Skip to content

Commit 3df593d

Browse files
committed
0089. Gray Code
1 parent 0620b38 commit 3df593d

File tree

4 files changed

+147
-0
lines changed

4 files changed

+147
-0
lines changed

markdown/0089. Gray Code.md

Lines changed: 59 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,59 @@
1+
### [89\. Gray Code](https://leetcode.com/problems/gray-code/)
2+
3+
Difficulty: **Medium**
4+
5+
6+
The gray code is a binary numeral system where two successive values differ in only one bit.
7+
8+
Given a non-negative integer _n_ representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.
9+
10+
**Example 1:**
11+
12+
```
13+
Input: 2
14+
Output: [0,1,3,2]
15+
Explanation:
16+
00 - 0
17+
01 - 1
18+
11 - 3
19+
10 - 2
20+
21+
For a given n, a gray code sequence may not be uniquely defined.
22+
For example, [0,2,3,1] is also a valid gray code sequence.
23+
24+
00 - 0
25+
10 - 2
26+
11 - 3
27+
01 - 1
28+
```
29+
30+
**Example 2:**
31+
32+
```
33+
Input: 0
34+
Output: [0]
35+
Explanation: We define the gray code sequence to begin with 0.
36+
  A gray code sequence of n has size = 2n, which for n = 0 the size is 20 = 1.
37+
  Therefore, for n = 0 the gray code sequence is [0].
38+
```
39+
40+
41+
#### Solution
42+
43+
Language: **Java**
44+
45+
```java
46+
class Solution {
47+
   public List<Integer> grayCode(int n) {
48+
       List<Integer> result = new ArrayList<>();
49+
       result.add(0);
50+
       for (int i = 0; i < n; i++) {
51+
           for (int j = result.size() - 1; j >= 0; j--) { // 从尾部开始,用于保持连续(即每次只差一个bit位)
52+
               result.add(result.get(j) | 1 << i);
53+
          }
54+
      }
55+
       return result;
56+
  }
57+
}
58+
```
59+
![pic](https://raw.githubusercontent.com/PicGoBed/PicBed/master/2019-08-01-RdPkMU.jpg)

src/main/java/leetcode/_89_/Main.java

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,12 @@
1+
package leetcode._89_;
2+
3+
/**
4+
* Created by zhangbo54 on 2019-03-04.
5+
*/
6+
public class Main {
7+
public static void main(String[] args) {
8+
Solution solution = new Solution();
9+
System.out.println(solution.grayCode(2));
10+
}
11+
}
12+
Lines changed: 17 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,17 @@
1+
package leetcode._89_;
2+
3+
import java.util.ArrayList;
4+
import java.util.List;
5+
6+
class Solution {
7+
public List<Integer> grayCode(int n) {
8+
List<Integer> result = new ArrayList<>();
9+
result.add(0);
10+
for (int i = 0; i < n; i++) {
11+
for (int j = result.size() - 1; j >= 0; j--) { // 从尾部开始,用于保持连续(即每次只差一个bit位)
12+
result.add(result.get(j) | 1 << i);
13+
}
14+
}
15+
return result;
16+
}
17+
}
Lines changed: 59 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,59 @@
1+
### [89\. Gray Code](https://leetcode.com/problems/gray-code/)
2+
3+
Difficulty: **Medium**
4+
5+
6+
The gray code is a binary numeral system where two successive values differ in only one bit.
7+
8+
Given a non-negative integer _n_ representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.
9+
10+
**Example 1:**
11+
12+
```
13+
Input: 2
14+
Output: [0,1,3,2]
15+
Explanation:
16+
00 - 0
17+
01 - 1
18+
11 - 3
19+
10 - 2
20+
21+
For a given n, a gray code sequence may not be uniquely defined.
22+
For example, [0,2,3,1] is also a valid gray code sequence.
23+
24+
00 - 0
25+
10 - 2
26+
11 - 3
27+
01 - 1
28+
```
29+
30+
**Example 2:**
31+
32+
```
33+
Input: 0
34+
Output: [0]
35+
Explanation: We define the gray code sequence to begin with 0.
36+
  A gray code sequence of n has size = 2n, which for n = 0 the size is 20 = 1.
37+
  Therefore, for n = 0 the gray code sequence is [0].
38+
```
39+
40+
41+
#### Solution
42+
43+
Language: **Java**
44+
45+
```java
46+
class Solution {
47+
   public List<Integer> grayCode(int n) {
48+
       List<Integer> result = new ArrayList<>();
49+
       result.add(0);
50+
       for (int i = 0; i < n; i++) {
51+
           for (int j = result.size() - 1; j >= 0; j--) { // 从尾部开始,用于保持连续(即每次只差一个bit位)
52+
               result.add(result.get(j) | 1 << i);
53+
          }
54+
      }
55+
       return result;
56+
  }
57+
}
58+
```
59+
![pic](https://raw.githubusercontent.com/PicGoBed/PicBed/master/2019-08-01-RdPkMU.jpg)

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy