Skip to content

Commit 1ee1bb1

Browse files
refactor 41
1 parent 6e4b7ed commit 1ee1bb1

File tree

1 file changed

+27
-40
lines changed
  • src/main/java/com/fishercoder/solutions

1 file changed

+27
-40
lines changed
Lines changed: 27 additions & 40 deletions
Original file line numberDiff line numberDiff line change
@@ -1,49 +1,36 @@
11
package com.fishercoder.solutions;
22

3-
/**
4-
*41. First Missing Positive
5-
*
6-
*Given an unsorted integer array, find the first missing positive integer.
7-
8-
For example,
9-
Given [1,2,0] return 3,
10-
and [3,4,-1,1] return 2.
11-
12-
Your algorithm should run in O(n) time and uses constant space.
13-
*/
14-
153
public class _41 {
164

17-
public static class Solution1 {
18-
/**
19-
* Time: O(n) Space: O(1)
20-
*
21-
* Idea: put every number in its right position, e.g. put 5 in nums[4].
22-
*/
23-
public int firstMissingPositive(int[] nums) {
24-
int i = 0;
25-
while (i < nums.length) {
26-
if (nums[i] > 0 && nums[i] != i + 1 && nums[i] - 1 < nums.length && nums[i] != nums[nums[i]
27-
- 1]) {
28-
swap(nums, i, nums[i] - 1);
29-
} else {
30-
i++;
5+
public static class Solution1 {
6+
/**
7+
* Time: O(n) Space: O(1)
8+
* Idea: put every number in its right position, e.g. put 5 in nums[4].
9+
*/
10+
public int firstMissingPositive(int[] nums) {
11+
int i = 0;
12+
while (i < nums.length) {
13+
if (nums[i] > 0 && nums[i] != i + 1 && nums[i] - 1 < nums.length && nums[i] != nums[nums[i]
14+
- 1]) {
15+
swap(nums, i, nums[i] - 1);
16+
} else {
17+
i++;
18+
}
19+
}
20+
21+
for (int j = 0; j < nums.length; j++) {
22+
if (nums[j] != j + 1) {
23+
return j + 1;
24+
}
25+
}
26+
27+
return nums.length + 1;
3128
}
32-
}
3329

34-
for (int j = 0; j < nums.length; j++) {
35-
if (nums[j] != j + 1) {
36-
return j + 1;
30+
void swap(int[] nums, int i, int j) {
31+
int temp = nums[i];
32+
nums[i] = nums[j];
33+
nums[j] = temp;
3734
}
38-
}
39-
40-
return nums.length + 1;
41-
}
42-
43-
void swap(int[] nums, int i, int j) {
44-
int temp = nums[i];
45-
nums[i] = nums[j];
46-
nums[j] = temp;
4735
}
48-
}
4936
}

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy