Skip to content

Commit e95815a

Browse files
raghavrvamueller
authored andcommitted
MAINT docstring --> comments to prevent nose from using doc in verbose mode
1 parent b278440 commit e95815a

File tree

83 files changed

+899
-1233
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

83 files changed

+899
-1233
lines changed

sklearn/cluster/tests/test_affinity_propagation.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@
2121

2222

2323
def test_affinity_propagation():
24-
"""Affinity Propagation algorithm """
24+
# Affinity Propagation algorithm
2525
# Compute similarities
2626
S = -euclidean_distances(X, squared=True)
2727
preference = np.median(S) * 10
@@ -60,15 +60,15 @@ def test_affinity_propagation():
6060

6161

6262
def test_affinity_propagation_predict():
63-
"""Test AffinityPropagation.predict"""
63+
# Test AffinityPropagation.predict
6464
af = AffinityPropagation(affinity="euclidean")
6565
labels = af.fit_predict(X)
6666
labels2 = af.predict(X)
6767
assert_array_equal(labels, labels2)
6868

6969

7070
def test_affinity_propagation_predict_error():
71-
"""Test exception in AffinityPropagation.predict"""
71+
# Test exception in AffinityPropagation.predict
7272
# Not fitted.
7373
af = AffinityPropagation(affinity="euclidean")
7474
assert_raises(ValueError, af.predict, X)

sklearn/cluster/tests/test_bicluster.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ def test_get_submatrix():
5555

5656

5757
def _test_shape_indices(model):
58-
"""Test get_shape and get_indices on fitted model."""
58+
# Test get_shape and get_indices on fitted model.
5959
for i in range(model.n_clusters):
6060
m, n = model.get_shape(i)
6161
i_ind, j_ind = model.get_indices(i)
@@ -64,7 +64,7 @@ def _test_shape_indices(model):
6464

6565

6666
def test_spectral_coclustering():
67-
"""Test Dhillon's Spectral CoClustering on a simple problem."""
67+
# Test Dhillon's Spectral CoClustering on a simple problem.
6868
param_grid = {'svd_method': ['randomized', 'arpack'],
6969
'n_svd_vecs': [None, 20],
7070
'mini_batch': [False, True],
@@ -93,7 +93,7 @@ def test_spectral_coclustering():
9393

9494

9595
def test_spectral_biclustering():
96-
"""Test Kluger methods on a checkerboard dataset."""
96+
# Test Kluger methods on a checkerboard dataset.
9797
S, rows, cols = make_checkerboard((30, 30), 3, noise=0.5,
9898
random_state=0)
9999

sklearn/cluster/tests/test_birch.py

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@
2222

2323

2424
def test_n_samples_leaves_roots():
25-
"""Sanity check for the number of samples in leaves and roots"""
25+
# Sanity check for the number of samples in leaves and roots
2626
X, y = make_blobs(n_samples=10)
2727
brc = Birch()
2828
brc.fit(X)
@@ -34,7 +34,7 @@ def test_n_samples_leaves_roots():
3434

3535

3636
def test_partial_fit():
37-
"""Test that fit is equivalent to calling partial_fit multiple times"""
37+
# Test that fit is equivalent to calling partial_fit multiple times
3838
X, y = make_blobs(n_samples=100)
3939
brc = Birch(n_clusters=3)
4040
brc.fit(X)
@@ -52,7 +52,7 @@ def test_partial_fit():
5252

5353

5454
def test_birch_predict():
55-
"""Test the predict method predicts the nearest centroid."""
55+
# Test the predict method predicts the nearest centroid.
5656
rng = np.random.RandomState(0)
5757
X = generate_clustered_data(n_clusters=3, n_features=3,
5858
n_samples_per_cluster=10)
@@ -70,7 +70,7 @@ def test_birch_predict():
7070

7171

7272
def test_n_clusters():
73-
"""Test that n_clusters param works properly"""
73+
# Test that n_clusters param works properly
7474
X, y = make_blobs(n_samples=100, centers=10)
7575
brc1 = Birch(n_clusters=10)
7676
brc1.fit(X)
@@ -96,7 +96,7 @@ def test_n_clusters():
9696

9797

9898
def test_sparse_X():
99-
"""Test that sparse and dense data give same results"""
99+
# Test that sparse and dense data give same results
100100
X, y = make_blobs(n_samples=100, centers=10)
101101
brc = Birch(n_clusters=10)
102102
brc.fit(X)
@@ -119,7 +119,7 @@ def check_branching_factor(node, branching_factor):
119119

120120

121121
def test_branching_factor():
122-
"""Test that nodes have at max branching_factor number of subclusters"""
122+
# Test that nodes have at max branching_factor number of subclusters
123123
X, y = make_blobs()
124124
branching_factor = 9
125125

@@ -149,7 +149,7 @@ def check_threshold(birch_instance, threshold):
149149

150150

151151
def test_threshold():
152-
"""Test that the leaf subclusters have a threshold lesser than radius"""
152+
# Test that the leaf subclusters have a threshold lesser than radius
153153
X, y = make_blobs(n_samples=80, centers=4)
154154
brc = Birch(threshold=0.5, n_clusters=None)
155155
brc.fit(X)

sklearn/cluster/tests/test_dbscan.py

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@
2525

2626

2727
def test_dbscan_similarity():
28-
"""Tests the DBSCAN algorithm with a similarity array."""
28+
# Tests the DBSCAN algorithm with a similarity array.
2929
# Parameters chosen specifically for this task.
3030
eps = 0.15
3131
min_samples = 10
@@ -48,7 +48,7 @@ def test_dbscan_similarity():
4848

4949

5050
def test_dbscan_feature():
51-
"""Tests the DBSCAN algorithm with a feature vector array."""
51+
# Tests the DBSCAN algorithm with a feature vector array.
5252
# Parameters chosen specifically for this task.
5353
# Different eps to other test, because distance is not normalised.
5454
eps = 0.8
@@ -91,7 +91,7 @@ def test_dbscan_no_core_samples():
9191

9292

9393
def test_dbscan_callable():
94-
"""Tests the DBSCAN algorithm with a callable metric."""
94+
# Tests the DBSCAN algorithm with a callable metric.
9595
# Parameters chosen specifically for this task.
9696
# Different eps to other test, because distance is not normalised.
9797
eps = 0.8
@@ -117,7 +117,7 @@ def test_dbscan_callable():
117117

118118

119119
def test_dbscan_balltree():
120-
"""Tests the DBSCAN algorithm with balltree for neighbor calculation."""
120+
# Tests the DBSCAN algorithm with balltree for neighbor calculation.
121121
eps = 0.8
122122
min_samples = 10
123123

@@ -156,13 +156,13 @@ def test_dbscan_balltree():
156156

157157

158158
def test_input_validation():
159-
"""DBSCAN.fit should accept a list of lists."""
159+
# DBSCAN.fit should accept a list of lists.
160160
X = [[1., 2.], [3., 4.]]
161161
DBSCAN().fit(X) # must not raise exception
162162

163163

164164
def test_dbscan_badargs():
165-
"""Test bad argument values: these should all raise ValueErrors"""
165+
# Test bad argument values: these should all raise ValueErrors
166166
assert_raises(ValueError,
167167
dbscan,
168168
X, eps=-1.0)

sklearn/cluster/tests/test_hierarchical.py

Lines changed: 16 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -61,9 +61,7 @@ def test_linkage_misc():
6161

6262

6363
def test_structured_linkage_tree():
64-
"""
65-
Check that we obtain the correct solution for structured linkage trees.
66-
"""
64+
# Check that we obtain the correct solution for structured linkage trees.
6765
rng = np.random.RandomState(0)
6866
mask = np.ones([10, 10], dtype=np.bool)
6967
# Avoiding a mask with only 'True' entries
@@ -85,9 +83,7 @@ def test_structured_linkage_tree():
8583

8684

8785
def test_unstructured_linkage_tree():
88-
"""
89-
Check that we obtain the correct solution for unstructured linkage trees.
90-
"""
86+
# Check that we obtain the correct solution for unstructured linkage trees.
9187
rng = np.random.RandomState(0)
9288
X = rng.randn(50, 100)
9389
for this_X in (X, X[0]):
@@ -110,9 +106,7 @@ def test_unstructured_linkage_tree():
110106

111107

112108
def test_height_linkage_tree():
113-
"""
114-
Check that the height of the results of linkage tree is sorted.
115-
"""
109+
# Check that the height of the results of linkage tree is sorted.
116110
rng = np.random.RandomState(0)
117111
mask = np.ones([10, 10], dtype=np.bool)
118112
X = rng.randn(50, 100)
@@ -124,10 +118,8 @@ def test_height_linkage_tree():
124118

125119

126120
def test_agglomerative_clustering():
127-
"""
128-
Check that we obtain the correct number of clusters with
129-
agglomerative clustering.
130-
"""
121+
# Check that we obtain the correct number of clusters with
122+
# agglomerative clustering.
131123
rng = np.random.RandomState(0)
132124
mask = np.ones([10, 10], dtype=np.bool)
133125
n_samples = 100
@@ -214,9 +206,7 @@ def test_agglomerative_clustering():
214206

215207

216208
def test_ward_agglomeration():
217-
"""
218-
Check that we obtain the correct solution in a simplistic case
219-
"""
209+
# Check that we obtain the correct solution in a simplistic case
220210
rng = np.random.RandomState(0)
221211
mask = np.ones([10, 10], dtype=np.bool)
222212
X = rng.randn(50, 100)
@@ -254,8 +244,7 @@ def assess_same_labelling(cut1, cut2):
254244

255245

256246
def test_scikit_vs_scipy():
257-
"""Test scikit linkage with full connectivity (i.e. unstructured) vs scipy
258-
"""
247+
# Test scikit linkage with full connectivity (i.e. unstructured) vs scipy
259248
n, p, k = 10, 5, 3
260249
rng = np.random.RandomState(0)
261250

@@ -282,10 +271,8 @@ def test_scikit_vs_scipy():
282271

283272

284273
def test_connectivity_propagation():
285-
"""
286-
Check that connectivity in the ward tree is propagated correctly during
287-
merging.
288-
"""
274+
# Check that connectivity in the ward tree is propagated correctly during
275+
# merging.
289276
X = np.array([(.014, .120), (.014, .099), (.014, .097),
290277
(.017, .153), (.017, .153), (.018, .153),
291278
(.018, .153), (.018, .153), (.018, .153),
@@ -300,10 +287,8 @@ def test_connectivity_propagation():
300287

301288

302289
def test_ward_tree_children_order():
303-
"""
304-
Check that children are ordered in the same way for both structured and
305-
unstructured versions of ward_tree.
306-
"""
290+
# Check that children are ordered in the same way for both structured and
291+
# unstructured versions of ward_tree.
307292

308293
# test on five random datasets
309294
n, p = 10, 5
@@ -322,7 +307,7 @@ def test_ward_tree_children_order():
322307

323308

324309
def test_ward_linkage_tree_return_distance():
325-
"""Test return_distance option on linkage and ward trees"""
310+
# Test return_distance option on linkage and ward trees
326311

327312
# test that return_distance when set true, gives same
328313
# output on both structured and unstructured clustering.
@@ -429,10 +414,8 @@ def test_ward_linkage_tree_return_distance():
429414

430415

431416
def test_connectivity_fixing_non_lil():
432-
"""
433-
Check non regression of a bug if a non item assignable connectivity is
434-
provided with more than one component.
435-
"""
417+
# Check non regression of a bug if a non item assignable connectivity is
418+
# provided with more than one component.
436419
# create dummy data
437420
x = np.array([[0, 0], [1, 1]])
438421
# create a mask with several components to force connectivity fixing
@@ -484,7 +467,7 @@ def test_connectivity_ignores_diagonal():
484467

485468

486469
def test_compute_full_tree():
487-
"""Test that the full tree is computed if n_clusters is small"""
470+
# Test that the full tree is computed if n_clusters is small
488471
rng = np.random.RandomState(0)
489472
X = rng.randn(10, 2)
490473
connectivity = kneighbors_graph(X, 5, include_self=False)
@@ -511,7 +494,7 @@ def test_compute_full_tree():
511494

512495

513496
def test_n_components():
514-
"""Test n_components returned by linkage, average and ward tree"""
497+
# Test n_components returned by linkage, average and ward tree
515498
rng = np.random.RandomState(0)
516499
X = rng.rand(5, 5)
517500

sklearn/cluster/tests/test_k_means.py

Lines changed: 8 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,7 @@ def test_labels_assignment_and_inertia():
8181

8282

8383
def test_minibatch_update_consistency():
84-
"""Check that dense and sparse minibatch update give the same results"""
84+
# Check that dense and sparse minibatch update give the same results
8585
rng = np.random.RandomState(42)
8686
old_centers = centers + rng.normal(size=centers.shape)
8787

@@ -480,7 +480,7 @@ def test_mini_match_k_means_invalid_init():
480480

481481

482482
def test_k_means_copyx():
483-
"""Check if copy_x=False returns nearly equal X after de-centering."""
483+
# Check if copy_x=False returns nearly equal X after de-centering.
484484
my_X = X.copy()
485485
km = KMeans(copy_x=False, n_clusters=n_clusters, random_state=42)
486486
km.fit(my_X)
@@ -491,13 +491,11 @@ def test_k_means_copyx():
491491

492492

493493
def test_k_means_non_collapsed():
494-
"""Check k_means with a bad initialization does not yield a singleton
495-
496-
Starting with bad centers that are quickly ignored should not
497-
result in a repositioning of the centers to the center of mass that
498-
would lead to collapsed centers which in turns make the clustering
499-
dependent of the numerical unstabilities.
500-
"""
494+
# Check k_means with a bad initialization does not yield a singleton
495+
# Starting with bad centers that are quickly ignored should not
496+
# result in a repositioning of the centers to the center of mass that
497+
# would lead to collapsed centers which in turns make the clustering
498+
# dependent of the numerical unstabilities.
501499
my_X = np.array([[1.1, 1.1], [0.9, 1.1], [1.1, 0.9], [0.9, 1.1]])
502500
array_init = np.array([[1.0, 1.0], [5.0, 5.0], [-5.0, -5.0]])
503501
km = KMeans(init=array_init, n_clusters=3, random_state=42, n_init=1)
@@ -630,7 +628,7 @@ def test_fit_transform():
630628

631629

632630
def test_n_init():
633-
"""Check that increasing the number of init increases the quality"""
631+
# Check that increasing the number of init increases the quality
634632
n_runs = 5
635633
n_init_range = [1, 5, 10]
636634
inertia = np.zeros((len(n_init_range), n_runs))

sklearn/cluster/tests/test_mean_shift.py

Lines changed: 6 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -25,13 +25,13 @@
2525

2626

2727
def test_estimate_bandwidth():
28-
"""Test estimate_bandwidth"""
28+
# Test estimate_bandwidth
2929
bandwidth = estimate_bandwidth(X, n_samples=200)
3030
assert_true(0.9 <= bandwidth <= 1.5)
3131

3232

3333
def test_mean_shift():
34-
""" Test MeanShift algorithm """
34+
# Test MeanShift algorithm
3535
bandwidth = 1.2
3636

3737
ms = MeanShift(bandwidth=bandwidth)
@@ -47,7 +47,7 @@ def test_mean_shift():
4747

4848

4949
def test_meanshift_predict():
50-
"""Test MeanShift.predict"""
50+
# Test MeanShift.predict
5151
ms = MeanShift(bandwidth=1.2)
5252
labels = ms.fit_predict(X)
5353
labels2 = ms.predict(X)
@@ -62,17 +62,15 @@ def test_meanshift_all_orphans():
6262

6363

6464
def test_unfitted():
65-
"""Non-regression: before fit, there should be not fitted attributes."""
65+
# Non-regression: before fit, there should be not fitted attributes.
6666
ms = MeanShift()
6767
assert_false(hasattr(ms, "cluster_centers_"))
6868
assert_false(hasattr(ms, "labels_"))
6969

7070

7171
def test_bin_seeds():
72-
"""
73-
Test the bin seeding technique which can be used in the mean shift
74-
algorithm
75-
"""
72+
# Test the bin seeding technique which can be used in the mean shift
73+
# algorithm
7674
# Data is just 6 points in the plane
7775
X = np.array([[1., 1.], [1.4, 1.4], [1.8, 1.2],
7876
[2., 1.], [2.1, 1.1], [0., 0.]])

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy