6553
6553
6554
6554
6555
6555
6556
+
6557
+
6556
6558
6557
6559
6558
6560
6565
6567
6566
6568
6567
6569
6570
+
6571
+
6568
6572
6569
6573
6570
6574
6571
6575
6572
6576
6573
6577
6574
-
6578
+
6579
+
6580
+
6575
6581
6576
6582
6577
6583
6605
6611
6606
6612
6607
6613
6614
+
6615
+
6616
+
6617
+
6608
6618
6609
6619
6610
6620
6617
6627
< ul class ="metadata page-metadata " data-bi-name ="page info " lang ="en-us " dir ="ltr ">
6618
6628
6619
6629
Last update:
6620
- < span class ="git-revision-date-localized-plugin git-revision-date-localized-plugin-date " title ="May 2 , 2025 18:37:17 UTC "> May 2 , 2025</ span >  
6630
+ < span class ="git-revision-date-localized-plugin git-revision-date-localized-plugin-date " title ="June 14 , 2025 10:11:52 UTC "> June 14 , 2025</ span >  
6621
6631
6622
6632
<!-- Tags -->
6623
6633
@@ -6683,7 +6693,7 @@ <h2 id="shortest-paths-of-a-fixed-length">Shortest paths of a fixed length<a cla
6683
6693
Then the following formula computes each entry of < span class ="arithmatex "> $L_{k+1}$</ span > :</ p >
6684
6694
< div class ="arithmatex "> $$L_{k+1}[i][j] = \min_{p = 1 \ldots n} \left(L_k[i][p] + G[p][j]\right)$$</ div >
6685
6695
< p > When looking closer at this formula, we can draw an analogy with the matrix multiplication:
6686
- in fact the matrix < span class ="arithmatex "> $L_k$</ span > is multiplied by the matrix < span class ="arithmatex "> $G$</ span > , the only difference is that instead in the multiplication operation we take the minimum instead of the sum.</ p >
6696
+ in fact the matrix < span class ="arithmatex "> $L_k$</ span > is multiplied by the matrix < span class ="arithmatex "> $G$</ span > , the only difference is that instead in the multiplication operation we take the minimum instead of the sum, and the sum instead of the multiplication as the inner operation .</ p >
6687
6697
< div class ="arithmatex "> $$L_{k+1} = L_k \odot G,$$</ div >
6688
6698
< p > where the operation < span class ="arithmatex "> $\odot$</ span > is defined as follows:</ p >
6689
6699
< div class ="arithmatex "> $$A \odot B = C~~\Longleftrightarrow~~C_{i j} = \min_{p = 1 \ldots n}\left(A_{i p} + B_{p j}\right)$$</ div >
@@ -6703,7 +6713,7 @@ <h2 id="generalization-of-the-problems-for-paths-with-length-up-to-k">Generaliza
6703
6713
6704
6714
< ul class ="metadata page-metadata " data-bi-name ="page info " lang ="en-us " dir ="ltr ">
6705
6715
< span class ="contributors-text "> Contributors:</ span >
6706
- < ul class ="contributors " data-bi-name ="contributors "> < li > < a href ="https://github.com/jakobkogler " title ="jakobkogler " data-bi-name ="contributorprofile " target ="_blank "> jakobkogler</ a > (91.4 %)</ li > < li > < a href ="https://github.com/adamant-pwn " title ="adamant-pwn " data-bi-name ="contributorprofile " target ="_blank "> adamant-pwn</ a > (6.45 %)</ li > < li > < a href ="https://github.com/bit-shashank " title ="bit-shashank " data-bi-name ="contributorprofile " target ="_blank "> bit-shashank</ a > (1.08%)</ li > < li > < a href ="https://github.com/wikku " title ="wikku " data-bi-name ="contributorprofile " target ="_blank "> wikku</ a > (1.08%)</ li > </ ul >
6716
+ < ul class ="contributors " data-bi-name ="contributors "> < li > < a href ="https://github.com/jakobkogler " title ="jakobkogler " data-bi-name ="contributorprofile " target ="_blank "> jakobkogler</ a > (90.32 %)</ li > < li > < a href ="https://github.com/adamant-pwn " title ="adamant-pwn " data-bi-name ="contributorprofile " target ="_blank "> adamant-pwn</ a > (7.53 %)</ li > < li > < a href ="https://github.com/bit-shashank " title ="bit-shashank " data-bi-name ="contributorprofile " target ="_blank "> bit-shashank</ a > (1.08%)</ li > < li > < a href ="https://github.com/wikku " title ="wikku " data-bi-name ="contributorprofile " target ="_blank "> wikku</ a > (1.08%)</ li > </ ul >
6707
6717
</ ul >
6708
6718
6709
6719
</ article >
0 commit comments