From 44189d58a44eb9f0c29c4849e23a54e9be14fa96 Mon Sep 17 00:00:00 2001 From: Anthony Marakis Date: Thu, 7 Sep 2017 21:07:57 +0300 Subject: [PATCH 1/2] Update notebook.py --- notebook.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/notebook.py b/notebook.py index 2894a8bfb..529307ee0 100644 --- a/notebook.py +++ b/notebook.py @@ -95,12 +95,15 @@ def show_iris(i=0, j=1, k=2): # MNIST -def load_MNIST(path="aima-data/MNIST"): +def load_MNIST(path="aima-data/MNIST/Digits", fashion=False): import os, struct import array import numpy as np from collections import Counter + if fashion: + path = "aima-data/MNIST/Fashion" + plt.rcParams.update(plt.rcParamsDefault) plt.rcParams['figure.figsize'] = (10.0, 8.0) plt.rcParams['image.interpolation'] = 'nearest' From bee6e3bcb66fe4297c1b27f9e3933f50d1638481 Mon Sep 17 00:00:00 2001 From: Anthony Marakis Date: Thu, 7 Sep 2017 21:54:30 +0300 Subject: [PATCH 2/2] Update notebook.py --- notebook.py | 25 ++++++++++++++++++++----- 1 file changed, 20 insertions(+), 5 deletions(-) diff --git a/notebook.py b/notebook.py index 529307ee0..3fe64de2d 100644 --- a/notebook.py +++ b/notebook.py @@ -146,8 +146,17 @@ def load_MNIST(path="aima-data/MNIST/Digits", fashion=False): return(train_img, train_lbl, test_img, test_lbl) -def show_MNIST(labels, images, samples=8): - classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] +digit_classes = [str(i) for i in range(10)] +fashion_classes = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", + "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"] + + +def show_MNIST(labels, images, samples=8, fashion=False): + if not fashion: + classes = digit_classes + else: + classes = fashion_classes + num_classes = len(classes) for y, cls in enumerate(classes): @@ -164,13 +173,19 @@ def show_MNIST(labels, images, samples=8): plt.show() -def show_ave_MNIST(labels, images): - classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] +def show_ave_MNIST(labels, images, fashion=False): + if not fashion: + item_type = "Digit" + classes = digit_classes + else: + item_type = "Apparel" + classes = fashion_classes + num_classes = len(classes) for y, cls in enumerate(classes): idxs = np.nonzero([i == y for i in labels]) - print("Digit", y, ":", len(idxs[0]), "images.") + print(item_type, y, ":", len(idxs[0]), "images.") ave_img = np.mean(np.vstack([images[i] for i in idxs[0]]), axis = 0) #print(ave_img.shape) pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy