From 87a3e9a0244469dec92d01e9e5e61c8f40a2deaf Mon Sep 17 00:00:00 2001 From: Antonis Maronikolakis Date: Wed, 8 Mar 2017 21:12:01 +0200 Subject: [PATCH] "epoches" to "epochs" --- learning.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/learning.py b/learning.py index df5d6fce3..8345c1b58 100644 --- a/learning.py +++ b/learning.py @@ -438,12 +438,12 @@ def predict(example): def NeuralNetLearner(dataset, hidden_layer_sizes=[3], - learning_rate=0.01, epoches=100): + learning_rate=0.01, epochs=100): """ Layered feed-forward network. hidden_layer_sizes: List of number of hidden units per hidden layer learning_rate: Learning rate of gradient descent - epoches: Number of passes over the dataset + epochs: Number of passes over the dataset """ i_units = len(dataset.inputs) @@ -452,7 +452,7 @@ def NeuralNetLearner(dataset, hidden_layer_sizes=[3], # construct a network raw_net = network(i_units, hidden_layer_sizes, o_units) learned_net = BackPropagationLearner(dataset, raw_net, - learning_rate, epoches) + learning_rate, epochs) def predict(example): @@ -517,7 +517,7 @@ def network(input_units, hidden_layer_sizes, output_units): return net -def BackPropagationLearner(dataset, net, learning_rate, epoches): +def BackPropagationLearner(dataset, net, learning_rate, epochs): """[Figure 18.23] The back-propagation algorithm for multilayer network""" # Initialise weights for layer in net: @@ -537,7 +537,7 @@ def BackPropagationLearner(dataset, net, learning_rate, epoches): o_nodes = net[-1] i_nodes = net[0] - for epoch in range(epoches): + for epoch in range(epochs): # Iterate over each example for e in examples: i_val = [e[i] for i in idx_i] @@ -590,13 +590,13 @@ def BackPropagationLearner(dataset, net, learning_rate, epoches): return net -def PerceptronLearner(dataset, learning_rate=0.01, epoches=100): +def PerceptronLearner(dataset, learning_rate=0.01, epochs=100): """Logistic Regression, NO hidden layer""" i_units = len(dataset.inputs) o_units = 1 # As of now, dataset.target gives only one index. hidden_layer_sizes = [] raw_net = network(i_units, hidden_layer_sizes, o_units) - learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epoches) + learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epochs) def predict(example): # Input nodes pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy