@@ -1419,14 +1419,14 @@ def test_higher_order_to_first_order():
1419
1419
1420
1420
eqs10 = [Eq (Derivative (x (t ), (t , 2 )), 5 * x (t ) + 43 * y (t )),
1421
1421
Eq (Derivative (y (t ), (t , 2 )), x (t ) + 9 * y (t ))]
1422
- sol10 = [Eq (x (t ), C1 * sqrt ( 7 - sqrt (47 ))* ( 61 + 9 * sqrt (47 ))* exp (- t * sqrt (7 - sqrt (47 )))/ 2 + C2 * sqrt (7 -
1423
- sqrt (47 ))* (61 + 9 * sqrt (47 ))* exp (t * sqrt (7 - sqrt (47 )))* Rational ( - 1 , 2 ) + C3 * (61 -
1424
- 9 * sqrt ( 47 )) * sqrt (sqrt (47 ) + 7 )* exp ( - t * sqrt (sqrt (47 ) + 7 )) / 2 + C4 * (61 - 9 * sqrt (47 ))* sqrt ( sqrt (47 ) +
1425
- 7 ) * exp ( t * sqrt (sqrt ( 47 ) + 7 ))* Rational (- 1 , 2 )),
1426
- Eq (y (t ), C1 * sqrt (7 - sqrt (47 ))* (sqrt (47 ) + 7 )* exp (- t * sqrt (7 - sqrt (47 )))* Rational (- 1 , 2 ) + C2 * sqrt (7
1427
- - sqrt (47 ))* (sqrt (47 ) + 7 )* exp (t * sqrt (7 - sqrt (47 )))/ 2 + C3 * (7 - sqrt ( 47 )) * sqrt ( sqrt ( 47 ) +
1428
- 7 )* exp (- t * sqrt (sqrt (47 ) + 7 ))* Rational ( - 1 , 2 ) + C4 * (7 - sqrt (47 ))* sqrt (sqrt (47 ) +
1429
- 7 )* exp (t * sqrt (sqrt (47 ) + 7 ))/ 2 )]
1422
+ sol10 = [Eq (x (t ), C1 * ( 61 - 9 * sqrt (47 ))* sqrt ( sqrt (47 ) + 7 )* exp (- t * sqrt (sqrt (47 ) + 7 ))/ 2 + C2 * sqrt (7 -
1423
+ sqrt (47 ))* (61 + 9 * sqrt (47 ))* exp (- t * sqrt (7 - sqrt (47 )))/ 2 + C3 * (61 - 9 * sqrt ( 47 )) * sqrt ( sqrt ( 47 ) +
1424
+ 7 ) * exp ( t * sqrt (sqrt (47 ) + 7 )) * Rational ( - 1 , 2 ) + C4 * sqrt (7 - sqrt (47 )) * (61 + 9 * sqrt (47 ))* exp ( t * sqrt (7
1425
+ - sqrt (47 )))* Rational (- 1 , 2 )),
1426
+ Eq (y (t ), C1 * (7 - sqrt (47 ))* sqrt (sqrt (47 ) + 7 )* exp (- t * sqrt (sqrt (47 ) + 7 ))* Rational (- 1 , 2 ) + C2 * sqrt (7
1427
+ - sqrt (47 ))* (sqrt (47 ) + 7 )* exp (- t * sqrt (7 - sqrt (47 )))* Rational ( - 1 , 2 ) + C3 * (7 -
1428
+ sqrt ( 47 )) * sqrt ( sqrt ( 47 ) + 7 )* exp (t * sqrt (sqrt (47 ) + 7 ))/ 2 + C4 * sqrt (7 - sqrt (47 ))* (sqrt (47 ) +
1429
+ 7 )* exp (t * sqrt (7 - sqrt (47 )))/ 2 )]
1430
1430
assert dsolve (eqs10 ) == sol10
1431
1431
assert checksysodesol (eqs10 , sol10 ) == (True , [0 , 0 ])
1432
1432
@@ -1807,15 +1807,16 @@ def test_linodesolve():
1807
1807
ceq = canonical_odes (eq , func , t )
1808
1808
(A1 , A0 ), b = linear_ode_to_matrix (ceq [0 ], func , t , 1 )
1809
1809
A = A0
1810
- sol = [- C1 * exp (- t / 2 + sqrt (5 )* t / 2 )/ 2 + sqrt (5 )* C1 * exp (- t / 2 + sqrt (5 )* t / 2 )/ 2 - sqrt (5 )* C2 * exp (- sqrt (5 )* t / 2
1811
- - t / 2 )/ 2 - C2 * exp (- sqrt (5 )* t / 2 - t / 2 )/ 2 - exp (- t / 2 +
1812
- sqrt (5 )* t / 2 )* Integral (sqrt (5 )* t * exp (- sqrt (5 )* t / 2 + t / 2 )/ 5 , t )/ 2 + sqrt (5 )* exp (- t / 2 +
1813
- sqrt (5 )* t / 2 )* Integral (sqrt (5 )* t * exp (- sqrt (5 )* t / 2 + t / 2 )/ 5 , t )/ 2 - sqrt (5 )* exp (- sqrt (5 )* t / 2 -
1814
- t / 2 )* Integral (- sqrt (5 )* t * exp (t / 2 + sqrt (5 )* t / 2 )/ 5 , t )/ 2 - exp (- sqrt (5 )* t / 2 -
1815
- t / 2 )* Integral (- sqrt (5 )* t * exp (t / 2 + sqrt (5 )* t / 2 )/ 5 , t )/ 2 ,
1816
- C1 * exp (- t / 2 + sqrt (5 )* t / 2 ) +
1817
- C2 * exp (- sqrt (5 )* t / 2 - t / 2 ) + exp (- t / 2 + sqrt (5 )* t / 2 )* Integral (sqrt (5 )* t * exp (- sqrt (5 )* t / 2 + t / 2 )/ 5 ,
1818
- t ) + exp (- sqrt (5 )* t / 2 - t / 2 )* Integral (- sqrt (5 )* t * exp (t / 2 + sqrt (5 )* t / 2 )/ 5 , t )]
1810
+ sol = [- C1 * exp (- t / 2 + sqrt (5 )* t / 2 )/ 2 + sqrt (5 )* C1 * exp (- t / 2 + sqrt (5 )* t / 2 )/ 2 - sqrt (5 )* C2 * exp (- sqrt (5 )* t / 2 -
1811
+ t / 2 )/ 2 - C2 * exp (- sqrt (5 )* t / 2 - t / 2 )/ 2 - exp (- t / 2 + sqrt (5 )* t / 2 )* Integral (t * exp (- sqrt (5 )* t / 2 +
1812
+ t / 2 )/ (- 5 + sqrt (5 )) - sqrt (5 )* t * exp (- sqrt (5 )* t / 2 + t / 2 )/ (- 5 + sqrt (5 )), t )/ 2 + sqrt (5 )* exp (- t / 2 +
1813
+ sqrt (5 )* t / 2 )* Integral (t * exp (- sqrt (5 )* t / 2 + t / 2 )/ (- 5 + sqrt (5 )) - sqrt (5 )* t * exp (- sqrt (5 )* t / 2 +
1814
+ t / 2 )/ (- 5 + sqrt (5 )), t )/ 2 - sqrt (5 )* exp (- sqrt (5 )* t / 2 - t / 2 )* Integral (- sqrt (5 )* t * exp (t / 2 +
1815
+ sqrt (5 )* t / 2 )/ 5 , t )/ 2 - exp (- sqrt (5 )* t / 2 - t / 2 )* Integral (- sqrt (5 )* t * exp (t / 2 + sqrt (5 )* t / 2 )/ 5 , t )/ 2 ,
1816
+ C1 * exp (- t / 2 + sqrt (5 )* t / 2 ) + C2 * exp (- sqrt (5 )* t / 2 - t / 2 ) + exp (- t / 2 +
1817
+ sqrt (5 )* t / 2 )* Integral (t * exp (- sqrt (5 )* t / 2 + t / 2 )/ (- 5 + sqrt (5 )) - sqrt (5 )* t * exp (- sqrt (5 )* t / 2 +
1818
+ t / 2 )/ (- 5 + sqrt (5 )), t ) + exp (- sqrt (5 )* t / 2 -
1819
+ t / 2 )* Integral (- sqrt (5 )* t * exp (t / 2 + sqrt (5 )* t / 2 )/ 5 , t )]
1819
1820
assert constant_renumber (linodesolve (A , t , b = b ), variables = [t ]) == sol
1820
1821
1821
1822
# non-homogeneous term assumed to be 0
0 commit comments