diff --git a/learning.py b/learning.py index db25c42f3..427c15d8a 100644 --- a/learning.py +++ b/learning.py @@ -434,11 +434,11 @@ def predict(example): def NeuralNetLearner(dataset, hidden_layer_sizes=[3], - learning_rate=0.01, epoches=100): + learning_rate=0.01, epochs=100): """Layered feed-forward network. hidden_layer_sizes: List of number of hidden units per hidden layer learning_rate: Learning rate of gradient descent - epoches: Number of passes over the dataset + epochs: Number of passes over the dataset """ i_units = len(dataset.inputs) @@ -447,7 +447,7 @@ def NeuralNetLearner(dataset, hidden_layer_sizes=[3], # construct a network raw_net = network(i_units, hidden_layer_sizes, o_units) learned_net = BackPropagationLearner(dataset, raw_net, - learning_rate, epoches) + learning_rate, epochs) def predict(example): @@ -510,7 +510,7 @@ def network(input_units, hidden_layer_sizes, output_units): return net -def BackPropagationLearner(dataset, net, learning_rate, epoches): +def BackPropagationLearner(dataset, net, learning_rate, epochs): """[Figure 18.23] The back-propagation algorithm for multilayer network""" # Initialise weights for layer in net: @@ -530,7 +530,7 @@ def BackPropagationLearner(dataset, net, learning_rate, epoches): o_nodes = net[-1] i_nodes = net[0] - for epoch in range(epoches): + for epoch in range(epochs): # Iterate over each example for e in examples: i_val = [e[i] for i in idx_i] @@ -583,13 +583,13 @@ def BackPropagationLearner(dataset, net, learning_rate, epoches): return net -def PerceptronLearner(dataset, learning_rate=0.01, epoches=100): +def PerceptronLearner(dataset, learning_rate=0.01, epochs=100): """Logistic Regression, NO hidden layer""" i_units = len(dataset.inputs) o_units = 1 # As of now, dataset.target gives only one index. hidden_layer_sizes = [] raw_net = network(i_units, hidden_layer_sizes, o_units) - learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epoches) + learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epochs) def predict(example): # Input nodes
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies: