Skip to content

Commit a6811d1

Browse files
committed
0064. Minimum Path Sum
1 parent 66c8cd2 commit a6811d1

File tree

4 files changed

+138
-0
lines changed

4 files changed

+138
-0
lines changed

markdown/0064. Minimum Path Sum.md

Lines changed: 51 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,51 @@
1+
### [64\. Minimum Path Sum](https://leetcode.com/problems/minimum-path-sum/)
2+
3+
Difficulty: **Medium**
4+
5+
6+
Given a _m_ x _n_ grid filled with non-negative numbers, find a path from top left to bottom right which _minimizes_ the sum of all numbers along its path.
7+
8+
**Note:** You can only move either down or right at any point in time.
9+
10+
**Example:**
11+
12+
```
13+
Input:
14+
[
15+
  [1,3,1],
16+
[1,5,1],
17+
[4,2,1]
18+
]
19+
Output: 7
20+
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
21+
```
22+
23+
24+
#### Solution
25+
26+
Language: **Java**
27+
28+
```java
29+
class Solution {
30+
   public int minPathSum(int[][] grid) {
31+
       int width = grid[0].length;
32+
       int[] dp = new int[width]; // 表示到达该位置的最短路径长度
33+
       for (int i = 0; i < grid.length; i++) {
34+
           int[] ints = grid[i];
35+
           for (int j = 0; j < ints.length; j++) {
36+
               if (j == 0) {
37+
                   dp[0] += ints[j];
38+
              } else {
39+
                   if (i == 0) {
40+
                       dp[j] = dp[j - 1] + ints[j]; // 没有上,直接加
41+
                  } else {
42+
                       dp[j] = Math.min(dp[j - 1], dp[j]) + ints[j]; // 比较选择小的
43+
                  }
44+
              }
45+
          }
46+
      }
47+
       return dp[width - 1];
48+
  }
49+
}
50+
```
51+
![](https://raw.githubusercontent.com/coderbean/PicBed/master/20190718190913.png)

src/main/java/leetcode/_64_/Main.java

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
package leetcode._64_;
2+
3+
/**
4+
* Created by zhangbo54 on 2019-03-04.
5+
*/
6+
public class Main {
7+
public static void main(String[] args) {
8+
Solution solution = new Solution();
9+
int[][] grid = {{1, 3, 1}, {1, 5, 1}, {4, 2, 1}};
10+
System.out.println(solution.minPathSum(grid));
11+
}
12+
}
13+
Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
package leetcode._64_;
2+
3+
class Solution {
4+
public int minPathSum(int[][] grid) {
5+
int width = grid[0].length;
6+
int[] dp = new int[width]; // 表示到达该位置的最短路径长度
7+
for (int i = 0; i < grid.length; i++) {
8+
int[] ints = grid[i];
9+
for (int j = 0; j < ints.length; j++) {
10+
if (j == 0) {
11+
dp[0] += ints[j];
12+
} else {
13+
if (i == 0) {
14+
dp[j] = dp[j - 1] + ints[j]; // 没有上,直接加
15+
} else {
16+
dp[j] = Math.min(dp[j - 1], dp[j]) + ints[j]; // 比较选择小的
17+
}
18+
}
19+
}
20+
}
21+
return dp[width - 1];
22+
}
23+
}
Lines changed: 51 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,51 @@
1+
### [64\. Minimum Path Sum](https://leetcode.com/problems/minimum-path-sum/)
2+
3+
Difficulty: **Medium**
4+
5+
6+
Given a _m_ x _n_ grid filled with non-negative numbers, find a path from top left to bottom right which _minimizes_ the sum of all numbers along its path.
7+
8+
**Note:** You can only move either down or right at any point in time.
9+
10+
**Example:**
11+
12+
```
13+
Input:
14+
[
15+
  [1,3,1],
16+
[1,5,1],
17+
[4,2,1]
18+
]
19+
Output: 7
20+
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
21+
```
22+
23+
24+
#### Solution
25+
26+
Language: **Java**
27+
28+
```java
29+
class Solution {
30+
   public int minPathSum(int[][] grid) {
31+
       int width = grid[0].length;
32+
       int[] dp = new int[width]; // 表示到达该位置的最短路径长度
33+
       for (int i = 0; i < grid.length; i++) {
34+
           int[] ints = grid[i];
35+
           for (int j = 0; j < ints.length; j++) {
36+
               if (j == 0) {
37+
                   dp[0] += ints[j];
38+
              } else {
39+
                   if (i == 0) {
40+
                       dp[j] = dp[j - 1] + ints[j]; // 没有上,直接加
41+
                  } else {
42+
                       dp[j] = Math.min(dp[j - 1], dp[j]) + ints[j]; // 比较选择小的
43+
                  }
44+
              }
45+
          }
46+
      }
47+
       return dp[width - 1];
48+
  }
49+
}
50+
```
51+
![](https://raw.githubusercontent.com/coderbean/PicBed/master/20190718190913.png)

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy