diff --git a/notebook.py b/notebook.py index 2894a8bfb..3fe64de2d 100644 --- a/notebook.py +++ b/notebook.py @@ -95,12 +95,15 @@ def show_iris(i=0, j=1, k=2): # MNIST -def load_MNIST(path="aima-data/MNIST"): +def load_MNIST(path="aima-data/MNIST/Digits", fashion=False): import os, struct import array import numpy as np from collections import Counter + if fashion: + path = "aima-data/MNIST/Fashion" + plt.rcParams.update(plt.rcParamsDefault) plt.rcParams['figure.figsize'] = (10.0, 8.0) plt.rcParams['image.interpolation'] = 'nearest' @@ -143,8 +146,17 @@ def load_MNIST(path="aima-data/MNIST"): return(train_img, train_lbl, test_img, test_lbl) -def show_MNIST(labels, images, samples=8): - classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] +digit_classes = [str(i) for i in range(10)] +fashion_classes = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", + "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"] + + +def show_MNIST(labels, images, samples=8, fashion=False): + if not fashion: + classes = digit_classes + else: + classes = fashion_classes + num_classes = len(classes) for y, cls in enumerate(classes): @@ -161,13 +173,19 @@ def show_MNIST(labels, images, samples=8): plt.show() -def show_ave_MNIST(labels, images): - classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] +def show_ave_MNIST(labels, images, fashion=False): + if not fashion: + item_type = "Digit" + classes = digit_classes + else: + item_type = "Apparel" + classes = fashion_classes + num_classes = len(classes) for y, cls in enumerate(classes): idxs = np.nonzero([i == y for i in labels]) - print("Digit", y, ":", len(idxs[0]), "images.") + print(item_type, y, ":", len(idxs[0]), "images.") ave_img = np.mean(np.vstack([images[i] for i in idxs[0]]), axis = 0) #print(ave_img.shape)
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies: