Skip to content

Commit 5569970

Browse files
committed
Deploying to main from @ numpy/numpy.org@c313a1e 🚀
1 parent 1a43739 commit 5569970

File tree

3 files changed

+3
-3
lines changed

3 files changed

+3
-3
lines changed

index.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
</a><a href=/news class="navbar-item is-secondary">News
99
</a><a href=/contribute class="navbar-item is-secondary">Contribute</a><div class="navbar-item has-dropdown is-hoverable"><a aria-label="Select language" class=navbar-link>English</a><div class=navbar-dropdown><a href=/pt/ class=navbar-item>Português
1010
</a><a href=/ja/ class=navbar-item>日本語 (Japanese)</a></div></div></div></div></div></nav><section class=hero><div class=hero-container><div class=hero-content><div class=hero-title-content><div class=hero-title>NumPy
11-
<img class=hero-logo src=/images/logo.svg alt="NumPy logo. "></div><div class=flex-column><div class=hero-subtitle>The fundamental package for scientific computing with Python</div><div class=hero-cta><a href=/news/#releases><button class=cta-button>Latest release: NumPy 1.26. View all releases</button></a></div></div></div></div></div></section><div class=news-container><div class=news-title><a href=/news>NumPy 1.26.0 released</a></div><div class=news-date><a href=/news>2023-09-16</a></div></div><section class="article content-padding"><div class=content-container><div class=article-content><div class="sd-container-fluid sd-mb-4"><div class="sd-row sd-row-cols-1 sd-row-cols-xs-1 sd-row-cols-sm-2 sd-row-cols-md-2 sd-row-cols-lg-3 sd-g-2 sd-g-xs-1 sd-g-sm-2 sd-g-md-2 sd-g-lg-3"><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">Powerful N-dimensional arrays</div>Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">Numerical computing tools</div>NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">Open source</div>Distributed under a liberal <a href=https://github.com/numpy/numpy/blob/main/LICENSE.txt>BSD license</a>, NumPy is developed and maintained <a href=https://github.com/numpy/numpy>publicly on GitHub</a> by a vibrant, responsive, and diverse <a href=/community/>community</a>.</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">Interoperable</div>NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">Performant</div>The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">Easy to use</div>NumPy&rsquo;s high level syntax makes it accessible and productive for programmers from any background or experience level.</div></div></div></div></div></div></div></section><div class=hero-right><div class="flex-column shell-title-container"><div class=shell-title>Try NumPy</div><div class=shell-content-message><p>Use the interactive shell to try NumPy in the browser</p></div></div><div class=numpy-shell-canvas><div class=numpy-shell-container><div class="shell-lesson shell-content"><div class=highlight><pre class=chroma><code><span style=display:flex><span><span style=color:#e6db74>&#34;&#34;&#34;
11+
<img class=hero-logo src=/images/logo.svg alt="NumPy logo. "></div><div class=flex-column><div class=hero-subtitle>The fundamental package for scientific computing with Python</div><div class=hero-cta><a href=/news/#releases><button class=cta-button>Latest release: NumPy 1.26. View all releases</button></a></div></div></div></div></div></section><div class=news-container><div class=news-title><a href=/news>NumPy 1.26.0 released</a></div><div class=news-date><a href=/news>2023-09-16</a></div></div><section class="article content-padding"><div class=content-container><div class=article-content><div class="sd-container-fluid sd-mb-4 false"><div class="sd-row sd-row-cols-1 sd-row-cols-xs-1 sd-row-cols-sm-2 sd-row-cols-md-2 sd-row-cols-lg-3 sd-g-2 sd-g-xs-1 sd-g-sm-2 sd-g-md-2 sd-g-lg-3"><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">Powerful N-dimensional arrays</div>Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">Numerical computing tools</div>NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">Open source</div>Distributed under a liberal <a href=https://github.com/numpy/numpy/blob/main/LICENSE.txt>BSD license</a>, NumPy is developed and maintained <a href=https://github.com/numpy/numpy>publicly on GitHub</a> by a vibrant, responsive, and diverse <a href=/community/>community</a>.</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">Interoperable</div>NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">Performant</div>The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">Easy to use</div>NumPy&rsquo;s high level syntax makes it accessible and productive for programmers from any background or experience level.</div></div></div></div></div></div></div></section><div class=hero-right><div class="flex-column shell-title-container"><div class=shell-title>Try NumPy</div><div class=shell-content-message><p>Use the interactive shell to try NumPy in the browser</p></div></div><div class=numpy-shell-canvas><div class=numpy-shell-container><div class="shell-lesson shell-content"><div class=highlight><pre class=chroma><code><span style=display:flex><span><span style=color:#e6db74>&#34;&#34;&#34;
1212
</span></span></span><span style=display:flex><span><span style=color:#e6db74>To try the examples in the browser:
1313
</span></span></span><span style=display:flex><span><span style=color:#e6db74>1. Type code in the input cell and press
1414
</span></span></span><span style=display:flex><span><span style=color:#e6db74> Shift + Enter to execute

ja/index.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
</a><a href=/ja/news class="navbar-item is-secondary">ニュース
99
</a><a href=/ja/contribute class="navbar-item is-secondary">NumPyに貢献する</a><div class="navbar-item has-dropdown is-hoverable"><a aria-label="Select language" class=navbar-link>日本語 (Japanese)</a><div class=navbar-dropdown><a href=/ class=navbar-item>English
1010
</a><a href=/pt/ class=navbar-item>Português</a></div></div></div></div></div></nav><section class=hero><div class=hero-container><div class=hero-content><div class=hero-title-content><div class=hero-title>NumPy
11-
<img class=hero-logo src=/images/logo.svg alt="NumPy logo. "></div><div class=flex-column><div class=hero-subtitle>Pythonによる科学技術計算の基礎パッケージ</div><div class=hero-cta><a href=/ja/news/#releases><button class=cta-button>最新リリース: Numpy 1.26. すべてのリリースを表示する</button></a></div></div></div></div></div></section><div class=news-container><div class=news-title><a href=/news>NumPy 1.26.0 がリリースされました。</a></div><div class=news-date><a href=/news>2023-09-16</a></div></div><section class="article content-padding"><div class=content-container><div class=article-content><div class="sd-container-fluid sd-mb-4"><div class="sd-row sd-row-cols-1 sd-row-cols-xs-1 sd-row-cols-sm-2 sd-row-cols-md-2 sd-row-cols-lg-3 sd-g-2 sd-g-xs-1 sd-g-sm-2 sd-g-md-2 sd-g-lg-3"><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">強力な多次元配列</div>NumPyの高速で多機能なベクトル化計算、インデックス処理、ブロードキャストの考え方は、現在の配列計算におけるデファクト・スタ>ンダードです。</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">数値計算ツール群</div>NumPyは、様々な数学関数、乱数生成器、線形代数ルーチン、フーリエ変換などを提供しています。</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">相互運用性</div>NumPyは、幅広いハードウェアとコンピューティング・プラットフォームをサポートしており、分散処理、GPU、疎行列ライブラリにも対
11+
<img class=hero-logo src=/images/logo.svg alt="NumPy logo. "></div><div class=flex-column><div class=hero-subtitle>Pythonによる科学技術計算の基礎パッケージ</div><div class=hero-cta><a href=/ja/news/#releases><button class=cta-button>最新リリース: Numpy 1.26. すべてのリリースを表示する</button></a></div></div></div></div></div></section><div class=news-container><div class=news-title><a href=/news>NumPy 1.26.0 がリリースされました。</a></div><div class=news-date><a href=/news>2023-09-16</a></div></div><section class="article content-padding"><div class=content-container><div class=article-content><div class="sd-container-fluid sd-mb-4 false"><div class="sd-row sd-row-cols-1 sd-row-cols-xs-1 sd-row-cols-sm-2 sd-row-cols-md-2 sd-row-cols-lg-3 sd-g-2 sd-g-xs-1 sd-g-sm-2 sd-g-md-2 sd-g-lg-3"><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">強力な多次元配列</div>NumPyの高速で多機能なベクトル化計算、インデックス処理、ブロードキャストの考え方は、現在の配列計算におけるデファクト・スタ>ンダードです。</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">数値計算ツール群</div>NumPyは、様々な数学関数、乱数生成器、線形代数ルーチン、フーリエ変換などを提供しています。</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">相互運用性</div>NumPyは、幅広いハードウェアとコンピューティング・プラットフォームをサポートしており、分散処理、GPU、疎行列ライブラリにも対
1212
応しています。</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">高パフォーマンス</div>NumPyの大部分は最適化されたC言語のコードで構成されています。これによりPythonの柔軟性とコンパイルされたコードの高速性の両方
1313
を享受できます。</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">使いやすさ</div>NumPyの高水準なシンタックスは、どんなバックグラウンドや経験を持つのプログラマーでも簡単に利用することができ、生産性を高め>ることができます。</div></div></div><div class="sd-col sd-d-flex-row"><div class="sd-card sd-w-100 sd-shadow-sm"><div class=sd-card-body><div class="sd-card-title sd-font-weight-bold">オープンソース</div>NumPyは、寛容な<a href=https://github.com/numpy/numpy/blob/main/LICENSE.txt>BSDライセンス</a>で公開されています。NumPyは活発で、互>いを尊重し、多様性を認め合う<a href=/ja/community>コミュニティ</a>によって、 <a href=https://github.com/numpy/numpy>GitHub</a>上でオープンに開発されていま
1414
す.</div></div></div></div></div></div></div></section><div class=hero-right><div class="flex-column shell-title-container"><div class=shell-title>NumPy を試す</div><div class=shell-content-message><p>インタラクティブシェルを使用して、ブラウザ上で Numpy を試してみてください。</p></div></div><div class=numpy-shell-canvas><div class=numpy-shell-container><div class="shell-lesson shell-content"><div class=highlight><pre class=chroma><code><span style=display:flex><span><span style=color:#e6db74>&#34;&#34;&#34;

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy