbRekpxz7zrnfM5YAWgnK9ZET9vq3m495dXzcwBZkkQPe5qkI5I2mNk/m9k9ZnZuAuUAiNGamFf2/MLt0dLFfdevuH8OoF0kEbA7JF0k6W+cc78n6W1Jf1GewMyWmlmvmfUeOcIlGEAWLVwevv/bD3rP23f779/yjPccdF/tkurZ49ddUbtuQB4lEbD3S9rvnOu/EER/Ly+Av8c59x3nXI9zrqe7m9viAVkw9QOV7x8Luqyqytyl/ts/E7EnXH199r0+l40BRRB7wHbOHZT0mpl9pH/TJyX9LO5yALTWj+8ZvG3+svBjukKWGpWksZ8I3798dfh+oEiSuh/2FyXdZ2ZDJe2VdENC5QCIy4wj0kvBI16TfNYjebzGsqDHatzM4/jJ8P3rNoXv9zW9r4GDgPaXSMB2zr0oiasmgSzpGN/QYUnNGL/65gYP7BwXaz2AdsFKZwDa0ve3pV0DoL0QsAFENrEr3fJnXZBu+UCaCNgABswMX0P0YJ0rmJX72IekeRdLvzO58Tye21gjQY36A1mW1KQzADnleoPPWy+Y3dz9si+/Udr6XHC5QJERsAFUmnyXtD98xtfxbdKYud7rQ1ulCVVD5dffKt37aPQiZ8+QdqyXnrh7YNu+A9K0K73XkXr2U/4qeoFABjEkDqDSxNo3pi7d3tL1esF681av11161BOsJWnnS5XHb3rCW6il1KuOdO58whfrKxTIGHO17nuXsJ6eHtfbm9+xLjNLuwqJSvv3pxUK2Yanj0h7fC68rhL1kq5Fc6QbFklzZ0rHTko/2SPdtkH62d4I9Yvy72F6X+DlXIVsv5zJextK2uWcq/nXxJA4gME6G18yeMsaL0AHGTtKmjZJumZ+5fYdL0qXfr7BQrn2GgVAwAbgb6aTdoX3bEoT0Do7pHerJovVs6CK65U+fuFAb7pzlnTmbMTeNTPDURAEbADBIgRtaSBYN7rqWflxZ1+QTj8fMS+CNQqESWcAwk2tvaB3abKYn1uXSsee9nrLpcepnd52P0Mujhisp34vQiIgP5h0lrC8T5ZI+/enFWhDBfayqwPrVXOlh+5qvC5LVnkzzssFDotH7F3TftmX9zYUk84AxGamk3aPkNw7g3b1PSWNG125beQc6a1T0bPvGiW9+SNp023eQ5K+sVG65W6fxFM3SV2Lo2cO5AQBG0A0F/VH4KredscQaeqV0qsHGs/66InK3vovHx3c05bEOWsUGuewAdSnLGi6Xunh7c0Faz/nL/Su264YDidYo+DoYQOo30wnnT4q7Rmn666QrrsiwbKmH27qunAgL+hhA2hMZ5cXuKesTSb/Keu8/AnWgCR62ACaNWG595AiXbNdE0PfgC962ADiM9MNPGYcG7R7pV9nfPoblccB8EUPG0AyOsYMCsCr/y6lugA5QA8bAIAMIGADAJABBGwAADIg9bXEzSzXs0zS/nyTVoA1fmnDjKP9sq8AbRhpLXF62AAAZACzxNE2Au/KVIdG78cMAO2OHjZSdfO1A/dIjkMprxXXxJMfALQLzmEnLO3PN2mNnj8r3U4xaRP/SDp8tLk8aMNso/2yrwBtyP2w0Z7i6k1Hcaj/Fo0MlQPIOobE0VKtDNbtUC4AxIWAjZb4zbPpB03XK/3pp9KtAwA0ioCNxLleadjQ5vO58Y7m89h8e/pfHACgEUw6S1jan2/Sak14eWenNHxYk2X4nH9uNuj+9l1p+B9GS1v0Nsw62i/7CtCGLJyC9EUJ1t3zpPt+4L8vaLJYs5PI4ujxA0Ar0cNOWNqfb9LCvt3X6gVH6TmHBeZaaT86TfrpA/XXYVA5BW7DPKD9sq8AbUgPG+mpFay/db//9kZ7zn7Hvby39nGczwaQFQRsxK67q3aaZXcmXw8p2heAcaOTrwcANIuAjdgd3hpfXkE94Dh7xn1PxZcXACSFlc4Qqz+7duB12Dlq1xt9+Nv1SidPSaPmSCeekUaOiF6fDV+JVp/lS6RvboqeLwC0Gj1sxOqOL3nPQcF4/+GB17NnDN4f1HMuBemgYB103PWLvOdfHfTfX6rn2pX++wGgXRCw0VJTFgy83rG+MtCGDXN/+GrvedxlwWmq8yp/f/7C+uoJAO2GgI3YNHte+fXDwfteec17PnoiOE3YviiYMQ6gnRGw0VILZgfvm7wgeF8UYb3vhZc2lzcApI2AjUSc2um//bF1ra1HySNr/be/82xr6wEAjSJgIxYTx1W+P2eYN8R8TtnSpFGGnDc+0lj5D2+vnaa8/BHDvffDq5YoHT+msfIBIGksTZqwtD/fpJWWRQwLxmfOSp2zFJiuekZ5dZry4yXpyJODA2utPMrTHN8mjX5fcH0H5VWQNswr2i/7CtCGLE2K9tAxpLnjh15S+b57XnP5hQVrAGhXBGy0VJTFUhavqnxf68v1574WT7kA0M5iD9hm9hEze7HsccLMlsddDvLr/jqXNt2wJZl6AEA7iT1gO+f+zTl3oXPuQkkzJZ2S9FDc5aC9rFgTPW2re7v1lFfPzwEArZT0kPgnJf3COffLhMtBytasiDe/L9weLV3cd/2K++cAgLgkHbAXSxp0SwUzW2pmvWbG2lIFtbDGSZJvP+g9b9/tv3/LM95z0H21S66qWiP8uitq1w0A2lFil3WZ2VBJByR91Dl3KCRdrufrF+ByBEm1r7GedqW070DlttIxQUPWte7oFbY/KO8o14JzWVe+0H7ZV4A2TP2yrvmSdocFaxTHj+8ZvG3+svBjukKWGpWksZ8I3798dfh+AMiSJAP2EvkMhyOfxn8yfP+kCYO3PV5jWdBjNW7mcfxk+P51Dfz2ha1HDgBpSiRgm9kISZ+S9A9J5I/28+avGzsuqRnjV9/c2HHN3vELAJLSkUSmzrlTksbVTAgk5Pvb0q4BAMSLlc7QMhO70i1/1gXplg8AzeDmHwlL+/NNWvUM1VqzsBsdAv/Yh7yAv++A9Iv9jeXRaN2K1oZ5Q/tlXwHaMNIs8USGxIEgYZdiLZjd3P2yL79R2vpccLkAkGUEbMRq5Vpp9U3haY5vk8bM9V4f2ipNqBoqv/5W6d5Ho5c5e4a0Y730xN0D2/Yd8K79lqSDEdYm/2LMK6YBQNwYEk9Y2p9v0vyG46IuTlJKt3mrtGRVePp6fPfr0pLLB5dTqz5BitiGeUL7ZV8B2jDSkDgBO2Fpf75J8/tnMX6MdOTJCMdGPJ+9aI50wyJp7kzp2EnpJ3uk2zZIP9tb+9gowXrcZeGXcxWxDfOE9su+ArQh57CRjr7jjR+7ZY0XoIOMHSVNmyRdM79y+44XpUs/31iZXHsNIAvoYScs7c83aWHf7qMORXd2SO8+N3h7VNXldM6Szpxtfij8vfwL3IZ5QPtlXwHakB420hX1/HEpWDd6yVf5cWdfkE4/Hy2vVt+XGwCawcIpSNTiW2qnsZ7g4HnrUunY017gLz1O7fS2+xlycbRA/Mdfrp0GANoJQ+IJS/vzTVqU4bigXnZ1YL1qrvTQXY3XZckqb8Z5I2WHoQ2zjfbLvgK0IbPE20Han2/Sov6zeHuHNGJ41bE9Ut9T0rjRldtHzpHeOhW9Dl2jpDd/VLntGxulW+4eHLAX3yLd/8PoeUu0YdbRftlXgDbkHDbax7kf956rA2jHEGnqldKrBxrP++iJyh7zLx8d3NOWOGcNINs4h42WKg+arld6eHtzwdrP+Qu967bLvxwQrAFkHUPiCUv7801ao8NxY0dKR5+OuTI+uuc1d124RBtmHe2XfQVow0hD4vSwkYpjJ71e7/LVyeS/7M7+c+RNBmsAaBf0sBOW9uebtDi/3cdxR60khr5pw2yj/bKvAG1IDxvZUroe23oG7uZVbuXawdvOu7zyOADIK3rYCUv7800a3+6zL+9tSPtlXwHakB42AAB5QcAGACADCNgAAGRAO6x01ifply0sb3x/mS2R0vmllv6MKch7G9J+MaL9Ytfyn68AbXh+lESpTzprNTPrjXJyP8vy/jPy82UbP1+25f3nk9r3Z2RIHACADCBgAwCQAUUM2N9JuwItkPefkZ8v2/j5si3vP5/Upj9j4c5hAwCQRUXsYQMAkDkEbAAAMqBQAdvMPm1m/2Zmr5jZX6RdnziZ2d+a2WEz+2nadUmCmU0xs6fN7Odm9rKZfSntOsXNzIab2Qtm9lL/z/jVtOsUNzMbYmb/bGaPpl2XJJjZq2b2L2b2opnFcP+59mJmY8zs783sX/v/Fv8g7TrFxcw+0t9upccJM1uedr3KFeYctpkNkfT/SfqUpP2S/knSEufcz1KtWEzMbI6ktyT9V+fcBWnXJ25m9n5J73fO7TazkZJ2SboqL+0nSeatDnGuc+4tM+uUtEPSl5xzz6VctdiY2QpJPZJGOecWpl2fuJnZq5J6nHO5XDjFzO6V9GPn3D1mNlTSCOdc7u463x8vXpc0yznXyoW9QhWph32xpFecc3udc+9K2izpMynXKTbOuWckHU27Hklxzr3hnDOwcdAAAAJzSURBVNvd//qkpJ9LmpRureLlPG/1v+3sf+TmG7WZTZZ0haR70q4L6mdmoyTNkbRekpxz7+YxWPf7pKRftFOwlooVsCdJeq3s/X7l7B9+UZjZByX9nqTn061J/PqHjF+UdFjSD51zefoZvynpy5L+e9oVSZCTtNXMdpnZ0rQrE7Npko5I2tB/WuMeMzs37UolZLGkTWlXolqRArbfYrS56b0UhZm9T9KDkpY7506kXZ+4OefOOuculDRZ0sVmlovTG2a2UNJh59yutOuSsNnOuYskzZf0H/tPVeVFh6SLJP2Nc+73JL0tKVdzgSSpf6j/SknfS7su1YoUsPdLmlL2frKkAynVBQ3oP6/7oKT7nHP/kHZ9ktQ/1LhN0qdTrkpcZku6sv8c72ZJl5nZ36Vbpfg55w70Px+W9JC8U3F5sV/S/rJRn7+XF8DzZr6k3c65Q2lXpFqRAvY/SfqwmU3t/wa1WNKWlOuEiPonZK2X9HPn3Jq065MEM+s2szH9r8+RNE/Sv6Zbq3g4525xzk12zn1Q3t/ej5xzn025WrEys3P7J0Sqf6j4jyTl5qoN59xBSa+Z2Uf6N31SUm4mfZZZojYcDpfa4/aaLeGcO2NmN0p6QtIQSX/rnHs55WrFxsw2SZorabyZ7Zf0Fefc+nRrFavZkq6V9C/953glaZVz7h9TrFPc3i/p3v4Zqv9O0gPOuVxe/pRTEyU91H8ryA5J33XOPZ5ulWL3RUn39Xd69kq6IeX6xMrMRsi7kug/pF0XP4W5rAsAgCwr0pA4AACZRcAGACADCNgAAGQAARsAgAwgYAMAkAEEbAAAMoCADQBABvz/Vd/d1CG0sAcAAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -1437,7 +1439,7 @@
"def AC3 ( csp , queue = None , removals = None ): \n",
" """[Figure 6.3]""" \n",
" if queue is None : \n",
- " queue = [( Xi , Xk ) for Xi in csp . variables for Xk in csp . neighbors [ Xi ]] \n",
+ " queue = {( Xi , Xk ) for Xi in csp . variables for Xk in csp . neighbors [ Xi ]} \n",
" csp . support_pruning () \n",
" while queue : \n",
" ( Xi , Xj ) = queue . pop () \n",
@@ -1446,7 +1448,7 @@
" return False \n",
" for Xk in csp . neighbors [ Xi ]: \n",
" if Xk != Xj : \n",
- " queue . append (( Xk , Xi )) \n",
+ " queue . add (( Xk , Xi )) \n",
" return True \n",
" \n",
"
Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies:
Alternative Proxy
pFad Proxy
pFad v3 Proxy
pFad v4 Proxy
\n",
@@ -2393,16 +2395,16 @@
},
{
"cell_type": "code",
- "execution_count": 37,
+ "execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "49"
+ "0"
]
},
- "execution_count": 37,
+ "execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
@@ -2413,16 +2415,16 @@
},
{
"cell_type": "code",
- "execution_count": 38,
+ "execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "49"
+ "0"
]
},
- "execution_count": 38,
+ "execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
@@ -2452,7 +2454,7 @@
},
{
"cell_type": "code",
- "execution_count": 39,
+ "execution_count": 38,
"metadata": {},
"outputs": [
{
@@ -2590,7 +2592,7 @@
},
{
"cell_type": "code",
- "execution_count": 40,
+ "execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
@@ -2607,7 +2609,7 @@
},
{
"cell_type": "code",
- "execution_count": 41,
+ "execution_count": 40,
"metadata": {},
"outputs": [
{
@@ -2641,7 +2643,7 @@
},
{
"cell_type": "code",
- "execution_count": 42,
+ "execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
@@ -2661,7 +2663,7 @@
},
{
"cell_type": "code",
- "execution_count": 43,
+ "execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
@@ -2722,7 +2724,7 @@
},
{
"cell_type": "code",
- "execution_count": 44,
+ "execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
@@ -2738,7 +2740,7 @@
},
{
"cell_type": "code",
- "execution_count": 45,
+ "execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
@@ -2754,18 +2756,33 @@
},
{
"cell_type": "code",
- "execution_count": 46,
+ "execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "26b425b8fade4789a075632715b1afcd",
+ "model_id": "12a35f60e8754acfb2aaa9ee272ef9c1",
"version_major": 2,
"version_minor": 0
},
+ "text/html": [
+ "
Failed to display Jupyter Widget of type interactive
.
\n",
+ "
\n",
+ " If you're reading this message in the Jupyter Notebook or JupyterLab Notebook, it may mean\n",
+ " that the widgets JavaScript is still loading. If this message persists, it\n",
+ " likely means that the widgets JavaScript library is either not installed or\n",
+ " not enabled. See the Jupyter\n",
+ " Widgets Documentation for setup instructions.\n",
+ "
\n",
+ "
\n",
+ " If you're reading this message in another frontend (for example, a static\n",
+ " rendering on GitHub or NBViewer ),\n",
+ " it may mean that your frontend doesn't currently support widgets.\n",
+ "
\n"
+ ],
"text/plain": [
- "interactive(children=(IntSlider(value=0, description='iteration', max=20), Output()), _dom_classes=('widget-in…"
+ "interactive(children=(IntSlider(value=0, description='iteration', max=20), Output()), _dom_classes=('widget-interact',))"
]
},
"metadata": {},
@@ -2774,12 +2791,27 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "179048eb3f8e41a1afc1ec22343dece4",
+ "model_id": "869965d6473f46d8bc62a32995091d1e",
"version_major": 2,
"version_minor": 0
},
+ "text/html": [
+ "
Failed to display Jupyter Widget of type interactive
.
\n",
+ "
\n",
+ " If you're reading this message in the Jupyter Notebook or JupyterLab Notebook, it may mean\n",
+ " that the widgets JavaScript is still loading. If this message persists, it\n",
+ " likely means that the widgets JavaScript library is either not installed or\n",
+ " not enabled. See the Jupyter\n",
+ " Widgets Documentation for setup instructions.\n",
+ "
\n",
+ "
\n",
+ " If you're reading this message in another frontend (for example, a static\n",
+ " rendering on GitHub or NBViewer ),\n",
+ " it may mean that your frontend doesn't currently support widgets.\n",
+ "
\n"
+ ],
"text/plain": [
- "interactive(children=(ToggleButton(value=False, description='Visualize'), ToggleButtons(description='Extra Del…"
+ "interactive(children=(ToggleButton(value=False, description='Visualize'), ToggleButtons(description='Extra Delay:', options=('0', '0.1', '0.2', '0.5', '0.7', '1.0'), value='0'), Output()), _dom_classes=('widget-interact',))"
]
},
"metadata": {},
@@ -2822,7 +2854,7 @@
" ''' Mark grid with queens that are under conflict. '''\n",
" for col, row in assignment.items(): # check each queen for conflict\n",
" conflicts = {temp_col:temp_row for temp_col,temp_row in assignment.items() \n",
- " if (temp_row == row and temp_col != col\n",
+ " if (temp_row == row and temp_col != col)\n",
" or (temp_row+temp_col == row+col and temp_col != col)\n",
" or (temp_row-temp_col == row-col and temp_col != col)}\n",
" \n",
@@ -2909,12 +2941,27 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "fa243795d27f47c0af2cd12cbefa5e52",
+ "model_id": "c634be8e964042ff8f6e0696dca7968d",
"version_major": 2,
"version_minor": 0
},
+ "text/html": [
+ "
Failed to display Jupyter Widget of type interactive
.
\n",
+ "
\n",
+ " If you're reading this message in the Jupyter Notebook or JupyterLab Notebook, it may mean\n",
+ " that the widgets JavaScript is still loading. If this message persists, it\n",
+ " likely means that the widgets JavaScript library is either not installed or\n",
+ " not enabled. See the Jupyter\n",
+ " Widgets Documentation for setup instructions.\n",
+ "
\n",
+ "
\n",
+ " If you're reading this message in another frontend (for example, a static\n",
+ " rendering on GitHub or NBViewer ),\n",
+ " it may mean that your frontend doesn't currently support widgets.\n",
+ "
\n"
+ ],
"text/plain": [
- "interactive(children=(IntSlider(value=0, description='iteration', max=473, step=0), Output()), _dom_classes=('…"
+ "interactive(children=(IntSlider(value=0, description='iteration', max=473, step=0), Output()), _dom_classes=('widget-interact',))"
]
},
"metadata": {},
@@ -2923,12 +2970,27 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "bdea801600cb441697ea3a810cb747a9",
+ "model_id": "c1fa4f8e573f4c44a648f6ad24a04eb1",
"version_major": 2,
"version_minor": 0
},
+ "text/html": [
+ "
Failed to display Jupyter Widget of type interactive
.
\n",
+ "
\n",
+ " If you're reading this message in the Jupyter Notebook or JupyterLab Notebook, it may mean\n",
+ " that the widgets JavaScript is still loading. If this message persists, it\n",
+ " likely means that the widgets JavaScript library is either not installed or\n",
+ " not enabled. See the Jupyter\n",
+ " Widgets Documentation for setup instructions.\n",
+ "
\n",
+ "
\n",
+ " If you're reading this message in another frontend (for example, a static\n",
+ " rendering on GitHub or NBViewer ),\n",
+ " it may mean that your frontend doesn't currently support widgets.\n",
+ "
\n"
+ ],
"text/plain": [
- "interactive(children=(ToggleButton(value=False, description='Visualize'), ToggleButtons(description='Extra Del…"
+ "interactive(children=(ToggleButton(value=False, description='Visualize'), ToggleButtons(description='Extra Delay:', options=('0', '0.1', '0.2', '0.5', '0.7', '1.0'), value='0'), Output()), _dom_classes=('widget-interact',))"
]
},
"metadata": {},
@@ -2993,12 +3055,27 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "3bf64b599e5e4f128da23ecce08f3f53",
+ "model_id": "4174e28bef63440391eb2048d4851e8a",
"version_major": 2,
"version_minor": 0
},
+ "text/html": [
+ "
Failed to display Jupyter Widget of type interactive
.
\n",
+ "
\n",
+ " If you're reading this message in the Jupyter Notebook or JupyterLab Notebook, it may mean\n",
+ " that the widgets JavaScript is still loading. If this message persists, it\n",
+ " likely means that the widgets JavaScript library is either not installed or\n",
+ " not enabled. See the Jupyter\n",
+ " Widgets Documentation for setup instructions.\n",
+ "
\n",
+ "
\n",
+ " If you're reading this message in another frontend (for example, a static\n",
+ " rendering on GitHub or NBViewer ),\n",
+ " it may mean that your frontend doesn't currently support widgets.\n",
+ "
\n"
+ ],
"text/plain": [
- "interactive(children=(IntSlider(value=0, description='iteration', max=52, step=0), Output()), _dom_classes=('w…"
+ "interactive(children=(IntSlider(value=0, description='iteration', max=66, step=0), Output()), _dom_classes=('widget-interact',))"
]
},
"metadata": {},
@@ -3007,12 +3084,27 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "e4ccaba569f34a78857f2de8af4f01f2",
+ "model_id": "f56863b054214f3b94e35693f9e11d0c",
"version_major": 2,
"version_minor": 0
},
+ "text/html": [
+ "
Failed to display Jupyter Widget of type interactive
.
\n",
+ "
\n",
+ " If you're reading this message in the Jupyter Notebook or JupyterLab Notebook, it may mean\n",
+ " that the widgets JavaScript is still loading. If this message persists, it\n",
+ " likely means that the widgets JavaScript library is either not installed or\n",
+ " not enabled. See the Jupyter\n",
+ " Widgets Documentation for setup instructions.\n",
+ "
\n",
+ "
\n",
+ " If you're reading this message in another frontend (for example, a static\n",
+ " rendering on GitHub or NBViewer ),\n",
+ " it may mean that your frontend doesn't currently support widgets.\n",
+ "
\n"
+ ],
"text/plain": [
- "interactive(children=(ToggleButton(value=False, description='Visualize'), ToggleButtons(description='Extra Del…"
+ "interactive(children=(ToggleButton(value=False, description='Visualize'), ToggleButtons(description='Extra Delay:', options=('0', '0.1', '0.2', '0.5', '0.7', '1.0'), value='0'), Output()), _dom_classes=('widget-interact',))"
]
},
"metadata": {},
@@ -3032,6 +3124,13 @@
"a = widgets.interactive(visualize_callback, Visualize = visualize_button, time_step=time_select)\n",
"display(a)"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
}
],
"metadata": {
@@ -3050,7 +3149,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.5"
+ "version": "3.6.4"
}
},
"nbformat": 4,
pFad - Phonifier reborn