diff --git a/learning.ipynb b/learning.ipynb index 86c84e475..16bb4bd6b 100644 --- a/learning.ipynb +++ b/learning.ipynb @@ -124,7 +124,7 @@ "\n", "* **examples**: Holds the items of the dataset. Each item is a list of values.\n", "\n", - "* **attrs**: The indexes of the features (by default in the range of [0,f), where *f* is the number of features. For example, `item[i]` returns the feature at index *i* of *item*.\n", + "* **attrs**: The indexes of the features (by default in the range of [0,f), where *f* is the number of features). For example, `item[i]` returns the feature at index *i* of *item*.\n", "\n", "* **attrnames**: An optional list with attribute names. For example, `item[s]`, where *s* is a feature name, returns the feature of name *s* in *item*.\n", "\n", @@ -1072,6 +1072,42 @@ "" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Example\n", + "\n", + "We will now use the Decision Tree Learner to classify a sample with values: 5.1, 3.0, 1.1, 0.1." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "setosa\n" + ] + } + ], + "source": [ + "iris = DataSet(name=\"iris\")\n", + "\n", + "DTL = DecisionTreeLearner(iris)\n", + "print(DTL([5.1, 3.0, 1.1, 0.1]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, the Decision Tree learner classifies the sample as \"setosa\" as seen in the previous section." + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1760,7 +1796,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.3" + "version": "3.6.3" } }, "nbformat": 4, diff --git a/learning.py b/learning.py index f5bc5d835..0d3d3b110 100644 --- a/learning.py +++ b/learning.py @@ -542,7 +542,7 @@ def plurality_value(examples): return DecisionLeaf(popular) def count(attr, val, examples): - """Count the number of examples that have attr = val.""" + """Count the number of examples that have example[attr] = val.""" return sum(e[attr] == val for e in examples) def all_same_class(examples): pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy