Skip to content

Commit 3f2791e

Browse files
committed
pells equation squashing
1 parent 8c5bc69 commit 3f2791e

File tree

4 files changed

+202
-1
lines changed

4 files changed

+202
-1
lines changed

.gitignore

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,5 +8,6 @@ converted.pdf
88
/public
99
.firebase/
1010
firebase-debug.log
11+
.idea/
1112

12-
authors.json
13+
authors.json

README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -29,6 +29,7 @@ Compiled pages are published at [https://cp-algorithms.com/](https://cp-algorith
2929

3030
### New articles
3131

32+
- (26 March 2025) [Pell's equation](https://cp-algorithms.com/others/pell_equation.html)
3233
- (12 July 2024) [Manhattan distance](https://cp-algorithms.com/geometry/manhattan-distance.html)
3334
- (8 June 2024) [Knapsack Problem](https://cp-algorithms.com/dynamic_programming/knapsack.html)
3435
- (28 January 2024) [Introduction to Dynamic Programming](https://cp-algorithms.com/dynamic_programming/intro-to-dp.html)

src/navigation.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -215,6 +215,7 @@ search:
215215
- [Scheduling jobs on two machines](schedules/schedule_two_machines.md)
216216
- [Optimal schedule of jobs given their deadlines and durations](schedules/schedule-with-completion-duration.md)
217217
- Miscellaneous
218+
- [Pell's Equation](others/pells_equation.md)
218219
- [Tortoise and Hare Algorithm (Linked List cycle detection)](others/tortoise_and_hare.md)
219220
- [Josephus problem](others/josephus_problem.md)
220221
- [15 Puzzle Game: Existence Of The Solution](others/15-puzzle.md)

src/others/pells_equation.md

Lines changed: 198 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,198 @@
1+
---
2+
tags:
3+
- Original
4+
---
5+
6+
# Pell's Equation (Pell-Fermat Equation)
7+
8+
## Statement
9+
We are given a natural number $d$. We need to find the smallest positive integer $x$ such that $x^{2} - d \cdot y^{2} = 1$ for some integer $y$.
10+
11+
Alternative formulation: We want to find all the possible solutions of the equation $x^{2} - d \cdot y^{2} = 1$.
12+
13+
## Solution
14+
Here we will consider the case when $d$ is not a perfect square and $d>1$. The case when $d$ is a perfect square is trivial.
15+
We can even assume that $d$ is square-free (i.e. it is not divisible by the square of any prime number) as we can absorb the factors of $d$ into $y$.
16+
17+
$x^{2} - d \cdot y^{2} = ( x + \sqrt{d} \cdot y ) ( x - \sqrt{d} \cdot y ) = 1$
18+
19+
The first part $( x + \sqrt{d} \cdot y )$ is always greater than 1. And the second part $( x - \sqrt{d} \cdot y )$ is always less than 1.
20+
21+
We will prove that all solutions to Pell's equation are given by powers of the smallest positive solution. Let's assume it to be
22+
$ x_{0} + y_{0} \cdot \sqrt{d} $
23+
24+
We use method of descent to prove it. suppose there is a solution $u + v \cdot \sqrt{d}$ such that $u^{2} - d \cdot v^{2} = 1 $
25+
Therefore, $ ( x_{0} + \sqrt{d} \cdot y_{0} )^{n} < u + v \cdot \sqrt{d} < ( x_{0} + \sqrt{d} \cdot y_{0} )^{n+1} $
26+
27+
Multiplying the above inequality by $( x_{0} - \sqrt{d} \cdot y_{0} )^{n}$,(which is > 0 and < 1) we get
28+
29+
$ 1 < (u + v \cdot \sqrt{d})( x_{0} - \sqrt{d} \cdot y_{0} )^{n} < ( x_{0} + \sqrt{d} \cdot y_{0} ) $
30+
Because both $(u + v \cdot \sqrt{d})$ and $( x_{0} - \sqrt{d} \cdot y_{0} )^{n}$ have norm 1, their product is also a solution.
31+
But this contradicts our assumption that $( x_{0} + \sqrt{d} \cdot y_{0} )$ is the smallest solution. Therefore, there is no solution between $( x_{0} + \sqrt{d} \cdot y_{0} )^{n}$ and $( x_{0} + \sqrt{d} \cdot y_{0} )^{n+1}$.
32+
33+
Hence, we conclude that all solutions are given by $( x_{0} + \sqrt{d} \cdot y_{0} )^{n}$ for some integer $n$.
34+
35+
## To find the smallest positive solution
36+
### Expressing the solution in terms of continued fractions
37+
We can express the solution in terms of continued fractions. The continued fraction of $\sqrt{d}$ is periodic. Let's assume the continued fraction of $\sqrt{d}$ is $[a_{0}; \overline{a_{1}, a_{2}, \ldots, a_{r}}]$. The smallest positive solution is given by the convergent $[a_{0}; a_{1}, a_{2}, \ldots, a_{r}]$ where $r$ is the period of the continued fraction.
38+
39+
The convergents $p_{n}/q_{n}$ are the rational approximations to $\sqrt{d}$ obtained by truncating the continued fraction expansion at each stage. These convergents can be computed recursively.
40+
41+
Check whether the convergent satisfies the Pell's equation. If it does, then the convergent is the smallest positive solution.
42+
43+
Let's take an example to understand this by solving the equation $x^{2} - 2 \cdot y^{2} = 1$.
44+
$\sqrt{2} = [1; \overline{2}] = 1 + 1/(2 + 1/(2 + 1/(2+ ...))) $. The convergents are $1/1, 3/2, 7/5, 17/12, 41/29, 99/70, \ldots$.
45+
Now check for each convergent whether it satisfies the Pell's equation. The smallest positive solution is $3/2$.
46+
47+
### How to calculate the continued fraction of $\sqrt{d}$?
48+
Let's find the continued fraction of $\def\sf{\sqrt 7}\sf$.
49+
50+
$\sf \approx 2.6457 = 2 + 0.6457$
51+
52+
$a_{0} = 2 $
53+
54+
Subtract $a_{0}$ from the number and take the reciprocal of the remaining number.
55+
56+
That is, we calculate ${1\over \sf - 2} \approx 1.5486$. The integer part $a_{1}$ is $1$.
57+
So:
58+
$$\sf=2+\cfrac{1}{1+\cfrac1{\vdots}}$$ Where we haven't calculated the $\vdots$ part yet.
59+
To get that, we subtract $a_{1}$ from the number and take the reciprocal of the remaining number. That is, we calculate ${1\over 1.5486 - 1} \approx 1.8228$. The integer part $a_{2}$ is $1$.
60+
So:
61+
$$\sf=2+\cfrac{1}{1+\cfrac1{1+\cfrac1{\vdots}}}$$
62+
Now ${1\over 1.8228 - 1} \approx 1.2153$. So $a_{3} = 1$.
63+
Continuing this process, ${1\over 1.2153 - 1} \approx 4.645$. So $a_{4} = 4$.
64+
65+
$$\sf=2+\cfrac{1}{1+\cfrac1{1+\cfrac1{1+\cfrac4{\vdots}}}}$$
66+
67+
we get the continued fraction of $\sf$ as $[2; 1, 1, 4, 1, 1, 4, \ldots]$.
68+
69+
It can also be calculated using only [integer based calculation](https://cp-algorithms.com/algebra/continued-fractions.html)
70+
71+
### Finding the solution using Chakravala method
72+
The Chakravala method is an ancient Indian algorithm to solve Pell's equation. It is based on the Brahmagupta's identity of quadratic decomposition
73+
$(x_{1}^{2} - n \cdot y_{1}^{2}) \cdot (x_{2}^{2} - n \cdot y_{2}^{2}) = (x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2})^{2} - n \cdot (x_{1} \cdot y_{2} + x_{2} \cdot y_{1})^{2}$
74+
$(x_{1}^{2} - n \cdot y_{1}^{2}) \cdot (x_{2}^{2} - n \cdot y_{2}^{2}) = (x_{1} \cdot x_{2} - n \cdot y_{1} \cdot y_{2})^{2} - n \cdot (x_{1} \cdot y_{2} - x_{2} \cdot y_{1})^{2}$
75+
76+
And Bhaskara's Lemma:
77+
If $x^{2} - n \cdot y^{2} = k$, then $ ( \frac{ m \cdot x + n \cdot y }{k})^{2} - n \cdot ( \frac{ x + m \cdot y }{k})^{2} = \frac{m^2 - n}{k}$
78+
79+
Using above Brahmagupta's identity, If $(x_{1}, y_{1}, k_{1})$ and $(x_{2}, y_{2}, k_{2})$ satisfy $(x_{1}^{2} - y_1^{2}) \cdot (x_{2}^{2} - y_2^{2}) = k_{1} \cdot k_{2} $, then $(x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2}, x_{1} \cdot y_{2} + y_{1} \cdot x_{2}, k_{1} \cdot k_{2})$ is also a solution of $(x_{1} \cdot x_{2} + n \cdot y_{1} \cdot y_{2})^{2} - n \cdot (x_{1} \cdot y_{2} + x_{2} \cdot y_{1})^{2} = k_{1} \cdot k_{2}$
80+
81+
#### Steps
82+
1. Initialization:Choose an initial solution $(p_{0}, q_{0}, m_{0})$ where $p_{0}$ and $q_{0}$ are co-prime such that $p_{0}^{2} - N \cdot q_{0}^{2} = m_{0}$. Typically, start with $p_{0} = \lfloor \sqrt N \rfloor $, $q_{0} = 1$, $m_{0} = p_0^2 - N $.
83+
2. Key step: Find $x_{1}$ such that: $q_{0} \cdot x_{1} \equiv -p_{0} \pmod {\lvert m_{0}\rvert}$ and $\lvert x_{1}^2 - N \rvert$ is minimized.
84+
Update the triple $(p_{1}, q_{1}, m_{1}) = ( \frac{x_{1} \cdot p_{0} + N \cdot q_{0}}{\lvert m_{0} \rvert}, \frac{p_{0} + x_{1} \cdot q_{0}}{\lvert m_{0} \rvert}, \frac{x_1^{2} - N}{m_{0}})$.
85+
3. Termination: When $m_{k}=1$, the values of $p_{k}$ and $q_{k}$ are the smallest positive solution of the Pell's equation.
86+
87+
##### Example
88+
Let's solve the equation $x^{2} - 13 \cdot y^{2} = 1$ using Chakravala method.
89+
1. Start with $(p_{0}, q_{0}, m_{0}) = (3, 1, -4)$ because $3^2 - 13 \cdot1^2 = -4$.
90+
91+
2. Find $x_{1}$ such that $x_{1} \equiv -3 \pmod {4}$ and $\lvert x_{1}^2 - 13 \rvert$ is minimized.
92+
We get $x_{1} = 1$. Update the triple $(p_{1}, q_{1}, m_{1}) = ( \frac{1 \cdot 3 + 13 \cdot 1}{4}, \frac{3 + 1 \cdot 1}{4}, \frac{1^{2} - 13}{-4}) = (4, 1, 3)$.
93+
3. Substituting $(p_{1}, q_{1}, k_{1}) = (4, 1, 3)$ in key step, we get $x_{2} \equiv -4 \pmod 3$ and minimize $\lvert x_{2}^2 - 13 \rvert$ i.e, $x_{2} = 2$. Update the triple $(p_{2}, q_{2}, m_{2}) = ( \frac{2 \cdot 4 + 13 \cdot 1}{3}, \frac{4 + 2 \cdot 1}{3}, \frac{2^{2} - 13}{-3}) = (7, 2, -3)$.
94+
4. Substituting $(p_{2}, q_{2}, m_{2}) = (7, 2, -3)$ in key step, we get $2 \cdot x_{3} \equiv -7 \pmod 3$ and minimize $\lvert x_{3}^2 - 13 \rvert$ i.e, $x_{3} = 4$. Update the triple $(p_{3}, q_{3}, m_{3}) = ( \frac{4 \cdot 7 + 13 \cdot 2}{3}, \frac{7 + 4 \cdot 2}{3}, \frac{4^{2} - 13}{-3}) = (18, 5, -1)$.
95+
5. Substituting $(p_{3}, q_{3}, m_{3}) = (18, 5, -1)$ in key step, we get $5 \cdot x_{4} \equiv -18 \pmod 1$ and minimize $\lvert x_{4}^2 - 13 \rvert$ i.e, $x_{4} = 4$. Update the triple $(p_{4}, q_{4}, m_{4}) = ( \frac{4 \cdot 18 + 13 \cdot 5}{1}, \frac{18 + 4 \cdot 5}{1}, \frac{4^{2} - 13}{-1}) = (137, 38, -3)$.
96+
6. Substituting $(p_{4}, q_{4}, m_{4}) = (137, 38, -3)$ in key step, we get $ 38 \cdot x_{5} \equiv -137 \pmod 3$ and minimize $\lvert x_{5}^2 - 13 \rvert$ i.e, $x_{5} = 2$. Update the triple $(p_{5}, q_{5}, m_{5}) = ( \frac{2 \cdot 137 + 13 \cdot 38}{3}, \frac{137 + 2 \cdot 38}{3}, \frac{2^{2} - 13}{-3}) = (256, 71, 3)$.
97+
7. Substituting $(p_{5}, q_{5}, m_{5}) = (256, 71, 3)$ in key step, we get $ 71 \cdot x_{6} \equiv -256 \pmod 3$ and minimize $\lvert x_{6}^2 - 13 \rvert$ i.e, $x_{6} = 4$. Update the triple $(p_{6}, q_{6}, m_{6}) = ( \frac{4 \cdot 256 + 13 \cdot 71}{3}, \frac{256 + 4 \cdot 71}{3}, \frac{4^{2} - 13}{3}) = (649, 180, 1)$.
98+
99+
## Implementation
100+
```cpp
101+
bool isSquare(long long n) {
102+
long long sqrtN = (long long)sqrt(n);
103+
return sqrtN * sqrtN == n;
104+
}
105+
106+
long long mod(long long a, long long b) {
107+
return (a % b + b) % b;
108+
}
109+
110+
long long modInv(long long a, long long b) {
111+
long long b0 = b, x0 = 0, x1 = 1;
112+
if (b == 1) return 1;
113+
while (a > 1) {
114+
long long q = a / b;
115+
long long temp = b;
116+
b = a % b;
117+
a = temp;
118+
temp = x0;
119+
x0 = x1 - q * x0;
120+
x1 = temp;
121+
}
122+
if (x1 < 0) x1 += b0;
123+
return x1;
124+
}
125+
126+
127+
// Chakravala method for solving Pell's equation
128+
pair<long long, long long> chakravala(int n) {
129+
// Check if n is a perfect square
130+
if (isSquare(n)) {
131+
throw invalid_argument("n is a perfect square. No solutions exist for Pell's equation.");
132+
}
133+
134+
// Initial values
135+
double sqrt_n = sqrt(n);
136+
long long a = (long long)floor(sqrt_n); // Initial a
137+
long long b = 1; // Initial b
138+
long long k = a * a - n; // Initial k
139+
140+
int steps = 0; // Step counter for iterations
141+
142+
// Repeat until k = 1
143+
while (k != 1) {
144+
long long absK = abs(k);
145+
146+
// Find m such that k | (a + bm), and minimize |m^2 - n|
147+
long long m;
148+
if (absK == 1) {
149+
m = (long long)round(sqrt(n)); // round to nearest integer
150+
} else {
151+
long long r = mod(-a, absK); // Negative of a mod(k) // (a + m*b)/|k|
152+
long long s = modInv(b, absK); // Modular inverse of b mod(k)
153+
m = mod(r * s, absK); // Compute m for (a + b*m) mod(k) = 0
154+
155+
// Approximate value of m
156+
// m = m + ((long long)floor((sqrt_n - m) / absK)) * absK;
157+
158+
// Adjust m to ensure m < sqrt(n) < m + k
159+
while (m > sqrt(n)) m -= absK;
160+
while (m + absK < sqrt_n) m += absK;
161+
162+
// Select closest value to n
163+
if (abs(m * m - n) > abs((m + absK) * (m + absK) - n)) {
164+
m = m + absK;
165+
}
166+
}
167+
168+
// Print the current triple
169+
cout << "[a = " << a << ", b = " << b << ", k = " << k << "]" << endl;
170+
171+
// Update a, b, k using the recurrence relations
172+
long long alpha = a;
173+
a = (m * a + n * b) / absK;
174+
b = (alpha + m * b) / absK;
175+
k = (m * m - n) / k;
176+
177+
// Increment step counter
178+
steps++;
179+
}
180+
181+
// Print final result
182+
cout << a << "^2 - " << n << " x " << b << "^2 = 1 in " << steps << " calculations." << endl;
183+
184+
// Return the solution as a pair (a, b)
185+
return {a, b};
186+
}
187+
188+
```
189+
190+
## References
191+
- [Pell's equation - Wikipedia](https://en.wikipedia.org/wiki/Pell%27s_equation)
192+
- [Periodic Continued Fractions](https://en.wikipedia.org/wiki/Periodic_continued_fraction)
193+
- [Chakravala Method](http://publications.azimpremjifoundation.org/1630/1/3_The%20Chakravala%20Method.pdf)
194+
- [Pythagorean triples and Pell's equations - Codeforces](https://codeforces.com/blog/entry/116313)
195+
196+
## Problems
197+
- [Project Euler 66](https://projecteuler.net/problem=66)
198+
- [Hackerrank ProjectEuler-066](https://www.hackerrank.com/contests/projecteuler/challenges/euler066/problem)

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy