Skip to content

Commit 4cdc4df

Browse files
authored
Fibonacci: better motivation for matrix form
1 parent 91672f0 commit 4cdc4df

File tree

1 file changed

+41
-2
lines changed

1 file changed

+41
-2
lines changed

src/algebra/fibonacci-numbers.md

Lines changed: 41 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -116,9 +116,48 @@ In this way, we obtain a linear solution, $O(n)$ time, saving all the values pri
116116
117117
### Matrix form
118118
119-
It is easy to prove the following relation:
119+
To go from $(F_n, F_{n-1})$ to $(F_{n+1}, F_n)$, we can express the linear recurrence as a 2x2 matrix multiplication:
120120
121-
$$\begin{pmatrix} 1 & 1 \cr 1 & 0 \cr\end{pmatrix} ^ n = \begin{pmatrix} F_{n+1} & F_{n} \cr F_{n} & F_{n-1} \cr\end{pmatrix}$$
121+
$$
122+
\begin{pmatrix}
123+
1 & 1 \\
124+
1 & 0
125+
\end{pmatrix}
126+
\begin{pmatrix}
127+
F_n \\
128+
F_{n-1}
129+
\end{pmatrix}
130+
=
131+
\begin{pmatrix}
132+
F_n + F_{n-1} \\
133+
F_{n}
134+
\end{pmatrix}
135+
=
136+
\begin{pmatrix}
137+
F_{n+1} \\
138+
F_{n}
139+
\end{pmatrix}
140+
$$
141+
142+
This lets us treat iterating the recurrence as repeated matrix multiplication, which has nice properties. In particular,
143+
144+
$$
145+
\begin{pmatrix}
146+
1 & 1 \\
147+
1 & 0
148+
\end{pmatrix}^n
149+
\begin{pmatrix}
150+
F_1 \\
151+
F_0
152+
\end{pmatrix}
153+
=
154+
\begin{pmatrix}
155+
F_{n+1} \\
156+
F_{n}
157+
\end{pmatrix}
158+
$$
159+
160+
where $F_1 = 1, F_0 = 0$.
122161
123162
Thus, in order to find $F_n$ in $O(log n)$ time, we must raise the matrix to n. (See [Binary exponentiation](binary-exp.md))
124163

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy