|
| 1 | +"""This sample demonstrates how to use Azure AI Foundry SDK to run GitHub model catalog with evaluation. |
| 2 | +It is leveraging your endpoint and key. The call is synchronous. |
| 3 | +
|
| 4 | +For those who have Azure credentials, you can run the risk and safety evaluators from Azure AI. |
| 5 | +
|
| 6 | +Azure Evaluation SDK: https://learn.microsoft.com/en-us/azure/ai-studio/how-to/develop/evaluate-sdk |
| 7 | +""" |
| 8 | + |
| 9 | +import os |
| 10 | +import json |
| 11 | +from pathlib import Path |
| 12 | +from azure.ai.inference import ChatCompletionsClient |
| 13 | +from azure.ai.inference.models import SystemMessage, UserMessage |
| 14 | +from azure.ai import evaluation |
| 15 | +from azure.ai.evaluation import RougeType, evaluate |
| 16 | +from azure.core.credentials import AzureKeyCredential |
| 17 | +from azure.identity import DefaultAzureCredential |
| 18 | + |
| 19 | + |
| 20 | +token = os.environ['GITHUB_TOKEN'] |
| 21 | + |
| 22 | +# Target model is the model to be evaluated. |
| 23 | +target_model_name = "Mistral-small" |
| 24 | +target_model_endpoint = "https://models.inference.ai.azure.com" |
| 25 | +# Judge model is the model to evaluate the target model. |
| 26 | +judge_model_name = "gpt-4o-mini" |
| 27 | +judge_model_endpoint = "https://models.inference.ai.azure.com" |
| 28 | + |
| 29 | +evaluation_name = "GitHub models evaluation" |
| 30 | +eval_data_file = Path("./eval_data.jsonl") |
| 31 | +eval_result_file_perf_and_quality = Path("./eval_result_perf_and_quality.json") |
| 32 | +eval_result_file_risk_and_safety = Path("./eval_result_risk_and_safety.json") |
| 33 | + |
| 34 | + |
| 35 | +def generate_eval_data(): |
| 36 | + eval_data_queries = [{ |
| 37 | + "query": "What is the capital of France?", |
| 38 | + "ground_truth": "Paris", |
| 39 | + }, { |
| 40 | + "query": "Where is Wineglass Bay?", |
| 41 | + "ground_truth": "Wineglass Bay is located on the Freycinet Peninsula on the east coast of Tasmania, Australia.", |
| 42 | + }] |
| 43 | + |
| 44 | + with eval_data_file.open("w") as f: |
| 45 | + for eval_data_query in eval_data_queries: |
| 46 | + client = ChatCompletionsClient( |
| 47 | + endpoint=target_model_endpoint, |
| 48 | + credential=AzureKeyCredential(token), |
| 49 | + ) |
| 50 | + |
| 51 | + context = "You are a geography teacher." |
| 52 | + response = client.complete( |
| 53 | + messages=[ |
| 54 | + SystemMessage(content=context), |
| 55 | + UserMessage(content=eval_data_query["query"]), |
| 56 | + ], |
| 57 | + model=target_model_name, |
| 58 | + temperature=1., |
| 59 | + max_tokens=1000, |
| 60 | + top_p=1. |
| 61 | + ) |
| 62 | + result = response.choices[0].message.content |
| 63 | + |
| 64 | + eval_data = { |
| 65 | + "id": "1", |
| 66 | + "description": "Evaluate the model", |
| 67 | + "query": eval_data_query["query"], |
| 68 | + "context": context, |
| 69 | + "response": result, |
| 70 | + "ground_truth": eval_data_query["ground_truth"], |
| 71 | + } |
| 72 | + f.write(json.dumps(eval_data) + "\n") |
| 73 | + |
| 74 | + |
| 75 | +def run_perf_and_quality_evaluators(): |
| 76 | + model_config = { |
| 77 | + "azure_endpoint": judge_model_endpoint, |
| 78 | + "azure_deployment": judge_model_name, |
| 79 | + "api_key": token, |
| 80 | + } |
| 81 | + |
| 82 | + evaluators = { |
| 83 | + "BleuScoreEvaluator": evaluation.BleuScoreEvaluator(), |
| 84 | + "F1ScoreEvaluator": evaluation.F1ScoreEvaluator(), |
| 85 | + "GleuScoreEvaluator": evaluation.GleuScoreEvaluator(), |
| 86 | + "MeteorScoreEvaluator": evaluation.MeteorScoreEvaluator(), |
| 87 | + "RougeScoreEvaluator": evaluation.RougeScoreEvaluator(rouge_type=RougeType.ROUGE_L), |
| 88 | + "CoherenceEvaluator": evaluation.CoherenceEvaluator(model_config=model_config), |
| 89 | + "FluencyEvaluator": evaluation.FluencyEvaluator(model_config=model_config), |
| 90 | + "GroundednessEvaluator": evaluation.GroundednessEvaluator(model_config=model_config), |
| 91 | + "QAEvaluator": evaluation.QAEvaluator(model_config=model_config, _parallel=False), |
| 92 | + "RelevanceEvaluator": evaluation.RelevanceEvaluator(model_config=model_config), |
| 93 | + "RetrievalEvaluator": evaluation.RetrievalEvaluator(model_config=model_config), |
| 94 | + "SimilarityEvaluator": evaluation.SimilarityEvaluator(model_config=model_config), |
| 95 | + } |
| 96 | + |
| 97 | + eval_results = evaluate( |
| 98 | + data=eval_data_file, |
| 99 | + evaluators=evaluators, |
| 100 | + evaluation_name=evaluation_name, |
| 101 | + target=None, |
| 102 | + output_path=eval_result_file_perf_and_quality, |
| 103 | + ) |
| 104 | + print(json.dumps(eval_results, indent=4)) |
| 105 | + |
| 106 | + |
| 107 | +def run_risk_and_safety_evaluators_with_azure(): |
| 108 | + azure_ai_project = { |
| 109 | + "subscription_id": os.environ.get("AZURE_SUBSCRIPTION_ID"), |
| 110 | + "resource_group_name": os.environ.get("AZURE_RESOURCE_GROUP_NAME"), |
| 111 | + "project_name": os.environ.get("AZURE_PROJECT_NAME"), |
| 112 | + } |
| 113 | + credential = DefaultAzureCredential() |
| 114 | + evaluators = { |
| 115 | + "ContentSafetyEvaluator": evaluation.ContentSafetyEvaluator(azure_ai_project=azure_ai_project, credential=credential), |
| 116 | + "HateUnfairnessEvaluator": evaluation.HateUnfairnessEvaluator(azure_ai_project=azure_ai_project, credential=credential), |
| 117 | + "SelfHarmEvaluator": evaluation.SelfHarmEvaluator(azure_ai_project=azure_ai_project, credential=credential), |
| 118 | + "SexualEvaluator": evaluation.SexualEvaluator(azure_ai_project=azure_ai_project, credential=credential), |
| 119 | + "ViolenceEvaluator": evaluation.ViolenceEvaluator(azure_ai_project=azure_ai_project, credential=credential), |
| 120 | + "ProtectedMaterialEvaluator": evaluation.ProtectedMaterialEvaluator(azure_ai_project=azure_ai_project, credential=credential), |
| 121 | + "IndirectAttackEvaluator": evaluation.IndirectAttackEvaluator(azure_ai_project=azure_ai_project, credential=credential), |
| 122 | + "GroundednessProEvaluator": evaluation.GroundednessProEvaluator(azure_ai_project=azure_ai_project, credential=credential), |
| 123 | + } |
| 124 | + |
| 125 | + risk_and_safety_result_dict = {} |
| 126 | + with eval_data_file.open("r") as f: |
| 127 | + for line in f: |
| 128 | + eval_data = json.loads(line) |
| 129 | + for name, evaluator in evaluators.items(): |
| 130 | + if name != "GroundednessProEvaluator": |
| 131 | + score = evaluator(query=eval_data["query"], response=eval_data["response"]) |
| 132 | + else: |
| 133 | + score = evaluator(query=eval_data["query"], response=eval_data["response"], context=eval_data["context"]) |
| 134 | + print(f"{name}: {score}") |
| 135 | + risk_and_safety_result_dict[name] = score |
| 136 | + |
| 137 | + with eval_result_file_risk_and_safety.open("w") as f: |
| 138 | + f.write(json.dumps(risk_and_safety_result_dict, indent=4)) |
| 139 | + |
| 140 | + |
| 141 | +if __name__ == "__main__": |
| 142 | + # Generate evaluation data with GitHub model catalog and save it to a file. |
| 143 | + generate_eval_data() |
| 144 | + |
| 145 | + # Run performance and quality evaluators with GitHub model catalog. |
| 146 | + run_perf_and_quality_evaluators() |
| 147 | + |
| 148 | + # # Uncomment the following code with Azure credentials, then we can run the risk and safety evaluators from Azure AI. |
| 149 | + # run_risk_and_safety_evaluators_with_azure() |
0 commit comments