Skip to content

Commit 68c0f34

Browse files
Alvaro Tejero-Canterowesm
authored andcommitted
DOC: Typos + little PEP8 spacing instances and reverted inadvertent add at doc/source/conf.py
1 parent 9f3a0d2 commit 68c0f34

File tree

2 files changed

+15
-17
lines changed

2 files changed

+15
-17
lines changed

doc/source/conf.py

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,8 +19,6 @@
1919
# sys.path.append(os.path.abspath('.'))
2020
sys.path.insert(0, os.path.abspath('../sphinxext'))
2121

22-
sys.path.insert(0, '/home/e0/repos/jrb_pytb7')
23-
2422
sys.path.extend([
2523

2624
# numpy standard doc extensions

doc/source/io.rst

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -1118,11 +1118,11 @@ everying in the sub-store and BELOW, so be *careful*.
11181118
Storing Mixed Types in a Table
11191119
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11201120

1121-
Storing mixed-dtype data is supported. Strings are store as a
1121+
Storing mixed-dtype data is supported. Strings are stored as a
11221122
fixed-width using the maximum size of the appended column. Subsequent
11231123
appends will truncate strings at this length.
11241124

1125-
Passing ``min_itemsize = { `values` : size }`` as a parameter to append
1125+
Passing ``min_itemsize={`values`: size}`` as a parameter to append
11261126
will set a larger minimum for the string columns. Storing ``floats,
11271127
strings, ints, bools, datetime64`` are currently supported. For string
11281128
columns, passing ``nan_rep = 'nan'`` to append will change the default
@@ -1136,7 +1136,7 @@ defaults to `nan`.
11361136
df_mixed['int'] = 1
11371137
df_mixed['bool'] = True
11381138
df_mixed['datetime64'] = Timestamp('20010102')
1139-
df_mixed.ix[3:5,['A','B','string','datetime64']] = np.nan
1139+
df_mixed.ix[3:5,['A', 'B', 'string', 'datetime64']] = np.nan
11401140
11411141
store.append('df_mixed', df_mixed, min_itemsize = {'values': 50})
11421142
df_mixed1 = store.select('df_mixed')
@@ -1150,7 +1150,7 @@ Storing Multi-Index DataFrames
11501150
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11511151

11521152
Storing multi-index dataframes as tables is very similar to
1153-
storing/selecting from homogenous index DataFrames.
1153+
storing/selecting from homogeneous index DataFrames.
11541154

11551155
.. ipython:: python
11561156
@@ -1173,7 +1173,7 @@ storing/selecting from homogenous index DataFrames.
11731173
Querying a Table
11741174
~~~~~~~~~~~~~~~~
11751175

1176-
``select`` and ``delete`` operations have an optional criteria that can
1176+
``select`` and ``delete`` operations have an optional criterion that can
11771177
be specified to select/delete only a subset of the data. This allows one
11781178
to have a very large on-disk table and retrieve only a portion of the
11791179
data.
@@ -1201,7 +1201,7 @@ terms.
12011201
Queries are built up using a list of ``Terms`` (currently only
12021202
**anding** of terms is supported). An example query for a panel might be
12031203
specified as follows. ``['major_axis>20000102', ('minor_axis', '=',
1204-
['A','B']) ]``. This is roughly translated to: `major_axis must be
1204+
['A', 'B']) ]``. This is roughly translated to: `major_axis must be
12051205
greater than the date 20000102 and the minor_axis must be A or B`
12061206

12071207
.. ipython:: python
@@ -1212,13 +1212,13 @@ greater than the date 20000102 and the minor_axis must be A or B`
12121212
12131213
The ``columns`` keyword can be supplied to select to filter a list of
12141214
the return columns, this is equivalent to passing a
1215-
``Term('columns',list_of_columns_to_filter)``
1215+
``Term('columns', list_of_columns_to_filter)``
12161216

12171217
.. ipython:: python
12181218
12191219
store.select('df', columns=['A', 'B'])
12201220
1221-
Start and Stop parameters can be specified to limit the total search
1221+
``start`` and ``stop`` parameters can be specified to limit the total search
12221222
space. These are in terms of the total number of rows in a table.
12231223

12241224
.. ipython:: python
@@ -1251,7 +1251,7 @@ specify. This behavior can be turned off by passing ``index=False`` to
12511251
i.optlevel, i.kind
12521252
12531253
# change an index by passing new parameters
1254-
store.create_table_index('df', optlevel = 9, kind = 'full')
1254+
store.create_table_index('df', optlevel=9, kind='full')
12551255
i = store.root.df.table.cols.index.index
12561256
i.optlevel, i.kind
12571257
@@ -1312,7 +1312,7 @@ very quickly. Note ``nan`` are excluded from the result set.
13121312
**Replicating or**
13131313

13141314
``not`` and ``or`` conditions are unsupported at this time; however,
1315-
``or`` operations are easy to replicate, by repeately applying the
1315+
``or`` operations are easy to replicate, by repeatedly applying the
13161316
criteria to the table, and then ``concat`` the results.
13171317

13181318
.. ipython:: python
@@ -1325,7 +1325,7 @@ criteria to the table, and then ``concat`` the results.
13251325
**Storer Object**
13261326

13271327
If you want to inspect the stored object, retrieve via
1328-
``get_storer``. You could use this progamatically to say get the number
1328+
``get_storer``. You could use this programmatically to say get the number
13291329
of rows in an object.
13301330

13311331
.. ipython:: python
@@ -1340,10 +1340,10 @@ New in 0.10.1 are the methods ``append_to_multple`` and
13401340
``select_as_multiple``, that can perform appending/selecting from
13411341
multiple tables at once. The idea is to have one table (call it the
13421342
selector table) that you index most/all of the columns, and perform your
1343-
queries. The other table(s) are data tables that are indexed the same
1343+
queries. The other table(s) are data tables that are indexed the same as
13441344
the selector table. You can then perform a very fast query on the
13451345
selector table, yet get lots of data back. This method works similar to
1346-
having a very wide-table, but is more efficient in terms of queries.
1346+
having a very wide table, but is more efficient in terms of queries.
13471347

13481348
Note, **THE USER IS RESPONSIBLE FOR SYNCHRONIZING THE TABLES**. This
13491349
means, append to the tables in the same order; ``append_to_multiple``
@@ -1369,7 +1369,7 @@ table (optional) to let it have the remaining columns. The argument
13691369
store.select('df2_mt')
13701370
13711371
# as a multiple
1372-
store.select_as_multiple(['df1_mt','df2_mt'], where=['A>0', 'B>0'],
1372+
store.select_as_multiple(['df1_mt', 'df2_mt'], where=['A>0', 'B>0'],
13731373
selector = 'df1_mt')
13741374
13751375
@@ -1386,7 +1386,7 @@ pays to have the dimension you are deleting be the first of the
13861386
``indexables``.
13871387

13881388
Data is ordered (on the disk) in terms of the ``indexables``. Here's a
1389-
simple use case. You store panel type data, with dates in the
1389+
simple use case. You store panel-type data, with dates in the
13901390
``major_axis`` and ids in the ``minor_axis``. The data is then
13911391
interleaved like this:
13921392

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy