diff --git a/tests/test_learning.py b/tests/test_learning.py index 72c0350a6..34346b7ec 100644 --- a/tests/test_learning.py +++ b/tests/test_learning.py @@ -1,8 +1,10 @@ -from learning import parse_csv, weighted_mode, weighted_replicate, DataSet, \ - PluralityLearner, NaiveBayesLearner, NearestNeighborLearner, \ - NeuralNetLearner, PerceptronLearner, DecisionTreeLearner, \ - euclidean_distance, grade_learner, err_ratio, random_weights + +import pytest +import math from utils import DataFile +from learning import (parse_csv, weighted_mode, weighted_replicate, DataSet, + PluralityLearner, NaiveBayesLearner, NearestNeighborLearner, + rms_error, manhattan_distance, mean_boolean_error, mean_error) @@ -74,16 +76,43 @@ def test_naive_bayes(): def test_k_nearest_neighbors(): iris = DataSet(name="iris") - kNN = NearestNeighborLearner(iris,k=3) + assert kNN([5,3,1,0.1]) == "setosa" assert kNN([5, 3, 1, 0.1]) == "setosa" assert kNN([6, 5, 3, 1.5]) == "versicolor" assert kNN([7.5, 4, 6, 2]) == "virginica" +def test_rms_error(): + assert rms_error([2,2], [2,2]) == 0 + assert rms_error((0,0), (0,1)) == math.sqrt(0.5) + assert rms_error((1,0), (0,1)) == 1 + assert rms_error((0,0), (0,-1)) == math.sqrt(0.5) + assert rms_error((0,0.5), (0,-0.5)) == math.sqrt(0.5) + +def test_manhattan_distance(): + assert manhattan_distance([2,2], [2,2]) == 0 + assert manhattan_distance([0,0], [0,1]) == 1 + assert manhattan_distance([1,0], [0,1]) == 2 + assert manhattan_distance([0,0], [0,-1]) == 1 + assert manhattan_distance([0,0.5], [0,-0.5]) == 1 + +def test_mean_boolean_error(): + assert mean_boolean_error([1,1], [0,0]) == 1 + assert mean_boolean_error([0,1], [1,0]) == 1 + assert mean_boolean_error([1,1], [0,1]) == 0.5 + assert mean_boolean_error([0,0], [0,0]) == 0 + assert mean_boolean_error([1,1], [1,1]) == 0 + +def test_mean_error(): + assert mean_error([2,2], [2,2]) == 0 + assert mean_error([0,0], [0,1]) == 0.5 + assert mean_error([1,0], [0,1]) == 1 + assert mean_error([0,0], [0,-1]) == 0.5 + assert mean_error([0,0.5], [0,-0.5]) == 0.5 + def test_decision_tree_learner(): iris = DataSet(name="iris") - dTL = DecisionTreeLearner(iris) assert dTL([5, 3, 1, 0.1]) == "setosa" assert dTL([6, 5, 3, 1.5]) == "versicolor" @@ -92,10 +121,8 @@ def test_decision_tree_learner(): def test_neural_network_learner(): iris = DataSet(name="iris") - classes = ["setosa","versicolor","virginica"] iris.classes_to_numbers(classes) - nNL = NeuralNetLearner(iris, [5], 0.15, 75) tests = [([5, 3, 1, 0.1], 0), ([5, 3.5, 1, 0], 0), @@ -103,7 +130,6 @@ def test_neural_network_learner(): ([6, 2, 3.5, 1], 1), ([7.5, 4, 6, 2], 2), ([7, 3, 6, 2.5], 2)] - assert grade_learner(nNL, tests) >= 2/3 assert err_ratio(nNL, iris) < 0.25 @@ -111,9 +137,7 @@ def test_neural_network_learner(): def test_perceptron(): iris = DataSet(name="iris") iris.classes_to_numbers() - classes_number = len(iris.values[iris.target]) - perceptron = PerceptronLearner(iris) tests = [([5, 3, 1, 0.1], 0), ([5, 3.5, 1, 0], 0), @@ -121,7 +145,6 @@ def test_perceptron(): ([6, 2, 3.5, 1], 1), ([7.5, 4, 6, 2], 2), ([7, 3, 6, 2.5], 2)] - assert grade_learner(perceptron, tests) > 1/2 assert err_ratio(perceptron, iris) < 0.4 @@ -130,12 +153,8 @@ def test_random_weights(): min_value = -0.5 max_value = 0.5 num_weights = 10 - test_weights = random_weights(min_value, max_value, num_weights) - assert len(test_weights) == num_weights - for weight in test_weights: assert weight >= min_value and weight <= max_value - - + \ No newline at end of file pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy