diff --git a/src/graph/fixed_length_paths.md b/src/graph/fixed_length_paths.md index e5ecf76bc..9e1c1efad 100644 --- a/src/graph/fixed_length_paths.md +++ b/src/graph/fixed_length_paths.md @@ -21,7 +21,7 @@ The following algorithm works also in the case of multiple edges: if some pair of vertices $(i, j)$ is connected with $m$ edges, then we can record this in the adjacency matrix by setting $G[i][j] = m$. Also the algorithm works if the graph contains loops (a loop is an edge that connect a vertex with itself). -It is obvious that the constructed adjacency matrix if the answer to the problem for the case $k = 1$. +It is obvious that the constructed adjacency matrix is the answer to the problem for the case $k = 1$. It contains the number of paths of length $1$ between each pair of vertices. We will build the solution iteratively: pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy