diff --git a/NumPy.ipynb b/NumPy.ipynb deleted file mode 100644 index 2825118..0000000 --- a/NumPy.ipynb +++ /dev/null @@ -1,2388 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "3ef254f6", - "metadata": {}, - "source": [ - "![GitHub Community GITAM](https://raw.githubusercontent.com/srinijadharani/GitHub-Campus-Code-of-Conduct/main/github_landscape.png)" - ] - }, - { - "cell_type": "markdown", - "id": "156c3891", - "metadata": {}, - "source": [ - "# Numpy" - ] - }, - { - "cell_type": "markdown", - "id": "76b24b7a", - "metadata": {}, - "source": [ - "### What is Numpy?\n", - "NumPy is an open-source Python package. It stands for **Numerical Python**. It is a library consisting of multidimensional array objects and a collection of routines for processing of array. Using NumPy, mathematical and logical operations on arrays can be performed.\n", - "\n", - "Check out Numpy's repository on GitHub [here](https://github.com/numpy/numpy)\n", - "\n", - "### Installation:\n", - "- If you use pip, install Numpy using the following command:
\n", - "`pip install numpy`\n", - "- If you installed Anaconda, then Numpy comes pre-installed.\n", - "\n", - "### Why use Numpy?\n", - "NumPy arrays are faster and more compact than Python lists. An array consumes less memory and is convenient to use. NumPy uses much less memory to store data and it provides a mechanism of specifying the data types. This allows the code to be optimized even further.\n", - "\n", - "### Importing:\n", - "You can import Numpy in your program using the following command:
\n", - "`import numpy as np`" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "d82f188f", - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np" - ] - }, - { - "cell_type": "markdown", - "id": "e05a80fa", - "metadata": {}, - "source": [ - "Check the version of Numpy you're using right now:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "8668879e", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'1.20.3'" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.__version__" - ] - }, - { - "cell_type": "markdown", - "id": "4423b8f9", - "metadata": {}, - "source": [ - "See the configuration of Numpy you're using right now:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "35ddbafc", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "blas_mkl_info:\n", - " libraries = ['mkl_rt']\n", - " library_dirs = ['C:/Users/srini/anaconda3\\\\Library\\\\lib']\n", - " define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]\n", - " include_dirs = ['C:/Users/srini/anaconda3\\\\Library\\\\include']\n", - "blas_opt_info:\n", - " libraries = ['mkl_rt']\n", - " library_dirs = ['C:/Users/srini/anaconda3\\\\Library\\\\lib']\n", - " define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]\n", - " include_dirs = ['C:/Users/srini/anaconda3\\\\Library\\\\include']\n", - "lapack_mkl_info:\n", - " libraries = ['mkl_rt']\n", - " library_dirs = ['C:/Users/srini/anaconda3\\\\Library\\\\lib']\n", - " define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]\n", - " include_dirs = ['C:/Users/srini/anaconda3\\\\Library\\\\include']\n", - "lapack_opt_info:\n", - " libraries = ['mkl_rt']\n", - " library_dirs = ['C:/Users/srini/anaconda3\\\\Library\\\\lib']\n", - " define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]\n", - " include_dirs = ['C:/Users/srini/anaconda3\\\\Library\\\\include']\n" - ] - } - ], - "source": [ - "np.show_config()" - ] - }, - { - "cell_type": "markdown", - "id": "755884ce", - "metadata": {}, - "source": [ - "### How can you create a Numpy Array?
\n", - "We can directly create a Numpy Array by converting a list or a list of lists:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "8abc685b", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array(['1', '6', 'numpy', '9.7'], dtype='\n", - "<: little endian - specifies the byte order
\n", - "U: Unicode string
\n", - "32: a string of 32 characters
\n", - "So, `dtype='\n", - "Syntax:\n", - "`arange(start, stop, step)`" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "faeb2ccb", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1, 3, 5, 7, 9])" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.arange(1, 11, 2)\n", - "# creates an array of odd numbers between 1 and 11 (1 inclusive, 11 exclusive)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "85108fd2", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 2, 4, 6, 8, 10])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.arange(2, 11, 2)\n", - "# creates an array of even nuumbers between 2 and 11 (2 inclusive, 11 exclusive)" - ] - }, - { - "cell_type": "markdown", - "id": "2eb0cfeb", - "metadata": {}, - "source": [ - "You can create an array of zeros using the `zeros()` function.
\n", - "Syntax: `zeros(n)` or `zeros((n, m))`. 'n and m' are the number of zeros you want in your array. Using n alone would return a 1D array. (n, m) returns a 2D array of zeros.\n", - "\n", - "**Note:** Remember to pass (n, m) as a tuple." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "92974a30", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.zeros(10)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "a4166fc7", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0., 0., 0., 0., 0.],\n", - " [0., 0., 0., 0., 0.]])" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.zeros((2, 5))" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "45b83c2e", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0., 0., 0., 0., 0.],\n", - " [0., 0., 0., 0., 0.],\n", - " [0., 0., 0., 0., 0.],\n", - " [0., 0., 0., 0., 0.],\n", - " [0., 0., 0., 0., 0.]])" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.zeros((5, 5))" - ] - }, - { - "cell_type": "markdown", - "id": "51da657f", - "metadata": {}, - "source": [ - "Similar to zeros(), there is ones(). This function is used to create a 1D or 2D array of ones." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "36f89c83", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1., 1.])" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.ones(2)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "e36686e7", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1., 1., 1., 1., 1., 1., 1., 1.],\n", - " [1., 1., 1., 1., 1., 1., 1., 1.],\n", - " [1., 1., 1., 1., 1., 1., 1., 1.]])" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.ones((3, 8))" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "81df1003", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1., 1., 1., 1.],\n", - " [1., 1., 1., 1.],\n", - " [1., 1., 1., 1.],\n", - " [1., 1., 1., 1.]])" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.ones((4, 4))" - ] - }, - { - "cell_type": "markdown", - "id": "c630e7e1", - "metadata": {}, - "source": [ - "To find the memory size of a numpy array, use the following formula:
\n", - "`Memory size = size of the array * size of the items in the array`" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "fb7cd366", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "44 bytes\n" - ] - } - ], - "source": [ - "arr = np.arange(1, 12)\n", - "print(\"%d bytes\" %(arr.size * arr.itemsize))" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "a47f0395", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "11" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr.size" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "5e55e106", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr.itemsize" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "d106a594", - "metadata": {}, - "outputs": [], - "source": [ - "arr1 = np.array([\"one\", \"two\", \"three\", \"four\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "0615b9cc", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr1.size" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "4a0d0a48", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "20" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr1.itemsize" - ] - }, - { - "cell_type": "markdown", - "id": "5c45eb6e", - "metadata": {}, - "source": [ - "To create an array of **evenly spaced integers** over a specified interval, use the `linspace()` function." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "043ab983", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 0. , 2.5, 5. , 7.5, 10. ])" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linspace(0, 10, 5)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "6070b0a8", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 0. , 0.41666667, 0.83333333, 1.25 , 1.66666667,\n", - " 2.08333333, 2.5 , 2.91666667, 3.33333333, 3.75 ,\n", - " 4.16666667, 4.58333333, 5. , 5.41666667, 5.83333333,\n", - " 6.25 , 6.66666667, 7.08333333, 7.5 , 7.91666667,\n", - " 8.33333333, 8.75 , 9.16666667, 9.58333333, 10. ])" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linspace(0, 10, 25)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "2301a563", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 0. , 22.22222222, 44.44444444, 66.66666667,\n", - " 88.88888889, 111.11111111, 133.33333333, 155.55555556,\n", - " 177.77777778, 200. ])" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linspace(0, 200, 10)" - ] - }, - { - "cell_type": "markdown", - "id": "1278453a", - "metadata": {}, - "source": [ - "The `eye()` function is used to create an identity matrix of a given size." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "7aec8e59", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1., 0., 0., 0., 0.],\n", - " [0., 1., 0., 0., 0.],\n", - " [0., 0., 1., 0., 0.],\n", - " [0., 0., 0., 1., 0.],\n", - " [0., 0., 0., 0., 1.]])" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.eye(5)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "30d8ef4d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],\n", - " [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],\n", - " [0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],\n", - " [0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],\n", - " [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],\n", - " [0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],\n", - " [0., 0., 0., 0., 0., 0., 1., 0., 0., 0.],\n", - " [0., 0., 0., 0., 0., 0., 0., 1., 0., 0.],\n", - " [0., 0., 0., 0., 0., 0., 0., 0., 1., 0.],\n", - " [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]])" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.eye(10)" - ] - }, - { - "cell_type": "markdown", - "id": "fe45ade0", - "metadata": {}, - "source": [ - "Numpy has the **random** module which has a lot of useful functions.\n", - "\n", - "**Note:** Random number does not mean a different number every time. Random means something that can not be predicted logically." - ] - }, - { - "cell_type": "markdown", - "id": "ed84082a", - "metadata": {}, - "source": [ - "`rand(x)` or `rand(x, y)` - creates an array of the given shape and populates it with random samples from a uniform distribution over [0, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "66cb6cb6", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0.90686041, 0.68339155, 0.25263953, 0.52888379, 0.6522411 ,\n", - " 0.08040521, 0.95468398, 0.764556 , 0.21074499, 0.78057812])" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.random.rand(10)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "80d266b2", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.53073878, 0.2884517 , 0.65916252, 0.22842514],\n", - " [0.03030595, 0.30790469, 0.15688523, 0.95489973],\n", - " [0.4205393 , 0.27544475, 0.18495732, 0.08423577],\n", - " [0.26796152, 0.49485765, 0.32901431, 0.06760323]])" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.random.rand(4, 4)\n", - "# rand - uniform distribution" - ] - }, - { - "cell_type": "markdown", - "id": "0912b613", - "metadata": {}, - "source": [ - "`randn(x)` or `randn(x, y)` - returns an array from the standard normal distribution." - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "id": "d0343ea7", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.7708972375694806" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.random.randn()\n", - "# one value" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "id": "397dfafb", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 0.10344622, -1.55634666, -0.33777462, -0.42138101])" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.random.randn(4)\n", - "# 4 values" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "id": "158e9bc1", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[-0.11432184, -0.47291981, 0.06279605],\n", - " [-1.18945243, -0.90578155, -1.61738795],\n", - " [ 0.45875176, 0.52117105, 0.99144616],\n", - " [ 0.24096445, 0.76590718, -0.31749352]])" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.random.randn(4, 3)\n", - "# a matrix of size 4, 3" - ] - }, - { - "cell_type": "markdown", - "id": "e2bf3b55", - "metadata": {}, - "source": [ - "`randint()` - returns random integers over the given range and if specified the number of integers" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "id": "0a04e4e8", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "19" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.random.randint(1, 100)\n", - "# one integer" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "id": "a19ee4db", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([39, 16, 10, 39, 12, 18, 18, 38, 24, 46])" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.random.randint(1, 50, 10)\n", - "# n integers in a given interval" - ] - }, - { - "cell_type": "markdown", - "id": "1069fa96", - "metadata": {}, - "source": [ - "`reshape()` - gives a new shape to an array without changing its data." - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "id": "17c9b4d0", - "metadata": {}, - "outputs": [], - "source": [ - "arr2 = np.arange(1, 11)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "id": "84509410", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr2" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "id": "1b2921fc", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 1, 2, 3, 4, 5],\n", - " [ 6, 7, 8, 9, 10]])" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr2.reshape((2, 5))" - ] - }, - { - "cell_type": "markdown", - "id": "78aacdaa", - "metadata": {}, - "source": [ - "To find the maximum in an array, use `max()`
\n", - "To find the minimum in an array, use `min()`
\n", - "To find the index of the maximum in an array, use `argmax()`
\n", - "To find the index of the minimum in an array, use `argmin()`
" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "id": "1c8a468a", - "metadata": {}, - "outputs": [], - "source": [ - "arr3 = np.random.randint(1, 100, 10)" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "id": "90fbd755", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([52, 6, 69, 27, 64, 82, 92, 33, 94, 33])" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr3" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "id": "4167d77d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "94" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr3.max()" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "id": "ed05fa82", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "8" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr3.argmax()" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "id": "5e4e1739", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr3.min()" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "id": "a37c602d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr3.argmin()" - ] - }, - { - "cell_type": "markdown", - "id": "4d3cdf42", - "metadata": {}, - "source": [ - "To check the shape of an array, use the `shape` attribute
\n", - "**Note**: `shape` is an attribute, not a function." - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "id": "90fd796a", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(10,)" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr3.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "id": "4fea1993", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Notice the two sets of brackets\n", - "arr.reshape(1, 11)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "id": "62f67dfe", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1, 11)" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr.reshape(1, 11).shape" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "id": "0e3efe78", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 1],\n", - " [ 2],\n", - " [ 3],\n", - " [ 4],\n", - " [ 5],\n", - " [ 6],\n", - " [ 7],\n", - " [ 8],\n", - " [ 9],\n", - " [10],\n", - " [11]])" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr.reshape(11, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "id": "328e52c0", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr" - ] - }, - { - "cell_type": "markdown", - "id": "c22c1f2a", - "metadata": {}, - "source": [ - "Check the type of the elements in an array using `dtype` attribute:" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "id": "68f0fa50", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "dtype('int32')" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr.dtype" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "id": "f23a3093", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array(['one', 'two', 'three', 'four'], dtype=' 7" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "id": "2f0731ec", - "metadata": {}, - "outputs": [], - "source": [ - "dup_arr = arr > 7" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "id": "cc18e602", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 8, 9, 10])" - ] - }, - "execution_count": 78, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr[dup_arr]" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "id": "1ce2fbb4", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([False, False, False, False, False, False, False, True, True,\n", - " True])" - ] - }, - "execution_count": 79, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dup_arr" - ] - }, - { - "cell_type": "markdown", - "id": "863c3cf6", - "metadata": {}, - "source": [ - "Numpy supports a lot of arithmetic operations. For example:" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "id": "e6b63d98", - "metadata": {}, - "outputs": [], - "source": [ - "arr = np.arange(0, 10)" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "id": "2c64658b", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" - ] - }, - "execution_count": 81, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "id": "21e0174a", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18])" - ] - }, - "execution_count": 82, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr + arr" - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "id": "a2f3120e", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" - ] - }, - "execution_count": 83, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr - arr" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "id": "695833cc", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81])" - ] - }, - "execution_count": 84, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr * arr" - ] - }, - { - "cell_type": "code", - "execution_count": 85, - "id": "176d3a92", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\srini\\AppData\\Local\\Temp/ipykernel_116188/3001117470.py:1: RuntimeWarning: invalid value encountered in true_divide\n", - " arr / arr\n" - ] - }, - { - "data": { - "text/plain": [ - "array([nan, 1., 1., 1., 1., 1., 1., 1., 1., 1.])" - ] - }, - "execution_count": 85, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr / arr" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "id": "fad64120", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81], dtype=int32)" - ] - }, - "execution_count": 86, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr ** 2" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "id": "a8bf1e23", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729], dtype=int32)" - ] - }, - "execution_count": 87, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr ** 3" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "id": "2c173ea0", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 0, 4, 8, 12, 16, 20, 24, 28, 32, 36])" - ] - }, - "execution_count": 88, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr * 4" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "id": "8abb9e23", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\srini\\AppData\\Local\\Temp/ipykernel_116188/1528351372.py:1: RuntimeWarning: divide by zero encountered in true_divide\n", - " 1 / arr\n" - ] - }, - { - "data": { - "text/plain": [ - "array([ inf, 1. , 0.5 , 0.33333333, 0.25 ,\n", - " 0.2 , 0.16666667, 0.14285714, 0.125 , 0.11111111])" - ] - }, - "execution_count": 89, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "1 / arr" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "id": "4bc89a4f", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0. , 1. , 1.41421356, 1.73205081, 2. ,\n", - " 2.23606798, 2.44948974, 2.64575131, 2.82842712, 3. ])" - ] - }, - "execution_count": 90, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.sqrt(arr)" - ] - }, - { - "cell_type": "code", - "execution_count": 91, - "id": "410873e7", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1.00000000e+00, 2.71828183e+00, 7.38905610e+00, 2.00855369e+01,\n", - " 5.45981500e+01, 1.48413159e+02, 4.03428793e+02, 1.09663316e+03,\n", - " 2.98095799e+03, 8.10308393e+03])" - ] - }, - "execution_count": 91, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# calcualting exponential (e^)\n", - "np.exp(arr)" - ] - }, - { - "cell_type": "code", - "execution_count": 92, - "id": "d4b7e532", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "9" - ] - }, - "execution_count": 92, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.max(arr)" - ] - }, - { - "cell_type": "code", - "execution_count": 93, - "id": "c859291e", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 0. , 0.84147098, 0.90929743, 0.14112001, -0.7568025 ,\n", - " -0.95892427, -0.2794155 , 0.6569866 , 0.98935825, 0.41211849])" - ] - }, - "execution_count": 93, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.sin(arr)" - ] - }, - { - "cell_type": "code", - "execution_count": 94, - "id": "e2bba092", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\srini\\AppData\\Local\\Temp/ipykernel_116188/3120950136.py:1: RuntimeWarning: divide by zero encountered in log\n", - " np.log(arr)\n" - ] - }, - { - "data": { - "text/plain": [ - "array([ -inf, 0. , 0.69314718, 1.09861229, 1.38629436,\n", - " 1.60943791, 1.79175947, 1.94591015, 2.07944154, 2.19722458])" - ] - }, - "execution_count": 94, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.log(arr)" - ] - }, - { - "cell_type": "markdown", - "id": "65db4b61", - "metadata": {}, - "source": [ - "To find the sum of all elements in an array, use the `sum()` function" - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "id": "ce13011e", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "45" - ] - }, - "execution_count": 95, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr.sum()" - ] - }, - { - "cell_type": "code", - "execution_count": 96, - "id": "7547b71f", - "metadata": {}, - "outputs": [], - "source": [ - "matrix2 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])" - ] - }, - { - "cell_type": "code", - "execution_count": 97, - "id": "71d30b8c", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2, 3],\n", - " [4, 5, 6],\n", - " [7, 8, 9]])" - ] - }, - "execution_count": 97, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "matrix2" - ] - }, - { - "cell_type": "code", - "execution_count": 98, - "id": "a85f7103", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([12, 15, 18])" - ] - }, - "execution_count": 98, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "matrix2.sum(axis = 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 99, - "id": "8f283c94", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 6, 15, 24])" - ] - }, - "execution_count": 99, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "matrix2.sum(axis = 1)" - ] - }, - { - "cell_type": "markdown", - "id": "8a29302a", - "metadata": {}, - "source": [ - "To find the standard deviation of all elements in an array, use the `std()` function" - ] - }, - { - "cell_type": "code", - "execution_count": 100, - "id": "79ad8eba", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2.8722813232690143" - ] - }, - "execution_count": 100, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "arr.std()" - ] - }, - { - "cell_type": "markdown", - "id": "04949fbb", - "metadata": {}, - "source": [ - "**References:**
\n", - "1. https://www.mygreatlearning.com/blog/python-numpy-tutorial/ - mygreatlearning\n", - "2. https://numpy.org/devdocs/user/absolute_beginners.html#:~:text=Why%20use%20NumPy%3F,of%20specifying%20the%20data%20types." - ] - }, - { - "cell_type": "markdown", - "id": "d43d593c", - "metadata": {}, - "source": [ - "# the end." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/Pandas.ipynb b/Pandas.ipynb deleted file mode 100644 index 7cc1ecc..0000000 --- a/Pandas.ipynb +++ /dev/null @@ -1,5950 +0,0 @@ -{ - "cells": [ - { - "attachments": { - "image.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIEAAAFCCAIAAADpEForAAAMbWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkJDQAghICb0jUgNICaEFkF4EGyEJJJQYE4KKvSwquBZERLGiqyKKbaXZsSuLYu+LBRVlXdTFhsqbkICu+8r3zvfNvX/OnPlPuTO59wCg+YErkeShWgDkiwukCeHBjDFp6QzSU4ACdUAB7sCQy5NJWHFx0QDK4P3v8u4GQBT3q84Krn/O/1fR4QtkPACQcRBn8mW8fIiPA4Cv40mkBQAQFXrLKQUSBZ4Dsa4UBghxuQJnK/EOBc5U4sMDNkkJbIgvA6BG5XKl2QBo3IN6RiEvG/JofIbYVcwXiQHQdII4gCfk8iFWxO6Unz9JgSshtoP2EohhPICZ+R1n9t/4M4f4udzsIazMa0DUQkQySR532v9Zmv8t+XnyQR82cFCF0ogERf6whrdyJ0UpMBXibnFmTKyi1hB/EPGVdQcApQjlEclKe9SYJ2PD+gF9iF353JAoiI0hDhPnxUSr9JlZojAOxHC3oFNFBZwkiA0gXiSQhSaqbDZJJyWofKH1WVI2S6U/x5UO+FX4eiDPTWap+N8IBRwVP6ZRJExKhZgCsVWhKCUGYg2IXWS5iVEqm1FFQnbMoI1UnqCI3wriBIE4PFjJjxVmScMSVPYl+bLBfLFNQhEnRoX3FwiTIpT1wU7xuAPxw1ywywIxK3mQRyAbEz2YC18QEqrMHXsuECcnqng+SAqCE5RrcYokL05lj1sI8sIVeguIPWSFiaq1eEoB3JxKfjxLUhCXpIwTL8rhRsYp48GXg2jABiGAAeRwZIJJIAeI2robuuEv5UwY4AIpyAYC4KzSDK5IHZgRw2siKAJ/QCQAsqF1wQOzAlAI9V+GtMqrM8gamC0cWJELnkKcD6JAHvwtH1glHvKWAp5Ajegf3rlw8GC8eXAo5v+9flD7TcOCmmiVRj7okaE5aEkMJYYQI4hhRHvcCA/A/fBoeA2Cww1n4j6DeXyzJzwltBMeEa4TOgi3J4rmSX+IcjTogPxhqlpkfl8L3AZyeuLBuD9kh8y4Pm4EnHEP6IeFB0LPnlDLVsWtqArjB+6/ZfDd01DZkV3JKHkYOYhs9+NKDQcNzyEWRa2/r48y1syherOHZn70z/6u+nx4j/rREluEHcDOYiew89hhrAEwsGNYI9aKHVHgod31ZGB3DXpLGIgnF/KI/uGPq/KpqKTMtda1y/Wzcq5AMLVAcfDYkyTTpKJsYQGDBd8OAgZHzHNxYri5urkBoHjXKP++3sYPvEMQ/dZvuvm/A+B/rL+//9A3XeQxAPZ5w+Pf9E1nxwRAWx2Ac008ubRQqcMVFwL8l9CEJ80QmAJLYAfzcQNewA8EgVAQCWJBEkgDE2CVhXCfS8EUMAPMBcWgFCwHq8BasBFsATvAbrAfNIDD4AQ4Ay6Cy+A6uAt3Tyd4CXrAO9CHIAgJoSF0xBAxQ6wRR8QNYSIBSCgSjSQgaUgGko2IETkyA5mPlCJlyFpkM1KD7EOakBPIeaQduY08RLqQN8gnFEOpqC5qgtqgI1AmykKj0CR0PJqNTkaL0AXoUrQSrUZ3ofXoCfQieh3tQF+ivRjA1DF9zBxzxpgYG4vF0rEsTIrNwkqwCqwaq8Oa4XO+inVg3dhHnIjTcQbuDHdwBJ6M8/DJ+Cx8Cb4W34HX46fwq/hDvAf/SqARjAmOBF8ChzCGkE2YQigmVBC2EQ4STsOz1El4RyQS9Ym2RG94FtOIOcTpxCXE9cQ9xOPEduJjYi+JRDIkOZL8SbEkLqmAVExaQ9pFOka6QuokfVBTVzNTc1MLU0tXE6vNU6tQ26l2VO2K2jO1PrIW2ZrsS44l88nTyMvIW8nN5EvkTnIfRZtiS/GnJFFyKHMplZQ6ymnKPcpbdXV1C3Uf9Xh1kfoc9Ur1vern1B+qf6TqUB2obOo4qpy6lLqdepx6m/qWRqPZ0IJo6bQC2lJaDe0k7QHtgwZdw0WDo8HXmK1RpVGvcUXjlSZZ01qTpTlBs0izQvOA5iXNbi2ylo0WW4urNUurSqtJ66ZWrzZde6R2rHa+9hLtndrntZ/rkHRsdEJ1+DoLdLbonNR5TMfolnQ2nUefT99KP03v1CXq2upydHN0S3V367bp9ujp6HnopehN1avSO6LXoY/p2+hz9PP0l+nv17+h/2mYyTDWMMGwxcPqhl0Z9t5guEGQgcCgxGCPwXWDT4YMw1DDXMMVhg2G941wIwejeKMpRhuMTht1D9cd7jecN7xk+P7hd4xRYwfjBOPpxluMW417TUxNwk0kJmtMTpp0m+qbBpnmmJabHjXtMqObBZiJzMrNjpm9YOgxWIw8RiXjFKPH3Ng8wlxuvtm8zbzPwtYi2WKexR6L+5YUS6ZllmW5ZYtlj5WZ1WirGVa1VnesydZMa6H1auuz1u9tbG1SbRbaNNg8tzWw5dgW2dba3rOj2QXaTbartrtmT7Rn2ufar7e/7IA6eDoIHaocLjmijl6OIsf1ju1OBCcfJ7FTtdNNZ6ozy7nQudb5oYu+S7TLPJcGl1cjrEakj1gx4uyIr66ernmuW13vjtQZGTly3sjmkW/cHNx4blVu19xp7mHus90b3V97OHoIPDZ43PKke472XOjZ4vnFy9tL6lXn1eVt5Z3hvc77JlOXGcdcwjznQ/AJ9pntc9jno6+Xb4Hvft8//Zz9cv12+j0fZTtKMGrrqMf+Fv5c/83+HQGMgIyATQEdgeaB3MDqwEdBlkH8oG1Bz1j2rBzWLtarYNdgafDB4PdsX/ZM9vEQLCQ8pCSkLVQnNDl0beiDMIuw7LDasJ5wz/Dp4ccjCBFRESsibnJMODxODacn0jtyZuSpKGpUYtTaqEfRDtHS6ObR6OjI0StH34uxjhHHNMSCWE7sytj7cbZxk+MOxRPj4+Kr4p8mjEyYkXA2kZ44MXFn4ruk4KRlSXeT7ZLlyS0pminjUmpS3qeGpJaldowZMWbmmItpRmmitMZ0UnpK+rb03rGhY1eN7RznOa543I3xtuOnjj8/wWhC3oQjEzUnciceyCBkpGbszPjMjeVWc3szOZnrMnt4bN5q3kt+EL+c3yXwF5QJnmX5Z5VlPc/2z16Z3SUMFFYIu0Vs0VrR65yInI0573Njc7fn9uel5u3JV8vPyG8S64hzxacmmU6aOqld4igplnRM9p28anKPNEq6TYbIxssaC3ThR32r3E7+k/xhYUBhVeGHKSlTDkzVniqe2jrNYdriac+Kwop+mY5P501vmWE+Y+6MhzNZMzfPQmZlzmqZbTl7wezOOeFzdsylzM2d+9s813ll8/6anzq/eYHJgjkLHv8U/lNtsUaxtPjmQr+FGxfhi0SL2ha7L16z+GsJv+RCqWtpRennJbwlF34e+XPlz/1Ls5a2LfNatmE5cbl4+Y0VgSt2lGmXFZU9Xjl6ZX05o7yk/K9VE1edr/Co2Liaslq+uqMyurJxjdWa5Ws+rxWuvV4VXLVnnfG6xever+evv7IhaEPdRpONpRs/bRJturU5fHN9tU11xRbilsItT7embD37C/OXmm1G20q3fdku3t6xI2HHqRrvmpqdxjuX1aK18tquXeN2Xd4dsruxzrlu8x79PaV7wV753hf7Mvbd2B+1v+UA80Ddr9a/rjtIP1hSj9RPq+9pEDZ0NKY1tjdFNrU0+zUfPORyaPth88NVR/SOLDtKObrgaP+xomO9xyXHu09kn3jcMrHl7skxJ6+dij/Vdjrq9LkzYWdOnmWdPXbO/9zh877nmy4wLzRc9LpY3+rZevA3z98Otnm11V/yvtR42edyc/uo9qNXAq+cuBpy9cw1zrWL12Out99IvnHr5ribHbf4t57fzrv9+k7hnb67c+4R7pXc17pf8cD4QfXv9r/v6fDqOPIw5GHro8RHdx/zHr98InvyuXPBU9rTimdmz2qeuz0/3BXWdfnF2BedLyUv+7qL/9D+Y90ru1e//hn0Z2vPmJ7O19LX/W+WvDV8u/0vj79aeuN6H7zLf9f3vuSD4YcdH5kfz35K/fSsb8pn0ufKL/Zfmr9Gfb3Xn9/fL+FKuQOfAhgcaFYWAG+2A0BLA4AO+zbKWGUvOCCIsn8dQOA/YWW/OCBeANTB7/f4bvh1cxOAvVth+wX5NWGvGkcDIMkHoO7uQ0Mlsix3NyUXFfYphAf9/W9hz0ZaCcCX5f39fdX9/V+2wGBh73hcrOxBFUKEPcOm0C+Z+Zng34iyP/0uxx/vQBGBB/jx/i/1NJDIHlZaWAAAADhlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAAqACAAQAAAABAAAEgaADAAQAAAABAAABQgAAAAC/wVIWAABAAElEQVR4Ae3dB3hTZdvA8e5BC22htKWsUrYM2UMUEUE2gjJcqCA4QHHwuvcW5XMgIFMEBUWWooAiS1mCsvdqodCWMkoXnWn63W0khCRNs07aJP98XHjynGf+Tr+L3u9zzn08PPgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgLMLeDr7Apg/AggggIBbCXh5eXl7e/v7+/v6+sqBfJXlq9VqlUpVUFCQn58vB0VFRW5lwmIRQAABBJxLgBjMua4Xs0UAAQTcQsDHx6dGjRrBwcGNGjVq0KBBQEBArVq1YmNjQ0NDJe6S6EtiMD8/P6mmG4NJAJaXlyeRWGFh4eXLl0+ePJmYmCglx44dO378eFZWVnJyspxyC0EWiQACCCBQgQWIwSrwxWFqCCCAgNsIVK5cWaKsFi1a3HDDDa1bt5bjmJgYKZRwyy4GEphlZGTEx8efPXt29+7dhw4dOnDggBxLYGaX/ukEAQQQQAAB8wWIwcy3oiYCCCCAgD0FZFOradOmnTt37tSpU6tWrWrXri37XfYcwGRfOTk5CQkJe/fu3bZt299//y1RmQRpJltwEgEEEEAAAfsIEIPZx5FeEEAAAQTMFJBbCrt169ajR4+OHTvWq1fP07P8/yWSx8ni4uK2b9/+xx9//Pnnn6dOnTJzLVRDAAEEEEDACoHy/5fPiknTBAEEEEDA6QSaNGnSu3fvAQMGtG/fXm4yrLDzl90wCcZ++eWX3377TZ4iq7DzZGIIIIAAAggggAACCCCAgBGB6OjoMWPG/P777xLbSLpCJ/qkp6evXr165MiRkZGRRhZGEQIIIIAAAggggAACCCBQcQQke2HXrl1nz56dlJTkRHGX0alKcsXp06d36dJFk4Ox4iAzEwQQQAABBBBAAAEEEEDAo0qVKg8++OCmTZskC7zRkMZJC+W1Yxs3brz//vslYz6XGQEEEEAAAQQQQAABBBAofwG5Z2/ChAlHjhxx0ijLzGlLUvunn366evXq5S/ODBBAAAEEEEAAAQQQQMA9BST6evXVV0+fPm1mGOMC1SSP4osvvkgk5p4/8KwaAQQQQAABBBBAAIFyE5B3fD333HNuFX3pBpASiT3zzDMVOc1juf1kMDACCCCAAAIIIIAAAgjYV8DHx0ee+zp48KBuTOKex/Ki5/vuu0/SkNhXmN4QQAABBBBAAAEEEEAAgf8Ebr755rVr17pnxFXaquV9YvLWaX5EEEAAAQQQQAABBBBAAAF7CkRFRX3xxRc5OTmlhSLuXH7lypVJkybxkJg9f+DoCwEEEEAAAQQQQAABdxYYNmzY8ePH3TnKMmfthw8fHjx4sDv/nLB2BBBAAAEEEEAAAQQQsFUgOjp63rx55kQg1BEBeTfarFmzJF2kre60RwABBBBAAAEEEEAAATcU6N+/P9tfVsSWsiHWu3dvN/yBYckIIIAAAggggAACCCBgpUClSpUmTpyYn59vRQRCExHIzc195513AgICrLwANEMAAQQQQAABBBBAAAH3EWjYsOG6desIpWwXWL16dWxsrPv85LBSBBBAAAEEEEAAAQQQsFhA7j902zcv2x50GfYQHx/fs2dPiy8DDRBAAAEEEEAAAQQQQMAdBJ599lm5ic4wkKDEFgHJXD9u3Dh3+PlhjQgggAACCCCAAAIIIGCugDy5NGXKFFsiDdqaFvj000/9/f3NvR7UQwABBBBAAAEEEEAAARcWqFat2tKlS02HEJy1XWDx4sWhoaEu/IPE0hBAAAEEEEAAAQQQQKBsgTp16mzZssX2AIMezBH4888/a9asWfZVoQYCCCCAAAIIIIAAAgi4pEDTpk337dtnTvBAHXsJ7Ny5k2SJLvn/TSwKAQQQQAABBBBAAIEyBFq0aHHixAl7hRb0Y77AwYMHGzVqVMbl4TQCCCCAAAIIIIAAAgi4koAEYHFxceaHDdS0r8ChQ4fkPWyu9BPFWhBAAAEEEEAAAQQQQKBUgWbNmh0/fty+QQW9WSpw+PBhdsNK/RnlBAIIIIAAAggggAACLiPQuHHjY8eOWRowUF8JAXkYr27dui7zo8VCEEAAAQQQQAABBBBAQF8gOjp67969SoQT9GmdwI4dO6KiovSvE98RQAABBBBAAAEEEEDABQRCQkLWr19vXahAK+UEVq9eHRwc7AI/YCwBAQQQQMC0gLfp05xFAAEEEHAxAT8/v9mzZw8YMMDF1uUCy2nQoEGtWrV++eUXCfNcYDksAQEEEECgNAFisNJkKEcAAQRcU+DDDz987LHHXHNtzr+qG2+8URaxceNG518KK0AAAQQQQAABBBBAAAEPj5EjRxYWFip3Nx092y5QUFBw33338dOKAAIIIIAAAggggAACTi/QuXPn9PR024MEelBa4NKlS23btnX6HzgWgAACCCBQioBnKeUUI4AAAgi4lECNGjUkD0eTJk1calWuu5gDBw507979woULrrtEVoYAAgi4rwDPg7nvtWflCCDgPgI+Pj5z5szp2rWr+yzZ2VcaEREhYfPPP/8se27OvhbmjwACCCCgJ8A+mB4IXxFAAAEXFHj22Wc//fRTey1syZIlf/zxR15eXqVKleTNwpLNT7bX6tevHxAQYK8hnKKf7OzskydPHj169Pjx4wkJCTk5OSLQt2/fgQMH2mv+TzzxxPTp0+3VG/0ggAACCCCAAAIIIICAIwTat29vx8fA5O64yMhIvXlLMNa0adMxY8b89NNPFy9eVPpxqfLt//z580uXLn3kkUcaN24cGBioRyFBqR21U1NTW7ZsqTcEXxFAAAEEEEAAAQQQQKDiCsg7f//++287Bi2LFi0yvVoJQsaOHbt582a1Wm3Hccu9K8kn+ddff0la/9q1a5sWWLlypR1nK4MaRnqmJ8BZBBBAAAEEEEAAAQQQKDeB9957z47xgHRlZtp0eQJNUkp8//33csOefSfg+N6uXLmyYMGCW2+91dvbrIeoR48ebd9Jvvbaa+X2A8TACCCAAAIIIIAAAgggYL5Ap06d7BsCya1xderUMX8CUrNdu3bfffedPCtl37DEMb1J9PXNN9+0bt3aoiXLA3JZWVl2nGFGRoalc7BowlRGAAEEEEAAAQQQQAABOwhIfgi5IdCOkYB09eeff3p6WpPMqUOHDsuXL3ei10OrVCp56EsCSCuuhJ+f344dO+wrv3btWl9fXysmQxMEEEAAAQQQQAABBBBwkMD48ePtGwZIbx999JEts+/fv//27dutnlVBQYHsL8leXGJi4okTJ+QNWrt37/635CMH8lUKk5KS5AXHUk0qWz3Qtm3b+vTpY8tKp02bZvXopTWUR9FsmRJtEUAAAQQqjoA1/3NmxZk9M0EAAQQQMCogdwxKtBMVFWX0rNWF999//8KFC61uLg0lg6Jk7HjppZeqVatmop/c3FxJ+y7hVnx8vARXcjNecnLymTNn0tLSZIdK0uLLR6IsOZa9NelHntSSJ9BkA0o+/v7+smUUEhIiCCIgB82bN4+JiQkPD4+NjZWzJsaVnIcSZ0o6eLl50kS1Mk89+OCD8+bNK7OaRRUk8pTtRAkyLWpFZQQQQAABBBBAAAEEEHCEwKxZs0rbTrG6XMISSUBvl9nL+8SWLVumOxOJsvbu3SsPX/3vf/+77bbbGjZsaPdkgBL+NWrUSDKFPP/88/Pnz9+3b19mZqbuHBYvXizj2mWBnTt3lvhQt3O7HE+ePNku06MTBBBAAAEEEEAAAQQQsKeApOKQfSS7/NKv24m8+MvwzWBWz9vLy2vUqFGSeP3LL7+8++675RXPsoVldW9WNJQNMUmeMXTo0ClTpsg0Hn74YesedTM6dHR0tNwSqatnl2O5x7JVq1ZGR6QQAQQQQAABBBBAAAEEykdA7spbtWqVXX7j1+tk165dpm/kK58FV8hRK1eufOzYMT1Au3yVTCF2jBUrJB6TQgABBBBAAAEEEEDAqQQkmYRC6QcltHMqifKcrETC9n01tjZ+k6fgunXrVp5rY2wEEEAAAZsFvGzugQ4QQAABBCqKgOSiePHFF+U2PyUmJL/9K9GtS/YpYbDcN6jE0iT1yMsvv6zQJVZiwvSJAAIIIGAooMi/04bDUIIAAggg4ACBXr16de3aVaGB1Gq1Qj27ZLfydmyF1nV7yUehzukWAQQQQMABAsRgDkBmCAQQQMARAnL/24QJE3hYyBHWZoyhSZpvRkWLq8iFfu6559gKsxiOBggggECFESAGqzCXgokggAACtgnIY0LKbYLJ1IjuLLo+iuYvkZ2wm266yaL5UBkBBBBAoOIIEINVnGvBTBBAAAGbBJ588klF90YU7dymlVe8xhKvBgUFKTcvefBPXnWtXP/0jAACCCCgqAAxmKK8dI4AAgg4SKBly5a9e/dWdLAqVaoQhpkpLJtgoaGhZla2rtrAgQPlVdfWtaUVAggggED5ChCDla8/oyOAAAL2EZD3HQcEBNinr1J6iY2NVTquKGVk5yuWTbDw8HBF5y1DPPTQQ4oOQecIIIAAAggggAACCCBgXCAiIiIxMVH7CimFDiTZekxMjPEZUHq9QLNmzXJychS6ENpuT58+HRYWdv3IfEMAAQQQcAIB9sGc4CIxRQQQQMC0gNyWFh0dbbqO7WcrVarUokUL2/txhx4aN26s9LakMNapU6dv377u4MkaEUAAARcTIAZzsQvKchBAwO0E5Bmt++67zwHLljwTbdq0ccBALjBEx44dHbOKBx54gHyVjqFmFAQQQAABBBBAAAEE/hNo1apVXl6e9v40RQ82bNjAb/xl/uT5+Phs3bpV0Quh7VxuECUzR5lXhAoIIIBARRNgH6yiXRHmgwACCFgmMGjQID8/P8vaWFu7bdu2jRo1sra1u7Rr2rSpBMaOWa1k5pA7UR0zFqMggAACCNhLgBjMXpL0gwACCJSDgORAv/POOx02cOXKlW+88UaHDeekA0kAFhgY6LDJDx48WF4X5rDhGAgBBBBAAAEEEEAAAbcW6NSpU0FBgfbONKUPFi1aJJk53FrcjMVLpPrTTz8pfS20/efm5hIYm3FZqIIAAggggAACCCCAgD0E3nrrLe3v4kof/PPPP9WqVbPHrF2/j+rVq+/du1fpK6Lt/4UXXnB9U1aIAAIIIIAAAggggEC5Czgy98OFCxeaN29e7kt2ognIs3OXL1/WhkmKHmzcuJFcKU70s8FUEUAAAQQQQAABBJxVQF5CdeXKFUV/udd2Pnr0aGdlKr95P/nkk1pARQ8yMjJiY2PLb6GMjAACCCCAAAIIIICAewiMGTNG0d/stZ0vX75c3kLmHqj2XKW3t/eqVau0jIoeyIvC7Dl1+kIAAQQQQAABBBBAAAFDgQULFij6a72m89TUVEm2bjg6JeYItGjRIj093QGXadasWebMhzoIIIAAAggggAACCCBgpUBwcPDRo0cd8Mv9O++8Y+UUaVYiMGnSJAdcpgMHDgQEBECOAAIIIIAAAggggAACSgnIS6hUKpXSv9wnJCREREQotQb36LdWrVrJyclKX6mcnJxmzZq5hyirRAABBJxegPv7nf4SsgAEEHBPAXkzmDxupPTaZ86cef78eaVHce3+z549O3fuXKXXKJtgbdq0UXoU+kcAAQQQsIsAMZhdGOkEAQQQcLSAA17Le+nSpfnz5zt6Ya443pw5c+SpMKVX1r59e6WHoH8EEEAAAbsIEIPZhZFOEEAAAYcKyA5Yhw4dlB7y559/lnsRlR7FHfo/efLk6tWrlV6phOW8JUxpZPpHAAEE7CJADGYXRjpBAAEEHCoQGRkpTxkpOqRarf7+++8VHcKtOtcksVR0yQ0bNqxevbqiQ9A5AggggAACCCCAAAJuKnDzzTcrneNBki4GBQW5qa8Cyw4JCYmPj1f0qhUUFDjgDlUFbOgSAQQQcDsB9sHc7pKzYAQQcAGBRo0aKb2K9evXX7lyRelR3Kd/eR5s48aNiq7Xx8eHGExRYTpHAAEE7CVADGYvSfpBAAEEHCfQpEkTpQdbu3at0kO4W/8bNmxQesl16tRRegj6RwABBBCwXYAYzHZDekAAAQQcLVCvXj1Fh8zIyNi1a5eiQ7hh5zt37szNzVV04U2bNlW0fzpHAAEEELCLADGYXRjpBAEEEHCcgCRFVDoGk3SI8lphxy3JPUY6derU6dOnFV1rbGysov3TOQIIIICAXQSIwezCSCcIIICA4wRCQ0MjIiIUHe/gwYNK79goOv+K2bk8XydpORSdW5UqVeRlzYoOQecIIIAAArYLEIPZbkgPCCCAgEMFJAaTj6JDKh0qKDr5itz58ePHFZ2evLGgZs2aig5B5wgggAACtgsQg9luSA8IIICAQwUkAKtUqZKiQ8o7hRXt3207P3LkiKJrl30wpeNzRedP5wgggICbCBCDucmFZpkIIOA6AjVq1JBHwhRdT0pKiqL9u23nmZmZSq+dexGVFqZ/BBBAwHYBYjDbDekBAQQQcKhAVFSU0uNlZWUpPYR79u8AWAf8eLjntWPVCCCAgB0FiMHsiElXCCCAgCMEKleurOgwKpUqOztb0SHctnNJ+q/02nkeTGlh+kcAAQRsFyAGs92QHhBAAAGHCih9s5larS4oKHDoktxmsLy8vMLCQkWXGxYWpmj/dI4AAgggYLsAMZjthvSAAAIIOFQgMDDQoeMxmFMJ+Pj4ONV8mSwCCCDgjgLEYO541VkzAgg4tYC/v7+i8/f09FQ654ei86/InUuA5OWl7L+8SvdfkXmZGwIIIOAsAsr+S+AsCswTAQQQcCIBPz8/RWcrAZivr6+iQ7ht5xI/S4ir6PKV7l/RydM5Aggg4CYCxGBucqFZJgIIuI6A0ptUspGi9CNnrnMxLFxJUFCQhS0srk4MZjEZDRBAAAGHCxCDOZycARFAAAHbBBzwSzYxmG2XqNTWSr9cWwZ2wI9HqcvjBAIIIICAeQLEYOY5UQsBBBCoMAJFRUVKz8UB2zVKL6Fi9u+Amzwd8ONRMW2ZFQIIIOBEAsRgTnSxmCoCCCBQLCC545WGiIiIUHoI9+y/SpUq7rlwVo0AAgggoCtADKarwTECCCDgBAIOeHlXdHS0E0A44RRjYmKUnrUDQnSll0D/CCCAgMsLEIO5/CVmgQgg4GoC+fn5Si8pKipK6SHcs38HxGDci+ieP1qsGgEEnEuAGMy5rhezRQABBDxycnKUVqhZsyapHeyOLAknq1atavdu9TosLCzUK+ErAggggEBFEyAGq2hXhPkggAACZQjk5uaWUcPm07GxsQ7I4GfzNJ2sg8qVK9epU0fpSWdlZSk9BP0jgAACCNgoQAxmIyDNEUAAAUcLZGdnKz1keHh4aGio0qO4W/9yh2dkZKTSqz537pzSQ9A/AggggICNAsRgNgLSHAEEEHC0wMWLF5UeMiQk5IYbblB6FHfrv0GDBg548VpiYqK7wbJeBBBAwOkEiMGc7pIxYQQQcHcB+SVb6bwL8uSSBAzuDm3v9bds2dIBT9llZmbae+L0hwACCCBgZwFiMDuD0h0CCCCgtIDsgzngkbBbbrlF6YW4W//t27dXesmSM9MBt6oqvQr6RwABBFxegBjM5S8xC0QAAVcTkI2OjIwMpVfVqlWroKAgpUdxn/4lIYeQKr3epJKP0qPQPwIIIICAjQLEYDYC0hwBBBBwtEBqauqlS5eUHrV+/fqNGjVSehT36b9Fixa1a9dWer2yR3r58mWlR6F/BBBAAAEbBYjBbASkOQIIIOBoAbkR8cyZM0qP6ufn161bN6VHcZ/+b7/9dh8fH6XXe+HCBaWHoH8EEEAAAdsFiMFsN6QHBBBAwNECcXFxDhiyX79+Dsgh4YCFlPsQEn317t3bAdPYu3evA0ZhCAQQQAABGwWIwWwEpDkCCCBQDgInTpxwwKgdO3Zs2LChAwZy+SGaNm3apk0bByyTxPQOQGYIBBBAwHYBYjDbDekBAQQQcLTAoUOHHDBkcHDw4MGDHTCQyw8xdOhQB7wZTN5YsH//fpfHZIEIIIAAAggggAACCJSDgGTLyMrKkt+5lf7s2bPH39+/HFboQkNKKHv48GGlr5T0n5aWVrduXReSYykIIIAAAggggAACCFQYAdlUOXLkiAN+rS8sLBwwYECFWbdTTuSee+5xwJWSIXbv3i2ZVJzSiEkjgAACbibAvYhudsFZLgIIuISApEY8cOCAA5bi5eU1fvx4+dsBY7nkEL6+vk8++aRjlnbw4EF5R7NjxmIUBBBAAAFbBPhn1RY92iKAAALlJiCbHo4Z+7bbbuvZs6djxnK9USS3ZOfOnR2zrp07dzpmIEZBAAEEEEAAAQQQQMAdBSQ0cswdbjLK5s2bucnNih+ywMDAHTt2OOYyyV2jt9xyixWTpAkCCCCAAAIIIIAAAgiYJRAVFZWSkuKY3+9llNGjR5s1LSrpCDz99NMOu0Bnz56tWrWqzuAcIoAAAggggAACCCCAgL0F1qxZ48hf8cm5Z9EFlFerOTJIXrFihUXTozICCCCAQDkK8DxYOeIzNAIIIGCTwMaNG21qb0njmjVrTpo0ydPT05JG7ltXbt38/PPPIyIiHEbw119/OWwsBkIAAQQQQAABBBBAwE0Fbr75ZpVK5bCtMBnoueeec1NrC5f96quvOvK6yI9Bhw4dLJwj1RFAAAEEEEAAAQQQQMBCgcqVKx8/ftyRv+tfuXKlT58+Fk7T7arfdddd8vIAR14XyUovr4xzO2gWjAACCCCAAAIIIICA4wVmzZrlyN/1ZSx5xqljx46OX6mzjCjJCdPS0hx8USZPnuwsPswTAQQQQAABBBBAAAHnFhg8eLCDf92X4U6fPn3jjTc6N5wys5cbAhMTEx18RdRqNZuTylxPekUAAQQQQAABBBBAwEAgPDxckpI7+Jd+GS4+Pr5Tp04G03HrAnljW7lci7i4uJCQELemZ/EIIIAAAggggAACCDhSYO7cuY6PwWREuSlxwIABjlxpRR5r+PDh6enp5XIhpk2bVpFlmBsCCCCAAAIIIIAAAq4m0L9//3L51V8GlcwTr7zyio+Pj6uZWrIeSYbx3nvvFRQUlMtVKCws7N69uyXzpS4CCCCAAAIIIIAAAgjYJiDZEY8ePVouAYBmUHk7cKNGjWxbhLO2btmy5dq1a8sRf//+/YGBgc7Kx7wRQAABBBBAAAEEEHBSgQ8++KAcwwAZ+ty5c0899ZS/v7+TAlox7eDg4BdffDE1NbV85d944w0rJk8TBBBAAAEEEEAAAQQQsElAdmOys7PLNxiQ0bds2SJPiHl7e9u0mArf2M/P79577929e3e5g2dlZTVu3LjCgzFBBBBAAAEEEEAAAQRcTsDT0/PXX3+1LiRQqVSymXP+/Hl7vVZ4zZo1d955p0vuicne1/333y+hpnXUdm+1dOlSl/tZZkEIIIAAAggggAACCDiJwKBBgyz9FT85Ofn5559v165dvXr1atasKZtpAwcO/PTTTw8ePGhpV4b1//nnn3Hjxkm3TuJXxjQbNmwo2UfsImNoZV2JvBasV69eZcyb0wgggAACCCCAAAIIIKCQgCRm2Lt3r0W/zT/wwANGJ+Pr69u7d+/169db1JvRyrK99t1338mLpCMjI42OVcELJTodOXLkL7/8kpGRYXSB5VgoUa5LbjZW8B8JpocAAggggAACCCCAwDWBsWPHWhQSfPzxx9ca6xw1bdr01ltvrVSp0oMPPnj69GmL+iytclJS0rJly2RnrHXr1pLIUWe0CndYvXp1Wf5rr722bt26y5cvl7aici8fNWpUhbNjQggggAACCCCAAAIIuJVAWFhYfHy8+bFBXl7eiBEjDIm+//576eSzzz6TU7GxsX/88Yf5fZZZMz8/XzLpy4NMklSwT58+9evXL/eQrEaNGnIfpgScH330kez+JSYmym1+ZS6kfCscO3YsJCTE8NpRggACCCCAAAIIIIAAAg4VkOe7LIoNJAybMGGC3hQl1d706dPlHjxNubyDeO7cuRZ1a35lSed45MgRSeMxb968p59+WgaNiorSm4/dv8oCZUfu//7v/1auXCkJNi5evCiRoflzrgg1n3nmGbuz0CECCCCAAAIIIIAAAghYLCD30Vlx9+CPP/5YWopzuS8xOjpa8i7OmTPHAbHH4sWLq1SpYvGyLWwQHh7++++/O2A5Cg1x8uRJ2fO0cNFURwABBBBAAAEEEEAAAWUE/ve//1nxq78kz3j44Yf1ZlS1atWzJZ8OHTrIbpikprCiZ/ObyPNXkvxdbw4KfZUYZseOHebPrULVlNdhK8RCtwgggAACCCCAAAIIIGCxgEQXx48fty5mePfdd728vLRDStq93377TbqaMWOGFEpuQ+WSs6ekpEj+d+3QDjiQ7CDp6enWQZVjK7kEDtgqdIA/QyCAAAIIIIAAAggg4DoCo0ePtjpImDhxoi6E3NwoD4y1b99eU9i9e3d7vcpZb4bPPvus7riOOX777bf1plHxv5b2RgHHiDEKAggggAACCCCAAAIIGBGQ+wa3b99udTghGQuNdHq1aNq0aVb3XFrDAwcOOOwuxKvrKP5vtWrVTp06VdqsKmD5n3/+6efnp7sEjhFAAAEEEEAAAQQQQKBCCPTo0aOgoMC6KEKSBA4cOFBvGY0aNXrvvfdatGghO2MWZcA3Zw7jx4/XG85hX19//XVzZlgR6kgSy65duzpMhoEQQAABBBBAAAEEEEDAMoH58+dbHTkkJCTUqVNHd7w33nhDejtz5ow8FTZgwACrAzzDKV24cEFSL+qO5cjjBg0aZGRkGM6qApbMnj3bkTKMhQACCCCAAAIIIIAAApYJ1KtX79y5c1bHEosWLdLNzyFPgmnirqFDh8o8ZE/M6p71Gv7www+WLczetVetWqU3pQr4VfJT1qxZ095Lpz8EEEAAAQQQQAABBBCwq8ATTzxhdTihVqsHDRqkO517773366+/rl27thT6+PjYss+mO6tRo0bpjuL4Y3nfse58KuZxuSs5/rowIgIIIIAAAggggAACzifg6+try8uI9+zZYyJVhry42fYwTLIsNm/evHxlO3bsaMdbK5UI4eTNbBL0lq8SoyOAAAIIIIAAAggggIBZAjfccMPFixetDgzGjBljOIzkXZQM6b169ZIcfR999FFhYaHV/R87diwwMNBwCEeWSHbExMREq5egdEN5fbYkRHEkCGMhgAACCCCAAAIIIICATQK23JG4b9++SpUq6Q3fs2dPTeDx5ptvyqm77rrr6NGj1oUiP//8s17njv8qj71t27bNuvkr3UruCOUuRMf/SDAiAggggAACCCCAAAI2CXh7ey9ZssTqaGHYsGF6w0suQUlmKB3KnYSaRBHh4eGvvPLKiRMnzBwlKytr/fr1jz76qGS61+u8XL7OmzfPzJk7uNp3330n93yWiwmDIoAAAggggAACCCCAgPUCEimZHyDphRlr1qzRTZComYS8f0z2jlasWFG5cmXttOSuwjvvvFPydsg7ly9fvqx7j6K820rCNnnATKKd0aNHN2zYUNuqIhxMnjxZb9UV4evhw4flTQAVwYc5IIAAAggggAACCCCAgMUCEjXl5ORYEVpIqzZt2hiOJ1kitLGZbLX169fv8ccfb9mypdSUYEzSJ3bp0qV3794y7q233io9SDjh7++v6adGjRrNmjWrOHkmPvjgAytkFG0iW4W8kdnwp44SBBBAAAEEEEAAAQScSWDChAnWhQ0LFy40vc527dppepa7E4cPH65bWU5JMKYNtyRse/311y9dupSdnf3tt99K8KZbubyOX3rpJetklGs1fvz48tJgXAQQQAABBBBAAAEEELCPgAQ81j34JKnb+/bta2ISYWFh2iT4r732mram3JeoiVIku7pkU5RyuXcxPj5eUyhNKkgM9vzzzysXTVnR88yZM3kMTPtTxAECCCCAAAIIIIAAAk4sUKVKlU2bNlkRFRw/flyTfqO0xcv9h3LnodyRGBQUpKkjUcRvv/2mGUseHtPmV5Rb7KZPn/7iiy9GRESU1puDyytUDLZhwwYTr2VzsAzDIYAAAggggAACCCCAgK0CktVQuxNlUTC2cuVKzV6W+TOQV2+NGDHi4YcfrjjhltHJV5wYTLL8161b1+gkKUQAAQQQQAABBBBAAAFnFejYsaMmubxFMZhUlgfDtNtZzrp4Y/OuIDFYSkpK27ZtjU2QMgQQQAABBBBAAAEEEHBygQEDBly5csXSGEzqr1q1SrIaOvnq9adfEWKwzMzMO+64Q39mfEcAAQQQQAABBBBAAAGXEXjwwQcl2YYVYdihQ4e6d+/uMg6ykBdeeMEKBzs2kXyS9957ryuRshYEEEAAAQQQQAABBBAwIvDEE0+oVCorYgl55/LUqVNjYmKMdOqEReUbg+Xn548aNcoJ2ZgyAggggAACCCCAAAIIWC7w1FNPFRYWWhGGSZNz585NmjRJ815my0euQC0kSaN1Ara3kgBs9OjRFciCqSCAAAIIIIAAAggggIDSAs8884zVYZgEIfK25XXr1skjVZ06dZLc92W+2EreCSa511u1anXXXXe1b99e6dWZ0395vaOZAMycq0MdBBBAwPUEfFxvSawIAQQQQMAigc8//1yeR5K//f39LWqoqSxvBpPHw+SjVqvPnDlz+vRpSbB+/vz51NRUyTMhj5xJ0CV1Qks+0dHR9evXl1T1kthDhpswYcI///xjxaD2beLl5WXfDs3pTczHjh07d+5ccypTBwEEEEAAAQQQQAABBFxN4J577pGQyfab6yzq4emnn64Ijq+++qpF07a9clpa2rBhwyrC2pkDAggggIDjBcrhf/lz/CIZEQEEEECgTIEffvjh7rvvTk5OLrOmHSuUeeOiHccy0ZWDp5GUlDRkyJAff/zRxJQ4hQACCCDgwgLEYC58cVkaAgggYJnAmjVr5L1hhw8ftqyZDbXL5SZAw/k6MgY7cOBAv3791q5dazgNShBAAAEE3ESAGMxNLjTLRAABBMwS2LlzZ69evRwWITgy+DGxfoeFgr/99lvv3r337NljYjKcQgABBBBweQFiMJe/xCwQAQQQsExA8moMHjx4xowZljWzqrZbxWBffvmlpIJMTEy0iopGCCCAAAKuI0AM5jrXkpUggAAC9hLIysp6/PHH5Q3OGRkZ9urTaD9uEoNJBo4xY8aMHz8+JyfHqAOFCCCAAAJuJUAM5laXm8UigAACFghMnz69T58+it44V0FiMEWnIbd3yv2Hs2fPtoCeqggggAACLi1ADObSl5fFIYAAArYJbN26tWfPnrNmzbKtm1JbKxr8lDqqwQl5g5lBmR0KJIX9V199dccdd2zfvt0O3dEFAggggICrCBCDucqVZB0IIICAMgIXL1589NFH77///oSEBLuP4LBkGKZnrkQMFh8fL69ck7cwy7uqTY/OWQQQQAABdxMgBnO3K856EUAAAWsEFi5ceOutt8rf1jQuvU0FicHsux0n21/z58/v1q0bbwAr/cpzBgEEEHBrAWIwt778LB4BBBAwX+DUqVOyGzZ8+PCjR4+a38p0TfsGP6bHMnHWjtOQt6sNHTr0oYceUmLb0MQSOIUAAggg4EQCxGBOdLGYKgIIIFD+ArK3c8stt0yaNElyJ9o+GzsGP7ZMxi7bcZmZmR999JHgLF261JbJ0BYBBBBAAAEEEEAAAQQQMCLQtm3bn376Sa1Wy613Vn/eeOMNI107vOjTTz+1egnSUKVSLVmypFWrVg6fOAMigAACCDilAPtgTnnZmDQCCCBQ7gKScn3QoEH9+/ffvHmz1ZOxywaU1aNrG9qyHffXX3/169dvyJAhiibx106VAwQQQAABFxAgBnOBi8gSEEAAgXITWLVq1e23337vvffu2LHDiknYEvxYMZx9m/z999/Dhg3r0aPH77//bt+e6Q0BBBBAAAEEEEAAAQQQKEMgICBAUrFv2bLFopv63n777TL6dcjpzz77zKJpy96XRF+yZIfMjkEQQAABBBBAAAEEEEAAgVIE/Pz8+vbtu2LFipycHHOimscee6yUnhxa/NRTT5kz2+zsbHkErnfv3r6+vg6dH4MhgAACCCCAAAIIIIAAAqYFJGPH5MmTz549ayK2kbc/x8TEmO7HMWcbNmyYkZFhYqpnzpz5/PPPW7du7Zj5MAoCCCCAAAIIIIAAAgggYI1A9erVH3744dWrV0vedr0IJy8v75FHHrGmU2XajBs3TtIb6k1Spr1y5coRI0bIQpQZll4RQAABBNxRwNMdF82aEUAAAQQcK3DDDTdI8sA77rgjIiKisLDwyJEjs2fPXr9+vWNnUcZocpPh6NGj69evL5lCzp8/v2bNml9//VWmWkYzTiOAAAIIIIAAAggggAACFVZAwhv5VNjpycQq/gwrsh5zQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEFBaoELflK/04ukfAQQQQAABKwQiIyPbt2/v7e0lbeX5sYz09M1btubn51vRFU0QQAABBNxQgBjMDS86S0YAAQSMC8gbluXtw97e3pK6UD6SPl5ytRuvqlPq6+fbt3dveXeWp5fn/v0HVq5cJS9o1jnvaocSdC1Z8uNddw0pUhdo1ubp6X3/Aw8sXPi9qy2V9SCAAAIIKCPgo0y39IoAAggg4AQCQUFBrVu36tC+fYsWzevUrRMWGurn5+/j460qLFQVqCSUSktLS0pKOhkXd/TosX379p08GadWq3UXJmHb7NkzRox4WFu48tcV99x7f1ZWlrbE/AOZTIsWLYoDv6IiLy+vi5cu/fHHWnP2lxrUr9+xUycvL09pKDGSzHzNH2vT09PNH9r8mj4+PrH16nl4qCVM1bTy8fWNqVvX/B6oiQACCCCAAAIIIIAAAm4nEBUV+eqrLx/Yvyc/L/vqi4kLi4pUsrfz35+iguKvRer/zqoLMjPSli9fEhISoovVvfttUk1VkCv9yJ+C/Bypf/fdg3XrmHlcvXr4qVMnS4aTmcgfGVo9eNCgMpv7+/tt2fyXTkNpW/TmG6+X2dC6CrJV+O+/22XVmiVrAF9+6UXreqMVAggggIAbCrAP5oYXnSUjgIC7CwwdMuTDD9+v36CRh4RPEkDll33roGwuBQVVGjhgQIMG9Xfu3KUVlG0rDw9vtfq/R6Ek+JFTTZve4OGxXFvHzIMqVUIiqlcvVOVpt9p8/QJr1a5ZZnN//4Do6GgJHWUtmsrSsG7dOmU2pAICCCCAAALlIkAMVi7sDIoAAgiUm8Azzzz98ccTfX19zAm9tLMs2WVSp6dnXLx4SVtY2kHR9fcrSrWwsLDKlYNLIjRPubcwJSXFsK2c1UZfV88allw9c/1/DRp6GJZc34JvCCCAAAIIlJsAMVi50TMwAggg4HiBIUPu/uTjifLcVIFBEj95/srbR/5RkFx/mnRNsqMlz2VJLFP8kQDJy9tXngqTx8N0p71//34Pj0LZJSuJrzyKn8jyUO/dt0+3zo033rhk8aLw8GqFhWpPTw+VSj123LilS5fp1uEYAQQQQAAB9xEgBnOfa81KEUDA3QUko/rHEz+UlBIFBddlUZcSTy+fy6mX4uLizpw9k5WZJSXBxZ+g8OrylFZ4WFion38lic3WrV9fUPBfMkCN5ubNW7799rsRIx68Grl5/Ljo+7Vr1+lad73l5gYNG8tNhhKAyb2K3j7+t9zchRhMl4hjBBBAAAG3EiAGc6vLzWIRQMCtBR59dHS92IZ6tyD6+vmfOhU/5cupK375JT7+lPaRKpGS3S1JeyhRWI0aUU2bNI2JqTvn66/1BOXGwtGjH126ZFnbtm2k/u49e1atWp2bm6tbTYI5+SqbaZpCb91zHCOAAAIIIOB+AsRg7nfNWTECCLilQJUqVe6/7z7J5qe7egnAtm7Z8sCIh+Lj43XLNcdye6G8Iuxsyeeff/41rKApkTDs5xUr5E9pFSSZR2mnKEcAAQQQQMANBeS+fz4IIIAAAq4v0LlzpwYNGxZezRwoC5Z3MSclJj740MNGAzA7ilSqRAxmR066QgABBBBwegH2wZz+ErIABBBAwByB22/v7u3tW1B4bR/My9vvq+nT5bXL5jS3pY68UEuvufbtxnrlrvFVXqEWGhoaElLF39+/oEB16dIlyQNpzpumXWP5rAIBBBBAoEwBYrAyiaiAAAIIOL2A5Dxs166tPJOlXYmUZKSnLv5xibbEugN5YEze9dy+XVuVqlB68PHxPnjw8BtvviU3MT755LguN3WWXIjyqFih6loWEDnu07dPjRo15IEzby8vudXx/Q8+Sk1NtW4CZrbqctNNzz73rL+fr9xgKc+t5ReoPv/s802bNxtt3rFjhwkTJgQG+Gsrf/bZZ5J9xGhlTaGkOakRFTX8nmE9e/Zs1LBBeHh1Pz9fQZYecnJy4uLjV6z4ZcaMmefPXzDRCacQQAABBBBAAAEEEEDARQSqVq16Kv6EujA/Py9b86dIrdq2dZPcjmjjCps0aZKbkyWRhrzcq+SPHKiaN29eu3btK5npJeVFkhFRO67mQGaiOaX5u3//fjKN2NjYrMw0VUGutrJ0OG7cE2XOUB51O3ni2HWrKyqaPWuGbsOv58wqGUszyeJU+wsXfKtbQfd4jkHlb+d/o60g23r//rtdlqmdp6ogb/OmjSeOH9EMITORVcgfSX+iOZDKcurokUO33dZN2w8HCCCAAAJuK8A+mNteehaOAAJuJCC5DatVq6bNTFi8ck/vAwcO2X5PoOyDSSpFH1WepnPNi8Kk0N/fT6IOib6uG/QqeUn2xf/uivT185NU+FfP6P/XnBlKunwZS7/l9d81QxTk/5ew0dcvwPAOSW0LzSkzK0srtbqwS5cuMge9nJNySjMxdcnb2Bo1brJo0Q933jlo27a/tWNxgAACCCDghgKl/rPnhhYsGQEEEHBVgejoGgEBAXqBysmTJ21fr16fmg6lUPOxtf+iopo1o5s0aSw39ZXWlQwkue8l6pOD0upIueFZwxJtc8NThiXaypoDvdem6Z39r05+bvXqkZM++fj2Hnfope83Wp9CBBBAAAFXFSAGc9Ury7oQQACBawJhYWGyEaT77i+JSpKSk6/VsPeRPAbm6+crr2OWmx0Nd8NkMp5e1xJ1XD+xa1MpKMib8NxzT48fL9tr10qvP5LAS85JDGbOjtn1Te38TWdRao8itew0ytTkvkTdicmtiZ06d+7e/TZ5i5qdh6c7BBBAAAHnESAGc55rxUwRQAABawVCqlTx8PSRe+V0O0hLS9P9qntset+pzE0hiUaSkpImTvy4SdOmkg2/661doyIjtTclenl5Hzl6dNeuXXIgA51LPmfi3jy5LVDiK925GT3Wdm70rAMKZZ6nT5/+/fc//t25MzExUbbFKgcHd+rc6cERD0RERGiDTKHz8vK5886BxGAOuCgMgQACCFRYAWKwCntpmBgCCCBgNwH/AH+DvoqMZkuXx8a+mjalZnR0obo4z6HBx9PL2/vXX3+dOPETE5GYl5endP7mW+9omq9e9WvNPrXU+Xmar94+fqtXrZ7wvxcMOjdSIKOYGMhIg/Io8vH1W7du3YgHH06+fmtx2fKfli5d9usvK8KqhqkLtZ6F7dq2lcDSqH95TJ8xEUAAAQQcLUAM5mhxxkMAAQQcL2As/4Tx2CYmpu5ddw2Wewh1E9lfP2Gv6BpR06Z9lZGReX15qd8Md9Vsz8dY6mDlcUJy7K9du04vANNMZPv2HcuWLXv0sSfUhTmaEgnGateuFR4eLluF5TFZxkQAAQQQKH+BUp9yLv+pMQMEEEAAATsJGEtX4Wk8ECrykFd7yRNcBfnG/xSpC+RVYIZhlZ1mqt+NRI++foFl/Qkw8cCYfo/KfDcxgY1//ln8eNjVj8S+QUFB8jKxqwX8FwEEEEDA7QTYB3O7S86CEUDADQXkDcIGq/YMDAw0KKxYBRLp7dq1+8TJk/LcWGkzk5BGwjR571alSpUq5l2Lp08n5OXneHt5a6Ynf/v7+4eGhZa2IsoRQAABBFxegBjM5S8xC0QAAQQ8cnLkRjj91O1hoUbCANnPkf0xvW0uCRvk43hHeXJs5qxZM2bMMj20pN0/sH9vbGw9beoL0/UdfDY1NTU/L18bIoqkj69vxQ+AHazEcAgggIBbCRCDudXlZrEIIOCmAmlp6UVqlcRXOqGUZ1QNI7fDXbx08WxiYmREhG5Gddm3MX7jovKckmKxzEEkv4WJWwHLbK50hdzcPF3MkuG8zFmX0hOjfwQQQACB8hIo+9+28poZ4yKAAAII2Evg4sWLki1db3crtl49w/5PnTp98823hoSEaKM1Ofj8s//r269/QX6uYX1KyhQo0nkY7GplScyhTZN4tYz/IoAAAgi4jQAxmNtcahaKAAJuLCAp+LKzsytXrqyNrOTNyU2bNvX29iksVOnBnCv56Bamp2eUvAlZt4xjcwVkF1E3+i3ejVSrSUxvLh/1EEAAAVcUKPUpZ1dcLGtCAAEE3FTg4sVLycnndO8nlFcnN2nSpF69GHNEdEMIc+pTR1cgNDRU7pbUiX49JADLysrSrcMxAggggIBbCRCDudXlZrEIIOCmAvIb/5GjRz08vbXrV6vVoWHV7hp8p7bEkQeenuX/r4/DHiGrU6eOf0CgNgaTcSX7/6VLlxwJzlgIIIAAAhVKoPz/FaxQHEwGAQQQcFWBv/76S+9+QrW6YOzYsbVr13b8kgMrlX9afElUWNrCPUs7YVV5l5tukmST2qayqSj3dqaknNeWcIAAAggg4G4CxGDudsVZLwIIuKnAH3+sy8pM072rUG5HrBsT8+38b2LqxZhGsTGBhEr/kTN1HYcHfurrc+sXFRXGxsaWliC+bt06Hh7X3qpsGkdzVlKeGK0mGfPvHnKXuvDaWU8v77i4uPT0dKP1KUQAAQQQcAcBYjB3uMqsEQEEEPA4fPjwhg0bvH38dS0K8vNu7dZt44Z1r732atu2bcLCQiWBhDy8FBDgLwk86tap06XLTU888XibNq11owjdHsw5zsmWt5Nd21sqVBW0a9e2ZYsW5rS1Vx29GElVUNCwUaOPJ34oMZJEYrJk2RarXbvWwAH9FyyY36lTJ5WRt1qXOpcideHNt3Rp2bJlUFCQJJ2X5+6EsUaNGsOHD/v5p2W1a9W6PvGJ15atW+Ve0FK74wQCCCCAgKsLkBfR1a8w60MAAQRKBOSX/k8mfXbHHb0kRtANACQMk12pd99975WXX5QU9pcvp0m44ufnKzFYcHCwJKn39QtUF+ZfH0VYZpp87pxuDCajh1WtumLF8h07/pEdtvDqEX9u3Pje+x8YvkXasmFM1k5LS9M7r1YXPvnUk/fee8+5lJTc3NzgoKCqVauGh4d7evmoCvK0j2/ptTL6VaXKv3PgwB633y75JyX9iSwwODgoMjIyKipSFq4b/sk+ZE521tKly4z2QyECCCCAgJsIEIO5yYVmmQgggIDHpk2bvvhi8gsvvlRUkKsbY6hUkp5e5evrW6tWreLHwzw9PeR0yUfCiYJ82cW67mNpNouDBw9e117y4qtUkqmibkx9TXmTxg0/+/yLwkIFt4ZOnTqlNwdZY0F+vmz9VatWrXiXrshDFisxYVGxhsUfCbQCAgIaNGgg22vFjeWlYEJXoN+V7EP+uGDh7t17LB6ABggggAACLiRADOZCF5OlIIAAAmUJvPnW2+Hh1UY9MqZIXVASel1rIDGXXsm1czpHnl6+eXm5eXn5OmVlHK5fvyEz47Lcp6f7XJkm8JOWsjUUEBgoe1DG3mVcRs/mn96yZVtuTpbEmRIa6baSwE8v9pN9Qtm8ModC248mKJWe9TrXVpADqePjG7Br5z+vvPKqUOue4hgBBBBAwN0EeB7M3a4460UAAbcWkJvuHnt87Asv/C81NVVuMpSYpMxNLakgYZLULK7vF3jhfMoXk6fk5Py3OSZn5fEnqaD9yANResTHjh2fMnWal7ef7gvKdOtIeCY37xWpi/S60r2DUbe+4bE0LJ7l1Y9U0FvX/v37v/1ugWxDFdeUjT6DjxTKzGWBCQln9+8/IKu92pn8Q+lZvDd49SMRlLeXxGlyXhoVDyuhV0nb/zovLr36kbOabuXvn39efuegu5KSkq/2xH8RQAABBBBAAAEEEEDAbQQaN240ceKHhw8dyMu9UnLXoeYvSR8of677qApyM9JTDx3c//3C70aNGqmXy7569ep7du/Mzs6UnS75k30lQ2pGR9fQg5QI7t133r54MeW6rq9+OXLkYEREhERiW7dskselNF1dyUpPTk7s3KmTXleGXyW8+eH7BTk5VzQNJf3j5cup9913r15Nebztk08mppxLkg2/qyNf+29+Xk583InPP/u0fmzsiBEPZGSkSz/SofydlnZ59OhHdHv79tt5+fm5stic7EwZ9/8mfSwVNv218cL5ZPEsVOUVP0GnysvPk8WkxZ08vnjxokGD7pR4TLcTjhFAAAEE3Fbg2v+w57YELBwBBBBwWwEJS5o3b9a8WbN6sfUiIyIkN6DECSpVYU5uTmZmprxH+FzyubOJifFx8UnJyfKiZ6NQ8jxV9erhmtvrZLvowoWLpb2AuEGD+l27dm3RvHnValVlKykrK1O6PXr02LZtfyckJEjnoaEhkslCM4p0lZaWfq44n0fZH8ltKFkNvTy95CY/aZidnZ2QcMZoM3nmrV3btrH160n0GBgQIM9xZWRmpqSkHDp05NChg6mpl6WVIEioGRgYIIsq6S1HMz1thxIuSmp7X9/iHT/ZEjx+/ITcuyitJBdi3Tq1Q0JD/Xx95V7PzMysC7JvmHL+8uXibvkggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJlC3iWXYUaCCCAAALOL1CpUqWoqMjg4GBvb2+VSpWdnXM5NTX18mUTK4uMjKhatZq/v19hYWH2lexzKeeuXMkurb5nyUetVpdWQbfcy8vLo6hIXVSkWyjHlnZSVPLR7UTTg2G5OXVkVmXOX/qXrqR/ww5125ZMQ+rp1jI49pR+ipdcPG5hoaGGQQMPqSkfuXyGpyhBAAEEEEAAAQQQQACBiiLQpctNc+bMOn7syJWs9KIiVXHsoy6Q48SzCVu3brmtWze9iQYFBY0e/cjGjesvXDinKsjV1j9x/Ojs2TM7tG+nV1++1q5da+OGdXv37p406WPDs3olb7z+2t49u//Zsa1p06a6p1q2bLlj+7Y9e3a/8Pz/dMuNHk+ZMlmG27BhbVRUlG6FcWOf2L9/b79+fXUL9Y7HjBm9b9/egQP665Y3aNDgnx1/f/ftPD9/P91y3eMaUVGbN/357fxvNJGY9tSrr76yb+8ecdaU3Hhjy53/bt+9+9/du/7R/Nm16x/pXP7IgbZQbKJrPgAAHDVJREFUKsh627Ru/fXXs/fs3j1s2FBth0YPPv2/Tw4e3H/fvfcYPUshAggggIATCfg40VyZKgIIIICARQISKrz26suvv/66r19A3Mljq1atTkpKkk2tgMDA8GrV6tSp3ahho4DAAN0+a9Wq+e38+d1u656Rnrp585YjR45euZIVEBBQNyamY4cOjzwyZviw4Y899tjC73/QbSUV2rZtHVw5rFHDBgsWfL97927ds7rHMXXrjh//ZLXwSA+PwqCgSrqngoOD2kuA5+lTIyri+x9+OHPmrO5Z3WOpNmb0aD//wMz0VNmm0z1Vq1at5s1byup0C/WOa9aMbtGiZXh4uG55YGBgq1Y3tmvf8Z9//v1i8pe6p7TH/v7+bdu2rVQpUFuiOahXL6ZFyxtDQ0M1X319fSMjI2W/8b/tMtns8vKKiKgulyMl5XyRbBWW3IMiXwsKCnJyc5YtWz5y5CMTP/pg01+bks+d0+tc87V/v77PPPvcwQP7f/t9jdEKFCKAAAIIIIAAAggggED5Czz26BgJA9LTL8vuUJUqVQwnFBERIeGTtlyOf1u9Upos/vGHBvXra8s1B2FhYe+//26RuvDihZTGjRrpnm3QoH7qpfNply/KWdkm0j2ld/zeu29L/1K5ID+nbds2umc7d+6Un5edeumC7Lx98P57uqf0jufPm6tWqyRKvHQxRSJJ3bPvvfuO9D/igft1C/WOX3/9Vanz8EMP6pY3b95cs0944fy5G67foNNWq1unTnpa6va/t+jtg02fPk067NOnt6amxGDVw8OrF3/k73A5rl+//tkzp88ln42NrVdyqqRczoWH+/gU/4+h8775WnqYOnWydizdA4nuDuzfm5+f26PH7brlHCOAAAIIIIAAAggggEAFEpD4KuF0XEF+3vDhZdzkpp30fffeK5GA3FUom0LaQr2Db+bOkTqffDJRt1xisMyMy3+s+W3L5r9ysrNat26te1Z7LPcNJiWeOXRo/9Ili4vUKsMYTAp//PEHqZCSkiz3N2ob6h40a3bDlayMTX9t3LB+rYRh9o3BsjLTZHW//vKzJjTSHVeOzYzB9FrJ18qVKyecjk9KTJC9PsOzmp4lSMvNzTa8NVTOSkQqs5JIz2hbChFAAAEEnE7Ay+lmzIQRQAABBMwR6N27V+069X77bfWiRYvNqS/JHh56aISHh/rjTybl5OSU1uSr6TMKCvLuuKNn4PU3McrtdleuXPnyyykBgUHPPjPeaPOHHhxRI7rWzBmzzl84L/fnGanj6Z2clDRr5uyIiCi549FIBQ+PsU88Ximo8tRp065kZ0s+C6N1rCv08/XdtGmzRJL9+g985JGR1nVitJXcl6gp1x7oVTudkPDOO+/6+wd++NH78jye7tl27dqOHz/+VHycVNAt5xgBBBBAwHkF7Pmvl/MqMHMEEEDA9QQ0Oyo/Ll5i5tJkk6pd+7YJp09v2bLVRJMDBw4mnD4ldypGR0dfV62oSFIv/rxixYF9e4YMHSrPVl131sNDbmV87PFHZR/s2+++q1TqPluRbMHN//a75KSzo0ePkofT9DqpV6/efffdt3fvrhUrfg2qJI+Tmc48qNe6jK8ShWZmZr740stZWRlvv/WW4d2YZbS37fTcb+at+X11x443jR37hLYnPz+/jz78ICi48htvvJGUlKwt5wABBBBAwKkFiMGc+vIxeQQQQMC4gOy3NG3apCA/d9++fcZrGJQ2bNigalj44cOH09PTDU5eK5DNrpMn42Qnqnbt6x7EkhryHFROTu6XU6cGBgY9Pf6pa21Kju4ZPqxevQaz58y5dClVQgu9s9qvkpbw0qVLX3/9dWRk9KNjRmvLNQePjnkkNKya7LZlZ2cbvV1Qr75FXyWeCwwI2L17z2effRYZFT1x4ocSlVnUgy2VJT/HSy+/kpmR9uIL/2t09XE72Tm8vccdK37+SS8Jii0D0RYBBBBAoNwFHPevS7kvlQkggAAC7iMgDyBJRoj09LQLFy6auerifS1PrzNnzpRZ//z58/IqL0kooVdTE7EsWvTjsaOHhw4b1qJFc20F2bMaN26sJPOYPXuOFJqIbbxKbi+cOWvOxYspo0ePrlGjhraTGjWiRo4ceezooR9/XCJZMfQSY2ir2XTgVZyycNKkTyWD/F13DzGd28OmgYw1lvDv088+k6SR777zlpyX9b7++muXL198+ZVXJJulsRaUIYAAAgg4pQAxmFNeNiaNAAIImBaQDIcShsljXVlZWaZras9Wq1ZVji+lpmpLSjvQ9BkUHKxXQRMUpadnTJv2VVBQ5aeeHKetMGjQnc2at5z7zTdnNBnnS950rD2re6DpJCEhYf68+fLw2Gid57IeeuhB2Z76cspUuWOwOAIz2klJ2nfdDi069ixJG5+RkfH88y/l5+W99967derUsagHGyt/+unne/fskps5e/e649lnn6ldJ2biRx8fOnTYxm5pjgACCCBQoQSIwSrU5WAyCCCAgH0EfH195MVZKlWhSqUys0dNkvq83Lwy6+fnF0gdyWChV1MbFH333YJT8Sfuueeexo2LU9jLnYdPPfWkZHWfPn2GpomX0fBJc+7qKUn+kXb50pgxYySFu5wpfpzssUdPxZ9cuOB7+Vo81tWamnb2/Xvd+vUzZkyvVbvuBx9IJgzbAjtLZibhnzyQVqgqnDlzxtixY7dv3zplKukQLRGkLgIIIOAMAsRgznCVmCMCCCBgoUDxJpGnZ5GHpDS3MGuFGeGG9CzTMdGzbKZNnzGzcpXQJx4vzm0oSRQ7drpp3vz5cXHxZa5DO/6JEycXLFwoG0EjRjwgrYYPHxYTU3/K1Kmply9rOtHWLLNP6yq88+77R48cvO+++4cOvdu6Hqxr9fvva775Zq4sXBb4wgsvyQN41vVDKwQQQACBCitADFZhLw0TQwABBKwXKCxUyw6Yj7e3+Ykr8vKKd8A0u2GmB/YP8JcKefmmdsy++WZe4tmE+++/v27duk888XhWVvpU3f0c87awpk79KjMzfczo0dHRNZ54/FF5g9a8ed+anputZ3UCu4sXL7744stqtfqjD9+XpJHSc0k4a2FMa9WEZs6cpS4s2LFjx19/bbKqAxohgAACCFRoAWKwCn15mBwCCCBgnYAEVJI5UAKqoCBJ4G7WJ+1ymtSrGhZWZu3Q0FCpk5GeoV9TJ4BJSTk/c9as8OqRX02b0qPH7Qu+W3Ds2HH9+ka/64RnkqTxx0WLmjRtNmPGVy1vbPXVV9MlLjLaSFtoYndOW0dzIJuEeiWGX39e8cv8efNi6zd65+035az5nRt2ZVFJgUpVVKSWTIkWtaIyAggggICzCBCDOcuVYp4IIICABQKSNiM19XKVKiFVqxZn2jDncy4lRaIM/bd+GbSUlIa1atYsKlIlnzund1KT0EJbOGfOXHkbWJ++/fNycyd/OVVbLgc6wZpucfGx3inJwJGVmd6//51nzyTM+XrudbX1qpac0+QPlO2/62pe/8XHu/isulB9fXHxN70lSMnrb7x56lTcyFGj5I7K3NyckjDM2MCGfdlQornbU/O3Dd3QFAEEEECgggoQg1XQC8O0EEAAAVsEcnNz4+PjAwKDGjZsaGY/p06dyr6S2bhRo2CDhIe6PYSHhzdoUP/SxUuSulC33PA4MTHxm3nzpFzeE33o0CHDCuaU7N27b/nyn6Tm7NlfpxRHiWV8sq9kS42QKlVM1AuuXJzRUYhM1NGeSkxMevXV1+SWzo8nfhgZGWl+jhNtDxwggAACCCCgJ0AMpgfCVwQQQMBFBLZs3SYrGTCgv5nrOX064ejRY3Xr1WvVqpWJJl1u6hwRUWP//v3nz18wUU1zSjKtDx069M033iqzpokKr7722tChQyZ/OcVEHe0pze6cRInaEsMDeURNdvxSit9yZtbnhx8WLf7xxxtbtX3l5ZdK9tnKvonRrH6phAACCCDgrgLEYO565Vk3Agi4usDKlSuzsjKG3D2kXbu25qw1Pz9fHn/y8fEb/9S193rpNdRkmZek8EuXLjPnrcGXLl1asmRJYlKSXj8WfZVXii1ZsvTy1XSIptvKhpuqIK9Hzx4hIca3wiIjIzp36nTp4vnjZj6fJnctqtUvvfxqctJZybYfXr265DsxPQfOIoAAAgggYFqAGMy0D2cRQAABZxU4ePCQvOY4JDRs4YJvb721q+EyJLXGLbfc0rZNG+2pOXPmJJyOGzrsno8//igkJERbrjmIioqcPv2r27r32Ld318KFxS/pqoCf/fsPbNq0qUmTZjNnTq9Xr57eDOvXrz916pTomrWXLF1m+DybXmXdr3FxcW+99banPAzn5a1bzjECCCCAAAJWCJh6atmK7miCAAIIIFBxBF5/44369WN79e679o/fN/75157duy+npcleVmRERP0GDZo0aVy7dszSpYuHDBmmmfPZs4ljxjz27Xfzn3/+xcGD7tywYaO8pCsnNzc4KKhJkya33969Zq06J44fGzVqjPSju0zJHiFPTMlHt9DEsbe3RDLS6LrkFiVfPUtOmWh67ZRmRL1OZDfvuQn/W75s6bBh93bv3n3b1m1HjhzNycmpXLmyvDC6S5ebQkKrbdyw7s0337rWUcmR9OPt42ti9K/nfjNw4IB+/Qf6+OiHYZpWejPR679ktvoN9epov5Y5GW1NDhBAAAEEnFHA3H8vnXFtzBkBBBBwcwFJjSjx1ahRIx96+MGbOnfq0eMODUh+Xrbc2ifBibxuS5PxQgu15o+1t95621NPPtm3b5+RIx/28Q3QnMrNyYqPPzX3vXenfzXd8N7C/PyCkydPnjlzRtuP6YPk5OT4+Ljc3OveMFaSRyTunEG6xdK6kuEqBQYaJnDfs2dvzzt6TZgwoU+fXr179xowcJCmh+wrGbLkBQvfnzVrdmZmpl63ks3/5InjSaXfNinZOOR1YbK3JrlG9NpKIn7JgCIvA9Ar136VuxmlgrePtxxoC00caCZjOJCJJpxCAAEEEHAigev+N0gnmjdTRQABBBAwX0A2YWJi6larVs3fzz8vPz89PV1yDJp+wkqyI9atU6dylSq+vr55eblSOSHhjMQGRgeVfRvZXpO87bINZbSCXqH0KXtHUlk3JpH7/KQTeczMMKzSa675KpVlXOmktNd2hYaE1KxVMzi4sr+/n8z8woULsoTSEhtKV/7+/mp1ocSTRoe7Oqiv7ODpLdPocvQ6kc6lpDRAvcpXJ6PWG0ivGl8RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBwmICnw0ZiIAQQQAABdxPw8/Pz9fEp8vBQFary8/LdbfmsFwEEEEAAAaMCxGBGWShEAAEEELBeoFPHjv36923Tpk2NqMhKlSqp1UW5ebnpaelJSUkHDh5avXr1nj17dXuvWbPmhOeeOZ2QMHnylKIiCdk8mjRpPGb0I3JY/H8mPz7ePkePHZs+fYbRWuPGjW3YoOG8+fN2795jtIIU+vv7T3ju2YiIiOTkpP/79HOVSlVaTU35o4+Obtr0hpyc7C++mJySct50Zc4igAACCCCAAAIIIIAAAgoKREVFLVz4XaEqT0Kp/LzsxLMJJ44fiY8/kXIuMSszraioUMrfeectvRm0bdtGynft+sfLy0tzqn//flJi5mf731v0OtR8jY2tl5lxWTqZ+/UcoxU0hZUrVz6TEF8ylrpfv74masqppk2blCykeHXNmjU1XZmzCCCAAAIIGBXwMVpKIQIIIIAAApYKVKtWbenSH2+66ZbTp+I+//yLP9auPXPmbGGhytPTy8fHJyQkpGbN6KZNm27fvkOvZ7XslKkL8vLytOX//rtz+PBhHhIYXS2Sw1defunGVq0//PCD3bt2e3l7a85I2JZyLuVqrev+O3DgwODKoR4ehb3u6CHB4blz5647rfMlNzdXXZjv5e333HPP/P77GhNbYY8//lhQcEihKjcnJ0dmrdMHhwgggAACCCCAAAIIIICAYwUmffKxREoH9u+tX7++RSO3bt1KQqBt2zZr98GMNv/11xXSf7fbuhk9q1coz6Ft27op9dL5Nb+vllYjRz6kV0H7VfbB4k4eSzgdt3vXv4WFBSa2wmJiYi5dPH/yxNGDB/ZdyUqXPTFtJxwggAACCCBgvsB/d32Y34CaCCCAAAIIGArUqlXrwQdH5OfljH/6mZMnTxpWsL1EE6H5+/mZ01Wr1q3ate+wZcvW997/QK0uvOee4SYCPE9Pz+ycnGnTvpItO9kKk107o0OMHj2qarXqc+Z+Iw+2eV/diDNak0IEEEAAAQRMCBCDmcDhFAIIIICAuQLdut1aPSJq8+bNGzf+aW4bJesNHTLEx8fv119XShh26OD+W26+xfS2leQOWblq9fa/t3br1r1nz56GU5O7GUeNfPh8SvK8b+YHBATI3pphHUoQQAABBBAwR4AYzBwl6iCAAAIIlCHQsWMHqbFu/Xp5uKuMqsqfltsLBw26Mz0t9fc1awoLC5ct/zmwUvBddw0ubWSJp3y8vTMzMyd/OcXLy/u555728fnveTNtE9nlqxFde968+YmJiZJzX1vOAQIIIIAAApYKEINZKkZ9BBBAAAEjAg1KngE7fOiwkXMOL+ra9ZaGjRpv3Ljh9KnTMvjyZcvzcrOH3H13YGBgaXORuxBld2v58hX79u7uftvt3bt3160ZFhb22KNj0i5fmj5jppR7efFmF10ejhFAAAEELBMgBrPMi9oIIIAAAoYC8nBUZFRkUZGqgrwv6x7JqejhuXjxUs39gvsPHNi+fXuLFi07d+pkOHlNiZenp6wiNzdnytSpXt4+zz37tDb1olSQJI2x9RsuWLAgLi6u+LkyT2Kw0iApRwABBBAoW4AYrGwjaiCAAAIImBaQe/OCg4LVhYWZWZmmazrgbI0aNXr16nUuOXHtunWa4eR2xMWLl3h6eQ+/R2KzUj6e/wVWixYtPnLk4O097ujWtaumalBQ0Lixj2dlZkyd9pWUSAIPqVtKLxQjgAACCCBQtoDx1E9lt6MGAggggAACVwUkkaA8QCVPghm+WSs8PPxueRBLYparOSxkl2n/vr2bt2y92trO/+3bt49kB/nmmzm6m3K/rlz57nvv9O/Xt3r16hcuXDAcsjiwKomsMjIyJEHi5MlTxj/95IaNGyX3xp0DBzRv0WrO7JmHDx8xbEgJAggggAACCCCAAAIIIOBoAc0rtgryc5rdcIPe2O3atZMwRu8zbeqXutXMfD/YqlW/Sj+9et2h21bvWEKpNWtWq1QFt3Xrpndq4YJvpfkDD9yvV14y+ePnU5JkA01zqmrVsBPHj+blZXfs0EE63Lp1U/aVrJYtW2jOSri589/tOdmZphMt6o3CVwQQQAABBLQC7INpKThAAAEEELBSQLa/VKpCeVDK399fr4vTp08/9eS44vv8iooK1eo2rVuNHvNYgUqlV81eX2+4oWmXm27KzEiTkKlebD3tLYNX9+iK5FGxBQsWSjB2/YjFX7WVU1Mvz5gx8+NPJskLwaqEVOncucu3387ft2//9U34hgACCCCAAAIIIIAAAgiUk4Bks/j33+0SZHW/7TbTU+jfv5/EP1988ZluNTvug7322ivSf1GRuuRvw78K09MuNW7cWHd0zSae7INFR/+3DyZnIyKqnz4ddzn14sEDe2UTrG3bNtomJftgO9gH04JwgAACCCBgqQD7YJaKUR8BBBBAQF9Akl4kJyV5tPWqXae2/rnrvyv6Zi1JLi/PnhWpVf/36WdnEhKKExjqfGQr7O67B3e9tfvgwYM++miizhnNoXYbrPjr+fMXZs2a8+6774WGVfvh+wU7d+4yqE8BAggggAACVgoQg1kJRzMEEEAAAV2Bw0eO9h/g0aZNa3mLsW65I487dezYomWrQ4cOvvzKK6oCI7c7xsXH3dK125C77/r8s89z8/JMz23OnK/HPvFYePXqX0y+7uk10604iwACCCCAQJkC1/1vhGXWpgICCCCAAAJGBTZt2iSpDyVhRnBwsNEKDigcNmyIt7fPsuU/GQ3AZAJ//rlJkm20at2qQ8cOZc4nOTl58F1D+vTpt337jjIrUwEBBBBAAAHzBYjBzLeiJgIIIIBAqQJ//bX5+LGjjRvf8OSTY0ut5OEhNwSaOGvLqWrVqvbr1y8398qyZctL6yczM/Pnn1d4e/sNHzZUv07xrYjX3Y4o3yX6WrduvTxVpl+Z7wgggAACCNggQAxmAx5NEUAAAQSuCqSnp8tTWPLt9ddfH/vE4/Jo1tUz1/4red7DwsKufbfrUY/bb69TN2b739v37z9gouPFi5fm5+VKapBq1aqZqMYpBBBAAAEElBPgeTDlbOkZAQQQcC8BeYCqZYvmY8c9NXXaVyNHPrx+/fq4uPjc3Fw/f//w8Gq1a9du3rxZqxtvFBSv4hciX/fx9JIy/cLrasguVUkFo9Wk8J5775Eqi5cskQQheg11v+7avfvfnf/cdNMtve7oufD7HzSnJHuHXgIP3SaGxzJZi+ob9kAJAggggIA7CxCDufPVZ+0IIICAPQXkHWFPjX9mxz//yu2Ikm6+XfuOer1fyUo/evTo+g0b586dp3tKbvbLzcnJKytJRn5+vtQxGmLVi4np3KlTctLZX39dpduz4bFM8vvvF7Vt22HQ4EE/LPpRc2+kBIrePj7m33OYm5uXk5Njfn3DaVCCAAIIIODOAmX8j47uTMPaEUAAAQSsE5AbERs1bNi4SeOw0FBfP9/cnNzMrKykxKQzZ88mJSUVFBTodSsJ62vWrCnxlZzVO6X7NSoqKjAw8Ny5cxL/6JbLcaVKlWrUiJJQKjHRVA+aVvIi6ejoaAnGzp49K3GU7GjJ6LK1dfZsotEAT28s2XOTN4n5+volJiYarkWvMl8RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBJQS+H/8lyVt4E9EjQAAAABJRU5ErkJggg==" - } - }, - "cell_type": "markdown", - "id": "16822a6b", - "metadata": {}, - "source": [ - "# ![image.png](attachment:image.png)" - ] - }, - { - "cell_type": "markdown", - "id": "532dc69f", - "metadata": {}, - "source": [ - "# Pandas\n" - ] - }, - { - "cell_type": "markdown", - "id": "dbdf719f", - "metadata": {}, - "source": [ - "## What is Pandas?" - ] - }, - { - "cell_type": "markdown", - "id": "8dde7fe4", - "metadata": {}, - "source": [ - "pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with \"relational\" or \"labeled\" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language." - ] - }, - { - "cell_type": "markdown", - "id": "95607550", - "metadata": {}, - "source": [ - "## Installation" - ] - }, - { - "cell_type": "markdown", - "id": "f6ca1b0b", - "metadata": {}, - "source": [ - "- If you use pip: " - ] - }, - { - "cell_type": "raw", - "id": "f4e65bd2", - "metadata": {}, - "source": [ - "pip install pandas" - ] - }, - { - "cell_type": "markdown", - "id": "3342562c", - "metadata": {}, - "source": [ - "- if you prefer anaconda" - ] - }, - { - "cell_type": "raw", - "id": "b4269b5a", - "metadata": {}, - "source": [ - "conda install pandas" - ] - }, - { - "cell_type": "markdown", - "id": "2593edfb", - "metadata": {}, - "source": [ - "## Importing pandas" - ] - }, - { - "cell_type": "markdown", - "id": "7d141b64", - "metadata": {}, - "source": [ - "You can import Numpy in your program using the following command:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "3a63bf7f", - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd" - ] - }, - { - "cell_type": "markdown", - "id": "073b96cc", - "metadata": {}, - "source": [ - "Check the version of Numpy you're using right now:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "86907a95", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'1.3.4'" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.__version__" - ] - }, - { - "cell_type": "markdown", - "id": "f1fa2bc4", - "metadata": {}, - "source": [ - "## Creating data using pandas" - ] - }, - { - "cell_type": "markdown", - "id": "f31e845f", - "metadata": {}, - "source": [ - "There are two core objects in pandas: the DataFrame and the Series." - ] - }, - { - "cell_type": "markdown", - "id": "f546c80a", - "metadata": {}, - "source": [ - "### Creating a DataFrame" - ] - }, - { - "cell_type": "markdown", - "id": "e1c45d81", - "metadata": {}, - "source": [ - "A DataFrame is a table. It contains an array of individual entries, each of which has a certain value. Each entry corresponds to a row (or record) and a column." - ] - }, - { - "cell_type": "markdown", - "id": "47065b81", - "metadata": {}, - "source": [ - "Let's take an example. Jack and Jill are discussing about sweet and savoury food. Jack prefers sweet more than savoury and Jill prefers the opposite. Lets create a DataFrame to depict their likes and dislikes." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "6c34d332", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
JackJill
0Very yumNot my type
1AwfulI loved it
\n", - "
" - ], - "text/plain": [ - " Jack Jill\n", - "0 Very yum Not my type\n", - "1 Awful I loved it" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.DataFrame({'Jack':[\"Very yum\",\"Awful\"],'Jill':[\"Not my type\",'I loved it']})" - ] - }, - { - "cell_type": "markdown", - "id": "8375b411", - "metadata": {}, - "source": [ - "Here, we cannot really know what Jack and Jill is talking about. Let's change the indexes from 0,1 to something more informative" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "a2cd0bd9", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
JackJill
ChocolatesVery yumNot my type
ChipsAwfulI loved it
\n", - "
" - ], - "text/plain": [ - " Jack Jill\n", - "Chocolates Very yum Not my type\n", - "Chips Awful I loved it" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.DataFrame({'Jack':[\"Very yum\",\"Awful\"],'Jill':[\"Not my type\",'I loved it']},index=[\"Chocolates\",\"Chips\"])" - ] - }, - { - "cell_type": "markdown", - "id": "46879b20", - "metadata": {}, - "source": [ - "### Creating Series" - ] - }, - { - "cell_type": "markdown", - "id": "9ea185ec", - "metadata": {}, - "source": [ - "A Series, by contrast, is a sequence of data values. If a DataFrame is a table, a Series is a list. And in fact you can create one with nothing more than a list:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "3f841de2", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 1\n", - "1 2\n", - "2 3\n", - "3 4\n", - "dtype: int64" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.Series([1,2,3,4])" - ] - }, - { - "cell_type": "markdown", - "id": "78f4605e", - "metadata": {}, - "source": [ - "Let's make it more specific. Lets print a list of items and its available number sold by Grocery A." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "369561b1", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Chocolates 30\n", - "Chips 35\n", - "Biscuits 29\n", - "Name: Grocery A, dtype: int64" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.Series([30,35,29],index=[\"Chocolates\",\"Chips\",\"Biscuits\"],name='Grocery A')" - ] - }, - { - "cell_type": "markdown", - "id": "60823137", - "metadata": {}, - "source": [ - "## Reading Data files" - ] - }, - { - "cell_type": "markdown", - "id": "da27591e", - "metadata": {}, - "source": [ - "Data can be stored in any of a number of different forms and formats. By far the most basic of these is the humble CSV file. When you open a CSV file you get something that looks like this:" - ] - }, - { - "cell_type": "raw", - "id": "4e005612", - "metadata": {}, - "source": [ - "Product A,Product B,Product C,\n", - "30,21,9,\n", - "35,34,1,\n", - "41,11,11" - ] - }, - { - "cell_type": "markdown", - "id": "cc27cca7", - "metadata": {}, - "source": [ - "Let's read a csv file" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "4311938b", - "metadata": {}, - "outputs": [], - "source": [ - "net_titles = pd.read_csv(\"netflix_titles.csv\")" - ] - }, - { - "cell_type": "markdown", - "id": "d60e545e", - "metadata": {}, - "source": [ - "We can use the shape attribute to check how large the resulting DataFrame is:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "f1bfae8b", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(8807, 12)" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.shape" - ] - }, - { - "cell_type": "markdown", - "id": "89578694", - "metadata": {}, - "source": [ - "We can examine the contents of the resultant DataFrame using the head() command, which grabs the first five rows:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "d41cec6b", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
show_idtypetitledirectorcastcountrydate_addedrelease_yearratingdurationlisted_indescription
0s1MovieDick Johnson Is DeadKirsten JohnsonNaNUnited StatesSeptember 25, 20212020PG-1390 minDocumentariesAs her father nears the end of his life, filmm...
1s2TV ShowBlood & WaterNaNAma Qamata, Khosi Ngema, Gail Mabalane, Thaban...South AfricaSeptember 24, 20212021TV-MA2 SeasonsInternational TV Shows, TV Dramas, TV MysteriesAfter crossing paths at a party, a Cape Town t...
2s3TV ShowGanglandsJulien LeclercqSami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi...NaNSeptember 24, 20212021TV-MA1 SeasonCrime TV Shows, International TV Shows, TV Act...To protect his family from a powerful drug lor...
3s4TV ShowJailbirds New OrleansNaNNaNNaNSeptember 24, 20212021TV-MA1 SeasonDocuseries, Reality TVFeuds, flirtations and toilet talk go down amo...
4s5TV ShowKota FactoryNaNMayur More, Jitendra Kumar, Ranjan Raj, Alam K...IndiaSeptember 24, 20212021TV-MA2 SeasonsInternational TV Shows, Romantic TV Shows, TV ...In a city of coaching centers known to train I...
\n", - "
" - ], - "text/plain": [ - " show_id type title director \\\n", - "0 s1 Movie Dick Johnson Is Dead Kirsten Johnson \n", - "1 s2 TV Show Blood & Water NaN \n", - "2 s3 TV Show Ganglands Julien Leclercq \n", - "3 s4 TV Show Jailbirds New Orleans NaN \n", - "4 s5 TV Show Kota Factory NaN \n", - "\n", - " cast country \\\n", - "0 NaN United States \n", - "1 Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban... South Africa \n", - "2 Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi... NaN \n", - "3 NaN NaN \n", - "4 Mayur More, Jitendra Kumar, Ranjan Raj, Alam K... India \n", - "\n", - " date_added release_year rating duration \\\n", - "0 September 25, 2021 2020 PG-13 90 min \n", - "1 September 24, 2021 2021 TV-MA 2 Seasons \n", - "2 September 24, 2021 2021 TV-MA 1 Season \n", - "3 September 24, 2021 2021 TV-MA 1 Season \n", - "4 September 24, 2021 2021 TV-MA 2 Seasons \n", - "\n", - " listed_in \\\n", - "0 Documentaries \n", - "1 International TV Shows, TV Dramas, TV Mysteries \n", - "2 Crime TV Shows, International TV Shows, TV Act... \n", - "3 Docuseries, Reality TV \n", - "4 International TV Shows, Romantic TV Shows, TV ... \n", - "\n", - " description \n", - "0 As her father nears the end of his life, filmm... \n", - "1 After crossing paths at a party, a Cape Town t... \n", - "2 To protect his family from a powerful drug lor... \n", - "3 Feuds, flirtations and toilet talk go down amo... \n", - "4 In a city of coaching centers known to train I... " - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.head()" - ] - }, - { - "cell_type": "markdown", - "id": "663ea893", - "metadata": {}, - "source": [ - "In order to access a single property of a Dataframe, we can use DataFrame.property" - ] - }, - { - "cell_type": "markdown", - "id": "a200e544", - "metadata": {}, - "source": [ - "To access the title of the movie/series :" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "1fab5299", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 Dick Johnson Is Dead\n", - "1 Blood & Water\n", - "2 Ganglands\n", - "3 Jailbirds New Orleans\n", - "4 Kota Factory\n", - " ... \n", - "8802 Zodiac\n", - "8803 Zombie Dumb\n", - "8804 Zombieland\n", - "8805 Zoom\n", - "8806 Zubaan\n", - "Name: title, Length: 8807, dtype: object" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.title" - ] - }, - { - "cell_type": "markdown", - "id": "97a665d4", - "metadata": {}, - "source": [ - "An alternative is the call it like a dictionary key using indexing" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "713009ed", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 Dick Johnson Is Dead\n", - "1 Blood & Water\n", - "2 Ganglands\n", - "3 Jailbirds New Orleans\n", - "4 Kota Factory\n", - " ... \n", - "8802 Zodiac\n", - "8803 Zombie Dumb\n", - "8804 Zombieland\n", - "8805 Zoom\n", - "8806 Zubaan\n", - "Name: title, Length: 8807, dtype: object" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles['title']" - ] - }, - { - "cell_type": "markdown", - "id": "86ab192f", - "metadata": {}, - "source": [ - "Let's try accessing the thrid title in the abpove DataFrame" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "236529cb", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Ganglands'" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles['title'][2]" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "id": "4574d4c6", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "dtype('int64')" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.release_year.dtype" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "id": "c6f13566", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 2020.0\n", - "1 2021.0\n", - "2 2021.0\n", - "3 2021.0\n", - "4 2021.0\n", - " ... \n", - "8802 2007.0\n", - "8803 2018.0\n", - "8804 2009.0\n", - "8805 2006.0\n", - "8806 2015.0\n", - "Name: release_year, Length: 8807, dtype: float64" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.release_year.astype('float64')" - ] - }, - { - "cell_type": "markdown", - "id": "ce081f2c", - "metadata": {}, - "source": [ - "## Indexing in Pandas" - ] - }, - { - "cell_type": "markdown", - "id": "ac7d1fe5", - "metadata": {}, - "source": [ - "### 1)iloc - index-based selection" - ] - }, - { - "cell_type": "markdown", - "id": "e8025399", - "metadata": {}, - "source": [ - "iloc involves selecting data based on its numerical position in data\n", - "\n", - "To select the first row of data in a DataFrame, we use:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "632263ea", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "show_id s1\n", - "type Movie\n", - "title Dick Johnson Is Dead\n", - "director Kirsten Johnson\n", - "cast NaN\n", - "country United States\n", - "date_added September 25, 2021\n", - "release_year 2020\n", - "rating PG-13\n", - "duration 90 min\n", - "listed_in Documentaries\n", - "description As her father nears the end of his life, filmm...\n", - "Name: 0, dtype: object" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.iloc[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "64e89cdc", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 Movie\n", - "1 TV Show\n", - "2 TV Show\n", - "3 TV Show\n", - "4 TV Show\n", - " ... \n", - "8802 Movie\n", - "8803 TV Show\n", - "8804 Movie\n", - "8805 Movie\n", - "8806 Movie\n", - "Name: type, Length: 8807, dtype: object" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.iloc[:,1]" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "341dbcd5", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
typetitledirector
0MovieDick Johnson Is DeadKirsten Johnson
1TV ShowBlood & WaterNaN
2TV ShowGanglandsJulien Leclercq
\n", - "
" - ], - "text/plain": [ - " type title director\n", - "0 Movie Dick Johnson Is Dead Kirsten Johnson\n", - "1 TV Show Blood & Water NaN\n", - "2 TV Show Ganglands Julien Leclercq" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.iloc[:3,[1,2,3]]" - ] - }, - { - "cell_type": "markdown", - "id": "736ceded", - "metadata": {}, - "source": [ - "### 2) loc - label-based selection" - ] - }, - { - "cell_type": "markdown", - "id": "ceaabe23", - "metadata": {}, - "source": [ - "In this paradigm, it's the data index value, not its position, which matters.\n", - "\n", - "For example, to get the first entry in reviews, we would now do the following:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "c3c6c537", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Dick Johnson Is Dead'" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.loc[0,'title']" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "1388a19a", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
titledirector
0Dick Johnson Is DeadKirsten Johnson
1Blood & WaterNaN
2GanglandsJulien Leclercq
3Jailbirds New OrleansNaN
4Kota FactoryNaN
.........
8802ZodiacDavid Fincher
8803Zombie DumbNaN
8804ZombielandRuben Fleischer
8805ZoomPeter Hewitt
8806ZubaanMozez Singh
\n", - "

8807 rows × 2 columns

\n", - "
" - ], - "text/plain": [ - " title director\n", - "0 Dick Johnson Is Dead Kirsten Johnson\n", - "1 Blood & Water NaN\n", - "2 Ganglands Julien Leclercq\n", - "3 Jailbirds New Orleans NaN\n", - "4 Kota Factory NaN\n", - "... ... ...\n", - "8802 Zodiac David Fincher\n", - "8803 Zombie Dumb NaN\n", - "8804 Zombieland Ruben Fleischer\n", - "8805 Zoom Peter Hewitt\n", - "8806 Zubaan Mozez Singh\n", - "\n", - "[8807 rows x 2 columns]" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.loc[:,['title','director']]" - ] - }, - { - "cell_type": "markdown", - "id": "9d011543", - "metadata": {}, - "source": [ - "## Conditional Selection" - ] - }, - { - "cell_type": "markdown", - "id": "c5fe2cff", - "metadata": {}, - "source": [ - "To check which of the shows were created in the United States, we can do the following:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "420cc888", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 True\n", - "1 False\n", - "2 False\n", - "3 False\n", - "4 False\n", - " ... \n", - "8802 True\n", - "8803 False\n", - "8804 True\n", - "8805 True\n", - "8806 False\n", - "Name: country, Length: 8807, dtype: bool" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.country == 'United States'" - ] - }, - { - "cell_type": "markdown", - "id": "b41a1c6b", - "metadata": {}, - "source": [ - "Now to get the name and details of the shows created in the Unites States, we can do the following" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "2d593f84", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
show_idtypetitledirectorcastcountrydate_addedrelease_yearratingdurationlisted_indescription
0s1MovieDick Johnson Is DeadKirsten JohnsonNaNUnited StatesSeptember 25, 20212020PG-1390 minDocumentariesAs her father nears the end of his life, filmm...
9s10MovieThe StarlingTheodore MelfiMelissa McCarthy, Chris O'Dowd, Kevin Kline, T...United StatesSeptember 24, 20212021PG-13104 minComedies, DramasA woman adjusting to life after a loss contend...
15s16TV ShowDear White PeopleNaNLogan Browning, Brandon P. Bell, DeRon Horton,...United StatesSeptember 22, 20212021TV-MA4 SeasonsTV Comedies, TV DramasStudents of color navigate the daily slights a...
27s28MovieGrown UpsDennis DuganAdam Sandler, Kevin James, Chris Rock, David S...United StatesSeptember 20, 20212010PG-13103 minComediesMourning the loss of their beloved junior high...
28s29MovieDark SkiesScott StewartKeri Russell, Josh Hamilton, J.K. Simmons, Dak...United StatesSeptember 19, 20212013PG-1397 minHorror Movies, Sci-Fi & FantasyA family’s idyllic suburban life shatters when...
.......................................
8791s8792MovieYoung AdultJason ReitmanCharlize Theron, Patton Oswalt, Patrick Wilson...United StatesNovember 20, 20192011R94 minComedies, Dramas, Independent MoviesWhen a divorced writer gets a letter from an o...
8793s8794MovieYours, Mine and OursRaja GosnellDennis Quaid, Rene Russo, Sean Faris, Katija P...United StatesNovember 20, 20192005PG88 minChildren & Family Movies, ComediesWhen a father of eight and a mother of 10 prep...
8802s8803MovieZodiacDavid FincherMark Ruffalo, Jake Gyllenhaal, Robert Downey J...United StatesNovember 20, 20192007R158 minCult Movies, Dramas, ThrillersA political cartoonist, a crime reporter and a...
8804s8805MovieZombielandRuben FleischerJesse Eisenberg, Woody Harrelson, Emma Stone, ...United StatesNovember 1, 20192009R88 minComedies, Horror MoviesLooking to survive in a world taken over by zo...
8805s8806MovieZoomPeter HewittTim Allen, Courteney Cox, Chevy Chase, Kate Ma...United StatesJanuary 11, 20202006PG88 minChildren & Family Movies, ComediesDragged from civilian life, a former superhero...
\n", - "

2818 rows × 12 columns

\n", - "
" - ], - "text/plain": [ - " show_id type title director \\\n", - "0 s1 Movie Dick Johnson Is Dead Kirsten Johnson \n", - "9 s10 Movie The Starling Theodore Melfi \n", - "15 s16 TV Show Dear White People NaN \n", - "27 s28 Movie Grown Ups Dennis Dugan \n", - "28 s29 Movie Dark Skies Scott Stewart \n", - "... ... ... ... ... \n", - "8791 s8792 Movie Young Adult Jason Reitman \n", - "8793 s8794 Movie Yours, Mine and Ours Raja Gosnell \n", - "8802 s8803 Movie Zodiac David Fincher \n", - "8804 s8805 Movie Zombieland Ruben Fleischer \n", - "8805 s8806 Movie Zoom Peter Hewitt \n", - "\n", - " cast country \\\n", - "0 NaN United States \n", - "9 Melissa McCarthy, Chris O'Dowd, Kevin Kline, T... United States \n", - "15 Logan Browning, Brandon P. Bell, DeRon Horton,... United States \n", - "27 Adam Sandler, Kevin James, Chris Rock, David S... United States \n", - "28 Keri Russell, Josh Hamilton, J.K. Simmons, Dak... United States \n", - "... ... ... \n", - "8791 Charlize Theron, Patton Oswalt, Patrick Wilson... United States \n", - "8793 Dennis Quaid, Rene Russo, Sean Faris, Katija P... United States \n", - "8802 Mark Ruffalo, Jake Gyllenhaal, Robert Downey J... United States \n", - "8804 Jesse Eisenberg, Woody Harrelson, Emma Stone, ... United States \n", - "8805 Tim Allen, Courteney Cox, Chevy Chase, Kate Ma... United States \n", - "\n", - " date_added release_year rating duration \\\n", - "0 September 25, 2021 2020 PG-13 90 min \n", - "9 September 24, 2021 2021 PG-13 104 min \n", - "15 September 22, 2021 2021 TV-MA 4 Seasons \n", - "27 September 20, 2021 2010 PG-13 103 min \n", - "28 September 19, 2021 2013 PG-13 97 min \n", - "... ... ... ... ... \n", - "8791 November 20, 2019 2011 R 94 min \n", - "8793 November 20, 2019 2005 PG 88 min \n", - "8802 November 20, 2019 2007 R 158 min \n", - "8804 November 1, 2019 2009 R 88 min \n", - "8805 January 11, 2020 2006 PG 88 min \n", - "\n", - " listed_in \\\n", - "0 Documentaries \n", - "9 Comedies, Dramas \n", - "15 TV Comedies, TV Dramas \n", - "27 Comedies \n", - "28 Horror Movies, Sci-Fi & Fantasy \n", - "... ... \n", - "8791 Comedies, Dramas, Independent Movies \n", - "8793 Children & Family Movies, Comedies \n", - "8802 Cult Movies, Dramas, Thrillers \n", - "8804 Comedies, Horror Movies \n", - "8805 Children & Family Movies, Comedies \n", - "\n", - " description \n", - "0 As her father nears the end of his life, filmm... \n", - "9 A woman adjusting to life after a loss contend... \n", - "15 Students of color navigate the daily slights a... \n", - "27 Mourning the loss of their beloved junior high... \n", - "28 A family’s idyllic suburban life shatters when... \n", - "... ... \n", - "8791 When a divorced writer gets a letter from an o... \n", - "8793 When a father of eight and a mother of 10 prep... \n", - "8802 A political cartoonist, a crime reporter and a... \n", - "8804 Looking to survive in a world taken over by zo... \n", - "8805 Dragged from civilian life, a former superhero... \n", - "\n", - "[2818 rows x 12 columns]" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.loc[net_titles.country==\"United States\"]" - ] - }, - { - "cell_type": "markdown", - "id": "26c54952", - "metadata": {}, - "source": [ - "Inbuilt conditional selectors in pandas\n", - "- isin\n", - "- isnull or notnull" - ] - }, - { - "cell_type": "markdown", - "id": "d5c1ee8b", - "metadata": {}, - "source": [ - "isin is lets you select data whose value \"is in\" a list of values. " - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "a6a20055", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
show_idtypetitledirectorcastcountrydate_addedrelease_yearratingdurationlisted_indescription
0s1MovieDick Johnson Is DeadKirsten JohnsonNaNUnited StatesSeptember 25, 20212020PG-1390 minDocumentariesAs her father nears the end of his life, filmm...
4s5TV ShowKota FactoryNaNMayur More, Jitendra Kumar, Ranjan Raj, Alam K...IndiaSeptember 24, 20212021TV-MA2 SeasonsInternational TV Shows, Romantic TV Shows, TV ...In a city of coaching centers known to train I...
9s10MovieThe StarlingTheodore MelfiMelissa McCarthy, Chris O'Dowd, Kevin Kline, T...United StatesSeptember 24, 20212021PG-13104 minComedies, DramasA woman adjusting to life after a loss contend...
15s16TV ShowDear White PeopleNaNLogan Browning, Brandon P. Bell, DeRon Horton,...United StatesSeptember 22, 20212021TV-MA4 SeasonsTV Comedies, TV DramasStudents of color navigate the daily slights a...
24s25MovieJeansS. ShankarPrashanth, Aishwarya Rai Bachchan, Sri Lakshmi...IndiaSeptember 21, 20211998TV-14166 minComedies, International Movies, Romantic MoviesWhen the father of the man she loves insists t...
.......................................
8799s8800MovieZendaAvadhoot GupteSantosh Juvekar, Siddharth Chandekar, Sachit P...IndiaFebruary 15, 20182009TV-14120 minDramas, International MoviesA change in the leadership of a political part...
8802s8803MovieZodiacDavid FincherMark Ruffalo, Jake Gyllenhaal, Robert Downey J...United StatesNovember 20, 20192007R158 minCult Movies, Dramas, ThrillersA political cartoonist, a crime reporter and a...
8804s8805MovieZombielandRuben FleischerJesse Eisenberg, Woody Harrelson, Emma Stone, ...United StatesNovember 1, 20192009R88 minComedies, Horror MoviesLooking to survive in a world taken over by zo...
8805s8806MovieZoomPeter HewittTim Allen, Courteney Cox, Chevy Chase, Kate Ma...United StatesJanuary 11, 20202006PG88 minChildren & Family Movies, ComediesDragged from civilian life, a former superhero...
8806s8807MovieZubaanMozez SinghVicky Kaushal, Sarah-Jane Dias, Raaghav Chanan...IndiaMarch 2, 20192015TV-14111 minDramas, International Movies, Music & MusicalsA scrappy but poor boy worms his way into a ty...
\n", - "

3790 rows × 12 columns

\n", - "
" - ], - "text/plain": [ - " show_id type title director \\\n", - "0 s1 Movie Dick Johnson Is Dead Kirsten Johnson \n", - "4 s5 TV Show Kota Factory NaN \n", - "9 s10 Movie The Starling Theodore Melfi \n", - "15 s16 TV Show Dear White People NaN \n", - "24 s25 Movie Jeans S. Shankar \n", - "... ... ... ... ... \n", - "8799 s8800 Movie Zenda Avadhoot Gupte \n", - "8802 s8803 Movie Zodiac David Fincher \n", - "8804 s8805 Movie Zombieland Ruben Fleischer \n", - "8805 s8806 Movie Zoom Peter Hewitt \n", - "8806 s8807 Movie Zubaan Mozez Singh \n", - "\n", - " cast country \\\n", - "0 NaN United States \n", - "4 Mayur More, Jitendra Kumar, Ranjan Raj, Alam K... India \n", - "9 Melissa McCarthy, Chris O'Dowd, Kevin Kline, T... United States \n", - "15 Logan Browning, Brandon P. Bell, DeRon Horton,... United States \n", - "24 Prashanth, Aishwarya Rai Bachchan, Sri Lakshmi... India \n", - "... ... ... \n", - "8799 Santosh Juvekar, Siddharth Chandekar, Sachit P... India \n", - "8802 Mark Ruffalo, Jake Gyllenhaal, Robert Downey J... United States \n", - "8804 Jesse Eisenberg, Woody Harrelson, Emma Stone, ... United States \n", - "8805 Tim Allen, Courteney Cox, Chevy Chase, Kate Ma... United States \n", - "8806 Vicky Kaushal, Sarah-Jane Dias, Raaghav Chanan... India \n", - "\n", - " date_added release_year rating duration \\\n", - "0 September 25, 2021 2020 PG-13 90 min \n", - "4 September 24, 2021 2021 TV-MA 2 Seasons \n", - "9 September 24, 2021 2021 PG-13 104 min \n", - "15 September 22, 2021 2021 TV-MA 4 Seasons \n", - "24 September 21, 2021 1998 TV-14 166 min \n", - "... ... ... ... ... \n", - "8799 February 15, 2018 2009 TV-14 120 min \n", - "8802 November 20, 2019 2007 R 158 min \n", - "8804 November 1, 2019 2009 R 88 min \n", - "8805 January 11, 2020 2006 PG 88 min \n", - "8806 March 2, 2019 2015 TV-14 111 min \n", - "\n", - " listed_in \\\n", - "0 Documentaries \n", - "4 International TV Shows, Romantic TV Shows, TV ... \n", - "9 Comedies, Dramas \n", - "15 TV Comedies, TV Dramas \n", - "24 Comedies, International Movies, Romantic Movies \n", - "... ... \n", - "8799 Dramas, International Movies \n", - "8802 Cult Movies, Dramas, Thrillers \n", - "8804 Comedies, Horror Movies \n", - "8805 Children & Family Movies, Comedies \n", - "8806 Dramas, International Movies, Music & Musicals \n", - "\n", - " description \n", - "0 As her father nears the end of his life, filmm... \n", - "4 In a city of coaching centers known to train I... \n", - "9 A woman adjusting to life after a loss contend... \n", - "15 Students of color navigate the daily slights a... \n", - "24 When the father of the man she loves insists t... \n", - "... ... \n", - "8799 A change in the leadership of a political part... \n", - "8802 A political cartoonist, a crime reporter and a... \n", - "8804 Looking to survive in a world taken over by zo... \n", - "8805 Dragged from civilian life, a former superhero... \n", - "8806 A scrappy but poor boy worms his way into a ty... \n", - "\n", - "[3790 rows x 12 columns]" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.loc[net_titles.country.isin(['United States', 'India'])]" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "60283375", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
show_idtypetitledirectorcastcountrydate_addedrelease_yearratingdurationlisted_indescription
1s2TV ShowBlood & WaterNaNAma Qamata, Khosi Ngema, Gail Mabalane, Thaban...South AfricaSeptember 24, 20212021TV-MA2 SeasonsInternational TV Shows, TV Dramas, TV MysteriesAfter crossing paths at a party, a Cape Town t...
2s3TV ShowGanglandsJulien LeclercqSami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi...NaNSeptember 24, 20212021TV-MA1 SeasonCrime TV Shows, International TV Shows, TV Act...To protect his family from a powerful drug lor...
4s5TV ShowKota FactoryNaNMayur More, Jitendra Kumar, Ranjan Raj, Alam K...IndiaSeptember 24, 20212021TV-MA2 SeasonsInternational TV Shows, Romantic TV Shows, TV ...In a city of coaching centers known to train I...
5s6TV ShowMidnight MassMike FlanaganKate Siegel, Zach Gilford, Hamish Linklater, H...NaNSeptember 24, 20212021TV-MA1 SeasonTV Dramas, TV Horror, TV MysteriesThe arrival of a charismatic young priest brin...
6s7MovieMy Little Pony: A New GenerationRobert Cullen, José Luis UchaVanessa Hudgens, Kimiko Glenn, James Marsden, ...NaNSeptember 24, 20212021PG91 minChildren & Family MoviesEquestria's divided. But a bright-eyed hero be...
.......................................
8801s8802MovieZinzanaMajid Al AnsariAli Suliman, Saleh Bakri, Yasa, Ali Al-Jabri, ...United Arab Emirates, JordanMarch 9, 20162015TV-MA96 minDramas, International Movies, ThrillersRecovering alcoholic Talal wakes up inside a s...
8802s8803MovieZodiacDavid FincherMark Ruffalo, Jake Gyllenhaal, Robert Downey J...United StatesNovember 20, 20192007R158 minCult Movies, Dramas, ThrillersA political cartoonist, a crime reporter and a...
8804s8805MovieZombielandRuben FleischerJesse Eisenberg, Woody Harrelson, Emma Stone, ...United StatesNovember 1, 20192009R88 minComedies, Horror MoviesLooking to survive in a world taken over by zo...
8805s8806MovieZoomPeter HewittTim Allen, Courteney Cox, Chevy Chase, Kate Ma...United StatesJanuary 11, 20202006PG88 minChildren & Family Movies, ComediesDragged from civilian life, a former superhero...
8806s8807MovieZubaanMozez SinghVicky Kaushal, Sarah-Jane Dias, Raaghav Chanan...IndiaMarch 2, 20192015TV-14111 minDramas, International Movies, Music & MusicalsA scrappy but poor boy worms his way into a ty...
\n", - "

7982 rows × 12 columns

\n", - "
" - ], - "text/plain": [ - " show_id type title \\\n", - "1 s2 TV Show Blood & Water \n", - "2 s3 TV Show Ganglands \n", - "4 s5 TV Show Kota Factory \n", - "5 s6 TV Show Midnight Mass \n", - "6 s7 Movie My Little Pony: A New Generation \n", - "... ... ... ... \n", - "8801 s8802 Movie Zinzana \n", - "8802 s8803 Movie Zodiac \n", - "8804 s8805 Movie Zombieland \n", - "8805 s8806 Movie Zoom \n", - "8806 s8807 Movie Zubaan \n", - "\n", - " director \\\n", - "1 NaN \n", - "2 Julien Leclercq \n", - "4 NaN \n", - "5 Mike Flanagan \n", - "6 Robert Cullen, José Luis Ucha \n", - "... ... \n", - "8801 Majid Al Ansari \n", - "8802 David Fincher \n", - "8804 Ruben Fleischer \n", - "8805 Peter Hewitt \n", - "8806 Mozez Singh \n", - "\n", - " cast \\\n", - "1 Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban... \n", - "2 Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi... \n", - "4 Mayur More, Jitendra Kumar, Ranjan Raj, Alam K... \n", - "5 Kate Siegel, Zach Gilford, Hamish Linklater, H... \n", - "6 Vanessa Hudgens, Kimiko Glenn, James Marsden, ... \n", - "... ... \n", - "8801 Ali Suliman, Saleh Bakri, Yasa, Ali Al-Jabri, ... \n", - "8802 Mark Ruffalo, Jake Gyllenhaal, Robert Downey J... \n", - "8804 Jesse Eisenberg, Woody Harrelson, Emma Stone, ... \n", - "8805 Tim Allen, Courteney Cox, Chevy Chase, Kate Ma... \n", - "8806 Vicky Kaushal, Sarah-Jane Dias, Raaghav Chanan... \n", - "\n", - " country date_added release_year rating \\\n", - "1 South Africa September 24, 2021 2021 TV-MA \n", - "2 NaN September 24, 2021 2021 TV-MA \n", - "4 India September 24, 2021 2021 TV-MA \n", - "5 NaN September 24, 2021 2021 TV-MA \n", - "6 NaN September 24, 2021 2021 PG \n", - "... ... ... ... ... \n", - "8801 United Arab Emirates, Jordan March 9, 2016 2015 TV-MA \n", - "8802 United States November 20, 2019 2007 R \n", - "8804 United States November 1, 2019 2009 R \n", - "8805 United States January 11, 2020 2006 PG \n", - "8806 India March 2, 2019 2015 TV-14 \n", - "\n", - " duration listed_in \\\n", - "1 2 Seasons International TV Shows, TV Dramas, TV Mysteries \n", - "2 1 Season Crime TV Shows, International TV Shows, TV Act... \n", - "4 2 Seasons International TV Shows, Romantic TV Shows, TV ... \n", - "5 1 Season TV Dramas, TV Horror, TV Mysteries \n", - "6 91 min Children & Family Movies \n", - "... ... ... \n", - "8801 96 min Dramas, International Movies, Thrillers \n", - "8802 158 min Cult Movies, Dramas, Thrillers \n", - "8804 88 min Comedies, Horror Movies \n", - "8805 88 min Children & Family Movies, Comedies \n", - "8806 111 min Dramas, International Movies, Music & Musicals \n", - "\n", - " description \n", - "1 After crossing paths at a party, a Cape Town t... \n", - "2 To protect his family from a powerful drug lor... \n", - "4 In a city of coaching centers known to train I... \n", - "5 The arrival of a charismatic young priest brin... \n", - "6 Equestria's divided. But a bright-eyed hero be... \n", - "... ... \n", - "8801 Recovering alcoholic Talal wakes up inside a s... \n", - "8802 A political cartoonist, a crime reporter and a... \n", - "8804 Looking to survive in a world taken over by zo... \n", - "8805 Dragged from civilian life, a former superhero... \n", - "8806 A scrappy but poor boy worms his way into a ty... \n", - "\n", - "[7982 rows x 12 columns]" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.loc[net_titles.cast.notnull()]" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "bbd03387", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
show_idtypetitledirectorcastcountrydate_addedrelease_yearratingdurationlisted_indescription
0s1MovieDick Johnson Is DeadKirsten JohnsonNaNUnited StatesSeptember 25, 20212020PG-1390 minDocumentariesAs her father nears the end of his life, filmm...
3s4TV ShowJailbirds New OrleansNaNNaNNaNSeptember 24, 20212021TV-MA1 SeasonDocuseries, Reality TVFeuds, flirtations and toilet talk go down amo...
10s11TV ShowVendetta: Truth, Lies and The MafiaNaNNaNNaNSeptember 24, 20212021TV-MA1 SeasonCrime TV Shows, Docuseries, International TV S...Sicily boasts a bold \"Anti-Mafia\" coalition. B...
14s15TV ShowCrime Stories: India DetectivesNaNNaNNaNSeptember 22, 20212021TV-MA1 SeasonBritish TV Shows, Crime TV Shows, DocuseriesCameras following Bengaluru police on the job ...
16s17MovieEurope's Most Dangerous Man: Otto Skorzeny in ...Pedro de Echave García, Pablo Azorín WilliamsNaNNaNSeptember 22, 20212020TV-MA67 minDocumentaries, International MoviesDeclassified documents reveal the post-WWII li...
.......................................
8746s8747MovieWinniePascale LamcheNaNFrance, Netherlands, South Africa, FinlandFebruary 26, 20182017TV-1485 minDocumentaries, International MoviesWinnie Mandela speaks about her extraordinary ...
8755s8756TV ShowWomen Behind BarsNaNNaNUnited StatesNovember 1, 20162010TV-143 SeasonsCrime TV Shows, DocuseriesThis reality series recounts true stories of w...
8756s8757MovieWoodstockBarak GoodmanNaNUnited StatesAugust 13, 20192019TV-MA97 minDocumentaries, Music & MusicalsFor the 50th anniversary of the legendary Wood...
8763s8764MovieWWII: Report from the AleutiansJohn HustonNaNUnited StatesMarch 31, 20171943TV-PG45 minDocumentariesFilmmaker John Huston narrates this Oscar-nomi...
8803s8804TV ShowZombie DumbNaNNaNNaNJuly 1, 20192018TV-Y72 SeasonsKids' TV, Korean TV Shows, TV ComediesWhile living alone in a spooky town, a young g...
\n", - "

825 rows × 12 columns

\n", - "
" - ], - "text/plain": [ - " show_id type title \\\n", - "0 s1 Movie Dick Johnson Is Dead \n", - "3 s4 TV Show Jailbirds New Orleans \n", - "10 s11 TV Show Vendetta: Truth, Lies and The Mafia \n", - "14 s15 TV Show Crime Stories: India Detectives \n", - "16 s17 Movie Europe's Most Dangerous Man: Otto Skorzeny in ... \n", - "... ... ... ... \n", - "8746 s8747 Movie Winnie \n", - "8755 s8756 TV Show Women Behind Bars \n", - "8756 s8757 Movie Woodstock \n", - "8763 s8764 Movie WWII: Report from the Aleutians \n", - "8803 s8804 TV Show Zombie Dumb \n", - "\n", - " director cast \\\n", - "0 Kirsten Johnson NaN \n", - "3 NaN NaN \n", - "10 NaN NaN \n", - "14 NaN NaN \n", - "16 Pedro de Echave García, Pablo Azorín Williams NaN \n", - "... ... ... \n", - "8746 Pascale Lamche NaN \n", - "8755 NaN NaN \n", - "8756 Barak Goodman NaN \n", - "8763 John Huston NaN \n", - "8803 NaN NaN \n", - "\n", - " country date_added \\\n", - "0 United States September 25, 2021 \n", - "3 NaN September 24, 2021 \n", - "10 NaN September 24, 2021 \n", - "14 NaN September 22, 2021 \n", - "16 NaN September 22, 2021 \n", - "... ... ... \n", - "8746 France, Netherlands, South Africa, Finland February 26, 2018 \n", - "8755 United States November 1, 2016 \n", - "8756 United States August 13, 2019 \n", - "8763 United States March 31, 2017 \n", - "8803 NaN July 1, 2019 \n", - "\n", - " release_year rating duration \\\n", - "0 2020 PG-13 90 min \n", - "3 2021 TV-MA 1 Season \n", - "10 2021 TV-MA 1 Season \n", - "14 2021 TV-MA 1 Season \n", - "16 2020 TV-MA 67 min \n", - "... ... ... ... \n", - "8746 2017 TV-14 85 min \n", - "8755 2010 TV-14 3 Seasons \n", - "8756 2019 TV-MA 97 min \n", - "8763 1943 TV-PG 45 min \n", - "8803 2018 TV-Y7 2 Seasons \n", - "\n", - " listed_in \\\n", - "0 Documentaries \n", - "3 Docuseries, Reality TV \n", - "10 Crime TV Shows, Docuseries, International TV S... \n", - "14 British TV Shows, Crime TV Shows, Docuseries \n", - "16 Documentaries, International Movies \n", - "... ... \n", - "8746 Documentaries, International Movies \n", - "8755 Crime TV Shows, Docuseries \n", - "8756 Documentaries, Music & Musicals \n", - "8763 Documentaries \n", - "8803 Kids' TV, Korean TV Shows, TV Comedies \n", - "\n", - " description \n", - "0 As her father nears the end of his life, filmm... \n", - "3 Feuds, flirtations and toilet talk go down amo... \n", - "10 Sicily boasts a bold \"Anti-Mafia\" coalition. B... \n", - "14 Cameras following Bengaluru police on the job ... \n", - "16 Declassified documents reveal the post-WWII li... \n", - "... ... \n", - "8746 Winnie Mandela speaks about her extraordinary ... \n", - "8755 This reality series recounts true stories of w... \n", - "8756 For the 50th anniversary of the legendary Wood... \n", - "8763 Filmmaker John Huston narrates this Oscar-nomi... \n", - "8803 While living alone in a spooky town, a young g... \n", - "\n", - "[825 rows x 12 columns]" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.loc[net_titles.cast.isnull()]" - ] - }, - { - "cell_type": "markdown", - "id": "0c010421", - "metadata": {}, - "source": [ - "## Summary Functions" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "83d35500", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "count 8807\n", - "unique 2\n", - "top Movie\n", - "freq 6131\n", - "Name: type, dtype: object" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.type.describe()" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "b434cfc7", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "count 8803\n", - "unique 17\n", - "top TV-MA\n", - "freq 3207\n", - "Name: rating, dtype: object" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.rating.describe()" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "d736bae5", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array(['Movie', 'TV Show'], dtype=object)" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.type.unique()" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "991b43f4", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Movie 6131\n", - "TV Show 2676\n", - "Name: type, dtype: int64" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.type.value_counts()" - ] - }, - { - "cell_type": "markdown", - "id": "cf389b05", - "metadata": {}, - "source": [ - "## Sorting" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "f43b4b1d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
show_idtypetitledirectorcastcountrydate_addedrelease_yearratingdurationlisted_indescription
0s1MovieDick Johnson Is DeadKirsten JohnsonNaNUnited StatesSeptember 25, 20212020PG-1390 minDocumentariesAs her father nears the end of his life, filmm...
5641s5642MovieUnder the ShadowBabak AnvariNarges Rashidi, Avin Manshadi, Bobby Naderi, R...United Kingdom, Jordan, Qatar, IranJanuary 7, 20172016PG-1384 minHorror Movies, International Movies, ThrillersDuring the Iran-Iraq conflict, a Tehran woman ...
5639s5640MovieJim Gaffigan: CincoJeannie GaffiganJim GaffiganUnited StatesJanuary 10, 20172017TV-1474 minStand-Up ComedyAmerica's king of clean comedy delivers wicked...
5638s5639MovieVery Big ShotMir-Jean Bou ChaayaAlain Saadeh, Fouad Yammine, Tarek Yaacoub, Al...Lebanon, QatarJanuary 12, 20172015TV-MA109 minComedies, Dramas, International MoviesWhen three brothers struggling to go straight ...
5637s5638MovieClinicalAlistair LegrandVinessa Shaw, Kevin Rahm, William Atherton, Aa...United StatesJanuary 13, 20172017TV-MA104 minHorror Movies, ThrillersA psychiatrist is plagued by flashbacks to a t...
.......................................
2406s2407TV ShowLenox HillNaNNaNUnited StatesJune 10, 20202020TV-MA1 SeasonDocuseries, Reality TV, Science & Nature TVFour doctors at New York's storied Lenox Hill ...
5777s5778TV ShowSomeone Like YouNaNKingone Wang, Lorene Ren, Sean Lee, Nita Lei, ...TaiwanOctober 1, 20162015TV-141 SeasonInternational TV Shows, Romantic TV Shows, TV ...After losing his sight and his fiancee in an a...
2405s2406TV ShowDC's Legends of TomorrowRob SeidenglanzVictor Garber, Brandon Routh, Caity Lotz, Fran...United StatesJune 10, 20202020TV-145 SeasonsTV Action & Adventure, TV Sci-Fi & FantasyA mysterious \"time master\" from the future uni...
5730s5731TV ShowLove FamilyNaNChris Wang, Serena Fang, Jack Lee, Amanda Chou...TaiwanNovember 1, 20162013TV-MA1 SeasonInternational TV Shows, Romantic TV Shows, TV ...A wealthy heir's search for a nameless childho...
4403s4404TV ShowMedal of HonorNaNOliver Hudson, Ben Schwartz, Paul Wesley, Aldi...United StatesNovember 9, 20182018TV-MA1 SeasonDocuseries, TV DramasHonoring service members whose courage merited...
\n", - "

8807 rows × 12 columns

\n", - "
" - ], - "text/plain": [ - " show_id type title director \\\n", - "0 s1 Movie Dick Johnson Is Dead Kirsten Johnson \n", - "5641 s5642 Movie Under the Shadow Babak Anvari \n", - "5639 s5640 Movie Jim Gaffigan: Cinco Jeannie Gaffigan \n", - "5638 s5639 Movie Very Big Shot Mir-Jean Bou Chaaya \n", - "5637 s5638 Movie Clinical Alistair Legrand \n", - "... ... ... ... ... \n", - "2406 s2407 TV Show Lenox Hill NaN \n", - "5777 s5778 TV Show Someone Like You NaN \n", - "2405 s2406 TV Show DC's Legends of Tomorrow Rob Seidenglanz \n", - "5730 s5731 TV Show Love Family NaN \n", - "4403 s4404 TV Show Medal of Honor NaN \n", - "\n", - " cast \\\n", - "0 NaN \n", - "5641 Narges Rashidi, Avin Manshadi, Bobby Naderi, R... \n", - "5639 Jim Gaffigan \n", - "5638 Alain Saadeh, Fouad Yammine, Tarek Yaacoub, Al... \n", - "5637 Vinessa Shaw, Kevin Rahm, William Atherton, Aa... \n", - "... ... \n", - "2406 NaN \n", - "5777 Kingone Wang, Lorene Ren, Sean Lee, Nita Lei, ... \n", - "2405 Victor Garber, Brandon Routh, Caity Lotz, Fran... \n", - "5730 Chris Wang, Serena Fang, Jack Lee, Amanda Chou... \n", - "4403 Oliver Hudson, Ben Schwartz, Paul Wesley, Aldi... \n", - "\n", - " country date_added release_year \\\n", - "0 United States September 25, 2021 2020 \n", - "5641 United Kingdom, Jordan, Qatar, Iran January 7, 2017 2016 \n", - "5639 United States January 10, 2017 2017 \n", - "5638 Lebanon, Qatar January 12, 2017 2015 \n", - "5637 United States January 13, 2017 2017 \n", - "... ... ... ... \n", - "2406 United States June 10, 2020 2020 \n", - "5777 Taiwan October 1, 2016 2015 \n", - "2405 United States June 10, 2020 2020 \n", - "5730 Taiwan November 1, 2016 2013 \n", - "4403 United States November 9, 2018 2018 \n", - "\n", - " rating duration listed_in \\\n", - "0 PG-13 90 min Documentaries \n", - "5641 PG-13 84 min Horror Movies, International Movies, Thrillers \n", - "5639 TV-14 74 min Stand-Up Comedy \n", - "5638 TV-MA 109 min Comedies, Dramas, International Movies \n", - "5637 TV-MA 104 min Horror Movies, Thrillers \n", - "... ... ... ... \n", - "2406 TV-MA 1 Season Docuseries, Reality TV, Science & Nature TV \n", - "5777 TV-14 1 Season International TV Shows, Romantic TV Shows, TV ... \n", - "2405 TV-14 5 Seasons TV Action & Adventure, TV Sci-Fi & Fantasy \n", - "5730 TV-MA 1 Season International TV Shows, Romantic TV Shows, TV ... \n", - "4403 TV-MA 1 Season Docuseries, TV Dramas \n", - "\n", - " description \n", - "0 As her father nears the end of his life, filmm... \n", - "5641 During the Iran-Iraq conflict, a Tehran woman ... \n", - "5639 America's king of clean comedy delivers wicked... \n", - "5638 When three brothers struggling to go straight ... \n", - "5637 A psychiatrist is plagued by flashbacks to a t... \n", - "... ... \n", - "2406 Four doctors at New York's storied Lenox Hill ... \n", - "5777 After losing his sight and his fiancee in an a... \n", - "2405 A mysterious \"time master\" from the future uni... \n", - "5730 A wealthy heir's search for a nameless childho... \n", - "4403 Honoring service members whose courage merited... \n", - "\n", - "[8807 rows x 12 columns]" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.sort_values(by='type')" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "id": "809313ff", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
show_idtypetitledirectorcastcountrydate_addedrelease_yearratingdurationlisted_indescription
693s694MovieAli & Ratu Ratu QueensLucky KuswandiIqbaal Ramadhan, Nirina Zubir, Asri Welas, Tik...NaNJune 17, 20212021TV-14101 minComedies, Dramas, International MoviesAfter his father's passing, a teenager sets ou...
781s782MovieBlack Holes | The Edge of All We KnowPeter GalisonNaNNaNJune 2, 20212021TV-1499 minDocumentariesFollow scientists on their quest to understand...
762s763MovieSweet & SourLee Kae-byeokJang Ki-yong, Chae Soo-bin, Jung Soo-jungSouth KoreaJune 4, 20212021TV-14103 minComedies, International Movies, Romantic MoviesFaced with real-world opportunities and challe...
763s764TV ShowSweet ToothNaNNonso Anozie, Christian Convery, Adeel Akhtar,...United StatesJune 4, 20212021TV-141 SeasonTV Action & Adventure, TV Dramas, TV Sci-Fi & ...On a perilous adventure across a post-apocalyp...
764s765MovieTrippin' with the KandasamysJayan MoodleyJailoshini Naidoo, Maeshni Naicker, Madhushan ...South AfricaJune 4, 20212021TV-1494 minComedies, International Movies, Romantic MoviesTo rekindle their marriages, best friends-turn...
.......................................
8660s8661MovieUndercover: How to Operate Behind Enemy LinesJohn FordNaNUnited StatesMarch 31, 20171943TV-PG61 minClassic Movies, DocumentariesThis World War II-era training film dramatizes...
8763s8764MovieWWII: Report from the AleutiansJohn HustonNaNUnited StatesMarch 31, 20171943TV-PG45 minDocumentariesFilmmaker John Huston narrates this Oscar-nomi...
8205s8206MovieThe Battle of MidwayJohn FordHenry Fonda, Jane DarwellUnited StatesMarch 31, 20171942TV-1418 minClassic Movies, DocumentariesDirector John Ford captures combat footage of ...
7790s7791MoviePrelude to WarFrank CapraNaNUnited StatesMarch 31, 20171942TV-1452 minClassic Movies, DocumentariesFrank Capra's documentary chronicles the rise ...
4250s4251TV ShowPioneers: First Women Filmmakers*NaNNaNNaNDecember 30, 20181925TV-141 SeasonTV ShowsThis collection restores films from women who ...
\n", - "

8807 rows × 12 columns

\n", - "
" - ], - "text/plain": [ - " show_id type title \\\n", - "693 s694 Movie Ali & Ratu Ratu Queens \n", - "781 s782 Movie Black Holes | The Edge of All We Know \n", - "762 s763 Movie Sweet & Sour \n", - "763 s764 TV Show Sweet Tooth \n", - "764 s765 Movie Trippin' with the Kandasamys \n", - "... ... ... ... \n", - "8660 s8661 Movie Undercover: How to Operate Behind Enemy Lines \n", - "8763 s8764 Movie WWII: Report from the Aleutians \n", - "8205 s8206 Movie The Battle of Midway \n", - "7790 s7791 Movie Prelude to War \n", - "4250 s4251 TV Show Pioneers: First Women Filmmakers* \n", - "\n", - " director cast \\\n", - "693 Lucky Kuswandi Iqbaal Ramadhan, Nirina Zubir, Asri Welas, Tik... \n", - "781 Peter Galison NaN \n", - "762 Lee Kae-byeok Jang Ki-yong, Chae Soo-bin, Jung Soo-jung \n", - "763 NaN Nonso Anozie, Christian Convery, Adeel Akhtar,... \n", - "764 Jayan Moodley Jailoshini Naidoo, Maeshni Naicker, Madhushan ... \n", - "... ... ... \n", - "8660 John Ford NaN \n", - "8763 John Huston NaN \n", - "8205 John Ford Henry Fonda, Jane Darwell \n", - "7790 Frank Capra NaN \n", - "4250 NaN NaN \n", - "\n", - " country date_added release_year rating duration \\\n", - "693 NaN June 17, 2021 2021 TV-14 101 min \n", - "781 NaN June 2, 2021 2021 TV-14 99 min \n", - "762 South Korea June 4, 2021 2021 TV-14 103 min \n", - "763 United States June 4, 2021 2021 TV-14 1 Season \n", - "764 South Africa June 4, 2021 2021 TV-14 94 min \n", - "... ... ... ... ... ... \n", - "8660 United States March 31, 2017 1943 TV-PG 61 min \n", - "8763 United States March 31, 2017 1943 TV-PG 45 min \n", - "8205 United States March 31, 2017 1942 TV-14 18 min \n", - "7790 United States March 31, 2017 1942 TV-14 52 min \n", - "4250 NaN December 30, 2018 1925 TV-14 1 Season \n", - "\n", - " listed_in \\\n", - "693 Comedies, Dramas, International Movies \n", - "781 Documentaries \n", - "762 Comedies, International Movies, Romantic Movies \n", - "763 TV Action & Adventure, TV Dramas, TV Sci-Fi & ... \n", - "764 Comedies, International Movies, Romantic Movies \n", - "... ... \n", - "8660 Classic Movies, Documentaries \n", - "8763 Documentaries \n", - "8205 Classic Movies, Documentaries \n", - "7790 Classic Movies, Documentaries \n", - "4250 TV Shows \n", - "\n", - " description \n", - "693 After his father's passing, a teenager sets ou... \n", - "781 Follow scientists on their quest to understand... \n", - "762 Faced with real-world opportunities and challe... \n", - "763 On a perilous adventure across a post-apocalyp... \n", - "764 To rekindle their marriages, best friends-turn... \n", - "... ... \n", - "8660 This World War II-era training film dramatizes... \n", - "8763 Filmmaker John Huston narrates this Oscar-nomi... \n", - "8205 Director John Ford captures combat footage of ... \n", - "7790 Frank Capra's documentary chronicles the rise ... \n", - "4250 This collection restores films from women who ... \n", - "\n", - "[8807 rows x 12 columns]" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.sort_values(by='release_year', ascending=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "id": "f25a273c", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
show_idtypetitledirectorcastcountrydate_addedrelease_yearratingdurationlisted_indescription
8423s8424TV ShowThe Minimighty KidsNaNNaNFranceApril 15, 20182012TV-G2 SeasonsKids' TV, TV ComediesSome have big feet or a sniffly nose, others a...
7521s7522TV ShowMr. YoungNaNBrendan Meyer, Matreya Fedor, Gig Morton, Kurt...CanadaApril 16, 20192013TV-G2 SeasonsKids' TV, TV ComediesAfter Adam graduates from college at age 14, h...
7342s7343TV ShowLost GirlNaNAnna Silk, Kris Holden-Ried, Ksenia Solo, Rich...CanadaApril 17, 20162015TV-145 SeasonsTV Dramas, TV Horror, TV MysteriesDiscovering she's a succubus who sustains hers...
8257s8258TV ShowThe CravingsNaNPark Hee-bon, Phillip Choi, Hong Wan-pyo, Choi...South KoreaApril 20, 20172016TV-142 SeasonsInternational TV Shows, Korean TV Shows, TV Co...Thirtysomething career woman Jae-yeong attempt...
6460s6461TV ShowChewing GumNaNMichaela Coel, John Macmillan, Robert Lonsdale...United KingdomApril 4, 20172017TV-MA2 SeasonsBritish TV Shows, International TV Shows, Roma...The virginal Tracey, who was raised in a stric...
.......................................
6066s6067TV ShowA Young Doctor's Notebook and Other StoriesNaNDaniel Radcliffe, Jon Hamm, Adam Godley, Chris...United KingdomNaN2013TV-MA2 SeasonsBritish TV Shows, TV Comedies, TV DramasSet during the Russian Revolution, this comic ...
7847s7848TV ShowRed vs. BlueNaNBurnie Burns, Jason Saldaña, Gustavo Sorola, G...United StatesNaN2015NR13 SeasonsTV Action & Adventure, TV Comedies, TV Sci-Fi ...This parody of first-person shooter games, mil...
8182s8183TV ShowThe Adventures of Figaro PhoNaNLuke Jurevicius, Craig Behenna, Charlotte Haml...AustraliaNaN2015TV-Y72 SeasonsKids' TV, TV ComediesImagine your worst fears, then multiply them: ...
7406s7407TV ShowMaronNaNMarc Maron, Judd Hirsch, Josh Brener, Nora Zeh...United StatesNaN2016TV-MA4 SeasonsTV ComediesMarc Maron stars as Marc Maron, who interviews...
6174s6175TV ShowAnthony Bourdain: Parts UnknownNaNAnthony BourdainUnited StatesNaN2018TV-PG5 SeasonsDocuseriesThis CNN original series has chef Anthony Bour...
\n", - "

8807 rows × 12 columns

\n", - "
" - ], - "text/plain": [ - " show_id type title director \\\n", - "8423 s8424 TV Show The Minimighty Kids NaN \n", - "7521 s7522 TV Show Mr. Young NaN \n", - "7342 s7343 TV Show Lost Girl NaN \n", - "8257 s8258 TV Show The Cravings NaN \n", - "6460 s6461 TV Show Chewing Gum NaN \n", - "... ... ... ... ... \n", - "6066 s6067 TV Show A Young Doctor's Notebook and Other Stories NaN \n", - "7847 s7848 TV Show Red vs. Blue NaN \n", - "8182 s8183 TV Show The Adventures of Figaro Pho NaN \n", - "7406 s7407 TV Show Maron NaN \n", - "6174 s6175 TV Show Anthony Bourdain: Parts Unknown NaN \n", - "\n", - " cast country \\\n", - "8423 NaN France \n", - "7521 Brendan Meyer, Matreya Fedor, Gig Morton, Kurt... Canada \n", - "7342 Anna Silk, Kris Holden-Ried, Ksenia Solo, Rich... Canada \n", - "8257 Park Hee-bon, Phillip Choi, Hong Wan-pyo, Choi... South Korea \n", - "6460 Michaela Coel, John Macmillan, Robert Lonsdale... United Kingdom \n", - "... ... ... \n", - "6066 Daniel Radcliffe, Jon Hamm, Adam Godley, Chris... United Kingdom \n", - "7847 Burnie Burns, Jason Saldaña, Gustavo Sorola, G... United States \n", - "8182 Luke Jurevicius, Craig Behenna, Charlotte Haml... Australia \n", - "7406 Marc Maron, Judd Hirsch, Josh Brener, Nora Zeh... United States \n", - "6174 Anthony Bourdain United States \n", - "\n", - " date_added release_year rating duration \\\n", - "8423 April 15, 2018 2012 TV-G 2 Seasons \n", - "7521 April 16, 2019 2013 TV-G 2 Seasons \n", - "7342 April 17, 2016 2015 TV-14 5 Seasons \n", - "8257 April 20, 2017 2016 TV-14 2 Seasons \n", - "6460 April 4, 2017 2017 TV-MA 2 Seasons \n", - "... ... ... ... ... \n", - "6066 NaN 2013 TV-MA 2 Seasons \n", - "7847 NaN 2015 NR 13 Seasons \n", - "8182 NaN 2015 TV-Y7 2 Seasons \n", - "7406 NaN 2016 TV-MA 4 Seasons \n", - "6174 NaN 2018 TV-PG 5 Seasons \n", - "\n", - " listed_in \\\n", - "8423 Kids' TV, TV Comedies \n", - "7521 Kids' TV, TV Comedies \n", - "7342 TV Dramas, TV Horror, TV Mysteries \n", - "8257 International TV Shows, Korean TV Shows, TV Co... \n", - "6460 British TV Shows, International TV Shows, Roma... \n", - "... ... \n", - "6066 British TV Shows, TV Comedies, TV Dramas \n", - "7847 TV Action & Adventure, TV Comedies, TV Sci-Fi ... \n", - "8182 Kids' TV, TV Comedies \n", - "7406 TV Comedies \n", - "6174 Docuseries \n", - "\n", - " description \n", - "8423 Some have big feet or a sniffly nose, others a... \n", - "7521 After Adam graduates from college at age 14, h... \n", - "7342 Discovering she's a succubus who sustains hers... \n", - "8257 Thirtysomething career woman Jae-yeong attempt... \n", - "6460 The virginal Tracey, who was raised in a stric... \n", - "... ... \n", - "6066 Set during the Russian Revolution, this comic ... \n", - "7847 This parody of first-person shooter games, mil... \n", - "8182 Imagine your worst fears, then multiply them: ... \n", - "7406 Marc Maron stars as Marc Maron, who interviews... \n", - "6174 This CNN original series has chef Anthony Bour... \n", - "\n", - "[8807 rows x 12 columns]" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.sort_values(by=['date_added','release_year'])" - ] - }, - { - "cell_type": "markdown", - "id": "f5054cd0", - "metadata": {}, - "source": [ - "## Missing values" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "id": "b8eced25", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
show_idtypetitledirectorcastcountrydate_addedrelease_yearratingdurationlisted_indescription
6066s6067TV ShowA Young Doctor's Notebook and Other StoriesNaNDaniel Radcliffe, Jon Hamm, Adam Godley, Chris...United KingdomNaN2013TV-MA2 SeasonsBritish TV Shows, TV Comedies, TV DramasSet during the Russian Revolution, this comic ...
6174s6175TV ShowAnthony Bourdain: Parts UnknownNaNAnthony BourdainUnited StatesNaN2018TV-PG5 SeasonsDocuseriesThis CNN original series has chef Anthony Bour...
6795s6796TV ShowFrasierNaNKelsey Grammer, Jane Leeves, David Hyde Pierce...United StatesNaN2003TV-PG11 SeasonsClassic & Cult TV, TV ComediesFrasier Crane is a snooty but lovable Seattle ...
6806s6807TV ShowFriendsNaNJennifer Aniston, Courteney Cox, Lisa Kudrow, ...United StatesNaN2003TV-1410 SeasonsClassic & Cult TV, TV ComediesThis hit sitcom follows the merry misadventure...
6901s6902TV ShowGunslinger GirlNaNYuuka Nanri, Kanako Mitsuhashi, Eri Sendai, Am...JapanNaN2008TV-142 SeasonsAnime Series, Crime TV ShowsOn the surface, the Social Welfare Agency appe...
7196s7197TV ShowKikorikiNaNIgor DmitrievNaNNaN2010TV-Y2 SeasonsKids' TVA wacky rabbit and his gang of animal pals hav...
7254s7255TV ShowLa Familia P. LucheNaNEugenio Derbez, Consuelo Duval, Luis Manuel Áv...United StatesNaN2012TV-143 SeasonsInternational TV Shows, Spanish-Language TV Sh...This irreverent sitcom featues Ludovico, Feder...
7406s7407TV ShowMaronNaNMarc Maron, Judd Hirsch, Josh Brener, Nora Zeh...United StatesNaN2016TV-MA4 SeasonsTV ComediesMarc Maron stars as Marc Maron, who interviews...
7847s7848TV ShowRed vs. BlueNaNBurnie Burns, Jason Saldaña, Gustavo Sorola, G...United StatesNaN2015NR13 SeasonsTV Action & Adventure, TV Comedies, TV Sci-Fi ...This parody of first-person shooter games, mil...
8182s8183TV ShowThe Adventures of Figaro PhoNaNLuke Jurevicius, Craig Behenna, Charlotte Haml...AustraliaNaN2015TV-Y72 SeasonsKids' TV, TV ComediesImagine your worst fears, then multiply them: ...
\n", - "
" - ], - "text/plain": [ - " show_id type title director \\\n", - "6066 s6067 TV Show A Young Doctor's Notebook and Other Stories NaN \n", - "6174 s6175 TV Show Anthony Bourdain: Parts Unknown NaN \n", - "6795 s6796 TV Show Frasier NaN \n", - "6806 s6807 TV Show Friends NaN \n", - "6901 s6902 TV Show Gunslinger Girl NaN \n", - "7196 s7197 TV Show Kikoriki NaN \n", - "7254 s7255 TV Show La Familia P. Luche NaN \n", - "7406 s7407 TV Show Maron NaN \n", - "7847 s7848 TV Show Red vs. Blue NaN \n", - "8182 s8183 TV Show The Adventures of Figaro Pho NaN \n", - "\n", - " cast country \\\n", - "6066 Daniel Radcliffe, Jon Hamm, Adam Godley, Chris... United Kingdom \n", - "6174 Anthony Bourdain United States \n", - "6795 Kelsey Grammer, Jane Leeves, David Hyde Pierce... United States \n", - "6806 Jennifer Aniston, Courteney Cox, Lisa Kudrow, ... United States \n", - "6901 Yuuka Nanri, Kanako Mitsuhashi, Eri Sendai, Am... Japan \n", - "7196 Igor Dmitriev NaN \n", - "7254 Eugenio Derbez, Consuelo Duval, Luis Manuel Áv... United States \n", - "7406 Marc Maron, Judd Hirsch, Josh Brener, Nora Zeh... United States \n", - "7847 Burnie Burns, Jason Saldaña, Gustavo Sorola, G... United States \n", - "8182 Luke Jurevicius, Craig Behenna, Charlotte Haml... Australia \n", - "\n", - " date_added release_year rating duration \\\n", - "6066 NaN 2013 TV-MA 2 Seasons \n", - "6174 NaN 2018 TV-PG 5 Seasons \n", - "6795 NaN 2003 TV-PG 11 Seasons \n", - "6806 NaN 2003 TV-14 10 Seasons \n", - "6901 NaN 2008 TV-14 2 Seasons \n", - "7196 NaN 2010 TV-Y 2 Seasons \n", - "7254 NaN 2012 TV-14 3 Seasons \n", - "7406 NaN 2016 TV-MA 4 Seasons \n", - "7847 NaN 2015 NR 13 Seasons \n", - "8182 NaN 2015 TV-Y7 2 Seasons \n", - "\n", - " listed_in \\\n", - "6066 British TV Shows, TV Comedies, TV Dramas \n", - "6174 Docuseries \n", - "6795 Classic & Cult TV, TV Comedies \n", - "6806 Classic & Cult TV, TV Comedies \n", - "6901 Anime Series, Crime TV Shows \n", - "7196 Kids' TV \n", - "7254 International TV Shows, Spanish-Language TV Sh... \n", - "7406 TV Comedies \n", - "7847 TV Action & Adventure, TV Comedies, TV Sci-Fi ... \n", - "8182 Kids' TV, TV Comedies \n", - "\n", - " description \n", - "6066 Set during the Russian Revolution, this comic ... \n", - "6174 This CNN original series has chef Anthony Bour... \n", - "6795 Frasier Crane is a snooty but lovable Seattle ... \n", - "6806 This hit sitcom follows the merry misadventure... \n", - "6901 On the surface, the Social Welfare Agency appe... \n", - "7196 A wacky rabbit and his gang of animal pals hav... \n", - "7254 This irreverent sitcom featues Ludovico, Feder... \n", - "7406 Marc Maron stars as Marc Maron, who interviews... \n", - "7847 This parody of first-person shooter games, mil... \n", - "8182 Imagine your worst fears, then multiply them: ... " - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles[pd.isnull(net_titles.date_added)]" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "id": "6fa5ffc8", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 September 25, 2021\n", - "1 September 24, 2021\n", - "2 September 24, 2021\n", - "3 September 24, 2021\n", - "4 September 24, 2021\n", - " ... \n", - "8802 November 20, 2019\n", - "8803 July 1, 2019\n", - "8804 November 1, 2019\n", - "8805 January 11, 2020\n", - "8806 March 2, 2019\n", - "Name: date_added, Length: 8807, dtype: object" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.date_added.fillna('Unknown')" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "id": "40a0a8c2", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
show_idtypetitledirectorcastcountrydate_addedrelease_yearratingdurationlisted_indescription
6066s6067TV ShowA Young Doctor's Notebook and Other StoriesNaNDaniel Radcliffe, Jon Hamm, Adam Godley, Chris...United KingdomNaN2013TV-MA2 SeasonsBritish TV Shows, TV Comedies, TV DramasSet during the Russian Revolution, this comic ...
6174s6175TV ShowAnthony Bourdain: Parts UnknownNaNAnthony BourdainUnited StatesNaN2018TV-PG5 SeasonsDocuseriesThis CNN original series has chef Anthony Bour...
6795s6796TV ShowFrasierNaNKelsey Grammer, Jane Leeves, David Hyde Pierce...United StatesNaN2003TV-PG11 SeasonsClassic & Cult TV, TV ComediesFrasier Crane is a snooty but lovable Seattle ...
6806s6807TV ShowFriendsNaNJennifer Aniston, Courteney Cox, Lisa Kudrow, ...United StatesNaN2003TV-1410 SeasonsClassic & Cult TV, TV ComediesThis hit sitcom follows the merry misadventure...
6901s6902TV ShowGunslinger GirlNaNYuuka Nanri, Kanako Mitsuhashi, Eri Sendai, Am...JapanNaN2008TV-142 SeasonsAnime Series, Crime TV ShowsOn the surface, the Social Welfare Agency appe...
7196s7197TV ShowKikorikiNaNIgor DmitrievNaNNaN2010TV-Y2 SeasonsKids' TVA wacky rabbit and his gang of animal pals hav...
7254s7255TV ShowLa Familia P. LucheNaNEugenio Derbez, Consuelo Duval, Luis Manuel Áv...United StatesNaN2012TV-143 SeasonsInternational TV Shows, Spanish-Language TV Sh...This irreverent sitcom featues Ludovico, Feder...
7406s7407TV ShowMaronNaNMarc Maron, Judd Hirsch, Josh Brener, Nora Zeh...United StatesNaN2016TV-MA4 SeasonsTV ComediesMarc Maron stars as Marc Maron, who interviews...
7847s7848TV ShowRed vs. BlueNaNBurnie Burns, Jason Saldaña, Gustavo Sorola, G...United StatesNaN2015NR13 SeasonsTV Action & Adventure, TV Comedies, TV Sci-Fi ...This parody of first-person shooter games, mil...
8182s8183TV ShowThe Adventures of Figaro PhoNaNLuke Jurevicius, Craig Behenna, Charlotte Haml...AustraliaNaN2015TV-Y72 SeasonsKids' TV, TV ComediesImagine your worst fears, then multiply them: ...
\n", - "
" - ], - "text/plain": [ - " show_id type title director \\\n", - "6066 s6067 TV Show A Young Doctor's Notebook and Other Stories NaN \n", - "6174 s6175 TV Show Anthony Bourdain: Parts Unknown NaN \n", - "6795 s6796 TV Show Frasier NaN \n", - "6806 s6807 TV Show Friends NaN \n", - "6901 s6902 TV Show Gunslinger Girl NaN \n", - "7196 s7197 TV Show Kikoriki NaN \n", - "7254 s7255 TV Show La Familia P. Luche NaN \n", - "7406 s7407 TV Show Maron NaN \n", - "7847 s7848 TV Show Red vs. Blue NaN \n", - "8182 s8183 TV Show The Adventures of Figaro Pho NaN \n", - "\n", - " cast country \\\n", - "6066 Daniel Radcliffe, Jon Hamm, Adam Godley, Chris... United Kingdom \n", - "6174 Anthony Bourdain United States \n", - "6795 Kelsey Grammer, Jane Leeves, David Hyde Pierce... United States \n", - "6806 Jennifer Aniston, Courteney Cox, Lisa Kudrow, ... United States \n", - "6901 Yuuka Nanri, Kanako Mitsuhashi, Eri Sendai, Am... Japan \n", - "7196 Igor Dmitriev NaN \n", - "7254 Eugenio Derbez, Consuelo Duval, Luis Manuel Áv... United States \n", - "7406 Marc Maron, Judd Hirsch, Josh Brener, Nora Zeh... United States \n", - "7847 Burnie Burns, Jason Saldaña, Gustavo Sorola, G... United States \n", - "8182 Luke Jurevicius, Craig Behenna, Charlotte Haml... Australia \n", - "\n", - " date_added release_year rating duration \\\n", - "6066 NaN 2013 TV-MA 2 Seasons \n", - "6174 NaN 2018 TV-PG 5 Seasons \n", - "6795 NaN 2003 TV-PG 11 Seasons \n", - "6806 NaN 2003 TV-14 10 Seasons \n", - "6901 NaN 2008 TV-14 2 Seasons \n", - "7196 NaN 2010 TV-Y 2 Seasons \n", - "7254 NaN 2012 TV-14 3 Seasons \n", - "7406 NaN 2016 TV-MA 4 Seasons \n", - "7847 NaN 2015 NR 13 Seasons \n", - "8182 NaN 2015 TV-Y7 2 Seasons \n", - "\n", - " listed_in \\\n", - "6066 British TV Shows, TV Comedies, TV Dramas \n", - "6174 Docuseries \n", - "6795 Classic & Cult TV, TV Comedies \n", - "6806 Classic & Cult TV, TV Comedies \n", - "6901 Anime Series, Crime TV Shows \n", - "7196 Kids' TV \n", - "7254 International TV Shows, Spanish-Language TV Sh... \n", - "7406 TV Comedies \n", - "7847 TV Action & Adventure, TV Comedies, TV Sci-Fi ... \n", - "8182 Kids' TV, TV Comedies \n", - "\n", - " description \n", - "6066 Set during the Russian Revolution, this comic ... \n", - "6174 This CNN original series has chef Anthony Bour... \n", - "6795 Frasier Crane is a snooty but lovable Seattle ... \n", - "6806 This hit sitcom follows the merry misadventure... \n", - "6901 On the surface, the Social Welfare Agency appe... \n", - "7196 A wacky rabbit and his gang of animal pals hav... \n", - "7254 This irreverent sitcom featues Ludovico, Feder... \n", - "7406 Marc Maron stars as Marc Maron, who interviews... \n", - "7847 This parody of first-person shooter games, mil... \n", - "8182 Imagine your worst fears, then multiply them: ... " - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles[pd.isnull(net_titles.date_added)]" - ] - }, - { - "cell_type": "markdown", - "id": "ac4d961e", - "metadata": {}, - "source": [ - "## Renaming and Combining of data" - ] - }, - { - "cell_type": "markdown", - "id": "159b5c71", - "metadata": {}, - "source": [ - "### Renaming\n", - "The first function we'll introduce here is rename(), which lets you change index names and/or column names. For example, to change the 'duration' column in our dataset to 'no. of seasons', we would do:" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "id": "42f1e399", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
show_idtypetitledirectorcastcountrydate_addedrelease_yearratingno. of seasonslisted_indescription
0s1MovieDick Johnson Is DeadKirsten JohnsonNaNUnited StatesSeptember 25, 20212020PG-1390 minDocumentariesAs her father nears the end of his life, filmm...
1s2TV ShowBlood & WaterNaNAma Qamata, Khosi Ngema, Gail Mabalane, Thaban...South AfricaSeptember 24, 20212021TV-MA2 SeasonsInternational TV Shows, TV Dramas, TV MysteriesAfter crossing paths at a party, a Cape Town t...
2s3TV ShowGanglandsJulien LeclercqSami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi...NaNSeptember 24, 20212021TV-MA1 SeasonCrime TV Shows, International TV Shows, TV Act...To protect his family from a powerful drug lor...
3s4TV ShowJailbirds New OrleansNaNNaNNaNSeptember 24, 20212021TV-MA1 SeasonDocuseries, Reality TVFeuds, flirtations and toilet talk go down amo...
4s5TV ShowKota FactoryNaNMayur More, Jitendra Kumar, Ranjan Raj, Alam K...IndiaSeptember 24, 20212021TV-MA2 SeasonsInternational TV Shows, Romantic TV Shows, TV ...In a city of coaching centers known to train I...
.......................................
8802s8803MovieZodiacDavid FincherMark Ruffalo, Jake Gyllenhaal, Robert Downey J...United StatesNovember 20, 20192007R158 minCult Movies, Dramas, ThrillersA political cartoonist, a crime reporter and a...
8803s8804TV ShowZombie DumbNaNNaNNaNJuly 1, 20192018TV-Y72 SeasonsKids' TV, Korean TV Shows, TV ComediesWhile living alone in a spooky town, a young g...
8804s8805MovieZombielandRuben FleischerJesse Eisenberg, Woody Harrelson, Emma Stone, ...United StatesNovember 1, 20192009R88 minComedies, Horror MoviesLooking to survive in a world taken over by zo...
8805s8806MovieZoomPeter HewittTim Allen, Courteney Cox, Chevy Chase, Kate Ma...United StatesJanuary 11, 20202006PG88 minChildren & Family Movies, ComediesDragged from civilian life, a former superhero...
8806s8807MovieZubaanMozez SinghVicky Kaushal, Sarah-Jane Dias, Raaghav Chanan...IndiaMarch 2, 20192015TV-14111 minDramas, International Movies, Music & MusicalsA scrappy but poor boy worms his way into a ty...
\n", - "

8807 rows × 12 columns

\n", - "
" - ], - "text/plain": [ - " show_id type title director \\\n", - "0 s1 Movie Dick Johnson Is Dead Kirsten Johnson \n", - "1 s2 TV Show Blood & Water NaN \n", - "2 s3 TV Show Ganglands Julien Leclercq \n", - "3 s4 TV Show Jailbirds New Orleans NaN \n", - "4 s5 TV Show Kota Factory NaN \n", - "... ... ... ... ... \n", - "8802 s8803 Movie Zodiac David Fincher \n", - "8803 s8804 TV Show Zombie Dumb NaN \n", - "8804 s8805 Movie Zombieland Ruben Fleischer \n", - "8805 s8806 Movie Zoom Peter Hewitt \n", - "8806 s8807 Movie Zubaan Mozez Singh \n", - "\n", - " cast country \\\n", - "0 NaN United States \n", - "1 Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban... South Africa \n", - "2 Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi... NaN \n", - "3 NaN NaN \n", - "4 Mayur More, Jitendra Kumar, Ranjan Raj, Alam K... India \n", - "... ... ... \n", - "8802 Mark Ruffalo, Jake Gyllenhaal, Robert Downey J... United States \n", - "8803 NaN NaN \n", - "8804 Jesse Eisenberg, Woody Harrelson, Emma Stone, ... United States \n", - "8805 Tim Allen, Courteney Cox, Chevy Chase, Kate Ma... United States \n", - "8806 Vicky Kaushal, Sarah-Jane Dias, Raaghav Chanan... India \n", - "\n", - " date_added release_year rating no. of seasons \\\n", - "0 September 25, 2021 2020 PG-13 90 min \n", - "1 September 24, 2021 2021 TV-MA 2 Seasons \n", - "2 September 24, 2021 2021 TV-MA 1 Season \n", - "3 September 24, 2021 2021 TV-MA 1 Season \n", - "4 September 24, 2021 2021 TV-MA 2 Seasons \n", - "... ... ... ... ... \n", - "8802 November 20, 2019 2007 R 158 min \n", - "8803 July 1, 2019 2018 TV-Y7 2 Seasons \n", - "8804 November 1, 2019 2009 R 88 min \n", - "8805 January 11, 2020 2006 PG 88 min \n", - "8806 March 2, 2019 2015 TV-14 111 min \n", - "\n", - " listed_in \\\n", - "0 Documentaries \n", - "1 International TV Shows, TV Dramas, TV Mysteries \n", - "2 Crime TV Shows, International TV Shows, TV Act... \n", - "3 Docuseries, Reality TV \n", - "4 International TV Shows, Romantic TV Shows, TV ... \n", - "... ... \n", - "8802 Cult Movies, Dramas, Thrillers \n", - "8803 Kids' TV, Korean TV Shows, TV Comedies \n", - "8804 Comedies, Horror Movies \n", - "8805 Children & Family Movies, Comedies \n", - "8806 Dramas, International Movies, Music & Musicals \n", - "\n", - " description \n", - "0 As her father nears the end of his life, filmm... \n", - "1 After crossing paths at a party, a Cape Town t... \n", - "2 To protect his family from a powerful drug lor... \n", - "3 Feuds, flirtations and toilet talk go down amo... \n", - "4 In a city of coaching centers known to train I... \n", - "... ... \n", - "8802 A political cartoonist, a crime reporter and a... \n", - "8803 While living alone in a spooky town, a young g... \n", - "8804 Looking to survive in a world taken over by zo... \n", - "8805 Dragged from civilian life, a former superhero... \n", - "8806 A scrappy but poor boy worms his way into a ty... \n", - "\n", - "[8807 rows x 12 columns]" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.rename(columns={'duration' : 'no. of seasons'})" - ] - }, - { - "cell_type": "markdown", - "id": "d405c0a9", - "metadata": {}, - "source": [ - "rename() lets you rename index or column values by specifying a index or column keyword parameter, respectively. It supports a variety of input formats, but usually a Python dictionary is the most convenient. Here is an example using it to rename some elements of the index." - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "id": "fe5d6f17", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
show_idtypetitledirectorcastcountrydate_addedrelease_yearratingdurationlisted_indescription
Firsts1MovieDick Johnson Is DeadKirsten JohnsonNaNUnited StatesSeptember 25, 20212020PG-1390 minDocumentariesAs her father nears the end of his life, filmm...
Seconds2TV ShowBlood & WaterNaNAma Qamata, Khosi Ngema, Gail Mabalane, Thaban...South AfricaSeptember 24, 20212021TV-MA2 SeasonsInternational TV Shows, TV Dramas, TV MysteriesAfter crossing paths at a party, a Cape Town t...
2s3TV ShowGanglandsJulien LeclercqSami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi...NaNSeptember 24, 20212021TV-MA1 SeasonCrime TV Shows, International TV Shows, TV Act...To protect his family from a powerful drug lor...
3s4TV ShowJailbirds New OrleansNaNNaNNaNSeptember 24, 20212021TV-MA1 SeasonDocuseries, Reality TVFeuds, flirtations and toilet talk go down amo...
4s5TV ShowKota FactoryNaNMayur More, Jitendra Kumar, Ranjan Raj, Alam K...IndiaSeptember 24, 20212021TV-MA2 SeasonsInternational TV Shows, Romantic TV Shows, TV ...In a city of coaching centers known to train I...
.......................................
8802s8803MovieZodiacDavid FincherMark Ruffalo, Jake Gyllenhaal, Robert Downey J...United StatesNovember 20, 20192007R158 minCult Movies, Dramas, ThrillersA political cartoonist, a crime reporter and a...
8803s8804TV ShowZombie DumbNaNNaNNaNJuly 1, 20192018TV-Y72 SeasonsKids' TV, Korean TV Shows, TV ComediesWhile living alone in a spooky town, a young g...
8804s8805MovieZombielandRuben FleischerJesse Eisenberg, Woody Harrelson, Emma Stone, ...United StatesNovember 1, 20192009R88 minComedies, Horror MoviesLooking to survive in a world taken over by zo...
8805s8806MovieZoomPeter HewittTim Allen, Courteney Cox, Chevy Chase, Kate Ma...United StatesJanuary 11, 20202006PG88 minChildren & Family Movies, ComediesDragged from civilian life, a former superhero...
8806s8807MovieZubaanMozez SinghVicky Kaushal, Sarah-Jane Dias, Raaghav Chanan...IndiaMarch 2, 20192015TV-14111 minDramas, International Movies, Music & MusicalsA scrappy but poor boy worms his way into a ty...
\n", - "

8807 rows × 12 columns

\n", - "
" - ], - "text/plain": [ - " show_id type title director \\\n", - "First s1 Movie Dick Johnson Is Dead Kirsten Johnson \n", - "Second s2 TV Show Blood & Water NaN \n", - "2 s3 TV Show Ganglands Julien Leclercq \n", - "3 s4 TV Show Jailbirds New Orleans NaN \n", - "4 s5 TV Show Kota Factory NaN \n", - "... ... ... ... ... \n", - "8802 s8803 Movie Zodiac David Fincher \n", - "8803 s8804 TV Show Zombie Dumb NaN \n", - "8804 s8805 Movie Zombieland Ruben Fleischer \n", - "8805 s8806 Movie Zoom Peter Hewitt \n", - "8806 s8807 Movie Zubaan Mozez Singh \n", - "\n", - " cast country \\\n", - "First NaN United States \n", - "Second Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban... South Africa \n", - "2 Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi... NaN \n", - "3 NaN NaN \n", - "4 Mayur More, Jitendra Kumar, Ranjan Raj, Alam K... India \n", - "... ... ... \n", - "8802 Mark Ruffalo, Jake Gyllenhaal, Robert Downey J... United States \n", - "8803 NaN NaN \n", - "8804 Jesse Eisenberg, Woody Harrelson, Emma Stone, ... United States \n", - "8805 Tim Allen, Courteney Cox, Chevy Chase, Kate Ma... United States \n", - "8806 Vicky Kaushal, Sarah-Jane Dias, Raaghav Chanan... India \n", - "\n", - " date_added release_year rating duration \\\n", - "First September 25, 2021 2020 PG-13 90 min \n", - "Second September 24, 2021 2021 TV-MA 2 Seasons \n", - "2 September 24, 2021 2021 TV-MA 1 Season \n", - "3 September 24, 2021 2021 TV-MA 1 Season \n", - "4 September 24, 2021 2021 TV-MA 2 Seasons \n", - "... ... ... ... ... \n", - "8802 November 20, 2019 2007 R 158 min \n", - "8803 July 1, 2019 2018 TV-Y7 2 Seasons \n", - "8804 November 1, 2019 2009 R 88 min \n", - "8805 January 11, 2020 2006 PG 88 min \n", - "8806 March 2, 2019 2015 TV-14 111 min \n", - "\n", - " listed_in \\\n", - "First Documentaries \n", - "Second International TV Shows, TV Dramas, TV Mysteries \n", - "2 Crime TV Shows, International TV Shows, TV Act... \n", - "3 Docuseries, Reality TV \n", - "4 International TV Shows, Romantic TV Shows, TV ... \n", - "... ... \n", - "8802 Cult Movies, Dramas, Thrillers \n", - "8803 Kids' TV, Korean TV Shows, TV Comedies \n", - "8804 Comedies, Horror Movies \n", - "8805 Children & Family Movies, Comedies \n", - "8806 Dramas, International Movies, Music & Musicals \n", - "\n", - " description \n", - "First As her father nears the end of his life, filmm... \n", - "Second After crossing paths at a party, a Cape Town t... \n", - "2 To protect his family from a powerful drug lor... \n", - "3 Feuds, flirtations and toilet talk go down amo... \n", - "4 In a city of coaching centers known to train I... \n", - "... ... \n", - "8802 A political cartoonist, a crime reporter and a... \n", - "8803 While living alone in a spooky town, a young g... \n", - "8804 Looking to survive in a world taken over by zo... \n", - "8805 Dragged from civilian life, a former superhero... \n", - "8806 A scrappy but poor boy worms his way into a ty... \n", - "\n", - "[8807 rows x 12 columns]" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.rename(index={0 : 'First',1:'Second'})" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "id": "df2d635d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
fieldsshow_idtypetitledirectorcastcountrydate_addedrelease_yearratingdurationlisted_indescription
s.no
0s1MovieDick Johnson Is DeadKirsten JohnsonNaNUnited StatesSeptember 25, 20212020PG-1390 minDocumentariesAs her father nears the end of his life, filmm...
1s2TV ShowBlood & WaterNaNAma Qamata, Khosi Ngema, Gail Mabalane, Thaban...South AfricaSeptember 24, 20212021TV-MA2 SeasonsInternational TV Shows, TV Dramas, TV MysteriesAfter crossing paths at a party, a Cape Town t...
2s3TV ShowGanglandsJulien LeclercqSami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi...NaNSeptember 24, 20212021TV-MA1 SeasonCrime TV Shows, International TV Shows, TV Act...To protect his family from a powerful drug lor...
3s4TV ShowJailbirds New OrleansNaNNaNNaNSeptember 24, 20212021TV-MA1 SeasonDocuseries, Reality TVFeuds, flirtations and toilet talk go down amo...
4s5TV ShowKota FactoryNaNMayur More, Jitendra Kumar, Ranjan Raj, Alam K...IndiaSeptember 24, 20212021TV-MA2 SeasonsInternational TV Shows, Romantic TV Shows, TV ...In a city of coaching centers known to train I...
.......................................
8802s8803MovieZodiacDavid FincherMark Ruffalo, Jake Gyllenhaal, Robert Downey J...United StatesNovember 20, 20192007R158 minCult Movies, Dramas, ThrillersA political cartoonist, a crime reporter and a...
8803s8804TV ShowZombie DumbNaNNaNNaNJuly 1, 20192018TV-Y72 SeasonsKids' TV, Korean TV Shows, TV ComediesWhile living alone in a spooky town, a young g...
8804s8805MovieZombielandRuben FleischerJesse Eisenberg, Woody Harrelson, Emma Stone, ...United StatesNovember 1, 20192009R88 minComedies, Horror MoviesLooking to survive in a world taken over by zo...
8805s8806MovieZoomPeter HewittTim Allen, Courteney Cox, Chevy Chase, Kate Ma...United StatesJanuary 11, 20202006PG88 minChildren & Family Movies, ComediesDragged from civilian life, a former superhero...
8806s8807MovieZubaanMozez SinghVicky Kaushal, Sarah-Jane Dias, Raaghav Chanan...IndiaMarch 2, 20192015TV-14111 minDramas, International Movies, Music & MusicalsA scrappy but poor boy worms his way into a ty...
\n", - "

8807 rows × 12 columns

\n", - "
" - ], - "text/plain": [ - "fields show_id type title director \\\n", - "s.no \n", - "0 s1 Movie Dick Johnson Is Dead Kirsten Johnson \n", - "1 s2 TV Show Blood & Water NaN \n", - "2 s3 TV Show Ganglands Julien Leclercq \n", - "3 s4 TV Show Jailbirds New Orleans NaN \n", - "4 s5 TV Show Kota Factory NaN \n", - "... ... ... ... ... \n", - "8802 s8803 Movie Zodiac David Fincher \n", - "8803 s8804 TV Show Zombie Dumb NaN \n", - "8804 s8805 Movie Zombieland Ruben Fleischer \n", - "8805 s8806 Movie Zoom Peter Hewitt \n", - "8806 s8807 Movie Zubaan Mozez Singh \n", - "\n", - "fields cast country \\\n", - "s.no \n", - "0 NaN United States \n", - "1 Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban... South Africa \n", - "2 Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi... NaN \n", - "3 NaN NaN \n", - "4 Mayur More, Jitendra Kumar, Ranjan Raj, Alam K... India \n", - "... ... ... \n", - "8802 Mark Ruffalo, Jake Gyllenhaal, Robert Downey J... United States \n", - "8803 NaN NaN \n", - "8804 Jesse Eisenberg, Woody Harrelson, Emma Stone, ... United States \n", - "8805 Tim Allen, Courteney Cox, Chevy Chase, Kate Ma... United States \n", - "8806 Vicky Kaushal, Sarah-Jane Dias, Raaghav Chanan... India \n", - "\n", - "fields date_added release_year rating duration \\\n", - "s.no \n", - "0 September 25, 2021 2020 PG-13 90 min \n", - "1 September 24, 2021 2021 TV-MA 2 Seasons \n", - "2 September 24, 2021 2021 TV-MA 1 Season \n", - "3 September 24, 2021 2021 TV-MA 1 Season \n", - "4 September 24, 2021 2021 TV-MA 2 Seasons \n", - "... ... ... ... ... \n", - "8802 November 20, 2019 2007 R 158 min \n", - "8803 July 1, 2019 2018 TV-Y7 2 Seasons \n", - "8804 November 1, 2019 2009 R 88 min \n", - "8805 January 11, 2020 2006 PG 88 min \n", - "8806 March 2, 2019 2015 TV-14 111 min \n", - "\n", - "fields listed_in \\\n", - "s.no \n", - "0 Documentaries \n", - "1 International TV Shows, TV Dramas, TV Mysteries \n", - "2 Crime TV Shows, International TV Shows, TV Act... \n", - "3 Docuseries, Reality TV \n", - "4 International TV Shows, Romantic TV Shows, TV ... \n", - "... ... \n", - "8802 Cult Movies, Dramas, Thrillers \n", - "8803 Kids' TV, Korean TV Shows, TV Comedies \n", - "8804 Comedies, Horror Movies \n", - "8805 Children & Family Movies, Comedies \n", - "8806 Dramas, International Movies, Music & Musicals \n", - "\n", - "fields description \n", - "s.no \n", - "0 As her father nears the end of his life, filmm... \n", - "1 After crossing paths at a party, a Cape Town t... \n", - "2 To protect his family from a powerful drug lor... \n", - "3 Feuds, flirtations and toilet talk go down amo... \n", - "4 In a city of coaching centers known to train I... \n", - "... ... \n", - "8802 A political cartoonist, a crime reporter and a... \n", - "8803 While living alone in a spooky town, a young g... \n", - "8804 Looking to survive in a world taken over by zo... \n", - "8805 Dragged from civilian life, a former superhero... \n", - "8806 A scrappy but poor boy worms his way into a ty... \n", - "\n", - "[8807 rows x 12 columns]" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.rename_axis('s.no',axis='rows').rename_axis('fields',axis='columns')" - ] - }, - { - "cell_type": "markdown", - "id": "6857aeca", - "metadata": {}, - "source": [ - "### Combining datasets" - ] - }, - { - "cell_type": "markdown", - "id": "49e4c6f6", - "metadata": {}, - "source": [ - "### concat( )" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "id": "acad14e4", - "metadata": {}, - "outputs": [], - "source": [ - "net_top10=pd.read_csv(\"netflix daily top 10.csv\")" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "id": "344a55cb", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
As ofRankYear to Date RankLast Week RankTitleTypeNetflix ExclusiveNetflix Release DateDays In Top 10Viewership Score
02020-04-01111Tiger King: Murder, Mayhem …TV ShowYesMar 20, 2020990
12020-04-0122-OzarkTV ShowYesJul 21, 2017545
22020-04-01332All AmericanTV ShowNaNMar 28, 2019976
32020-04-0144-Blood FatherMovieNaNMar 26, 2020530
42020-04-01554The PlatformMovieYesMar 20, 2020955
.................................
70952022-03-11651Worst Roommate EverTV ShowYesMar 1, 20221081
70962022-03-11772Vikings: ValhallaTV ShowYesFeb 25, 202214100
70972022-03-1188-ShooterMovieNaNAug 1, 201437
70982022-03-11997Shrek 2MovieNaNMar 1, 20221033
70992022-03-111010-ShrekMovieNaNMay 1, 2018712
\n", - "

7100 rows × 10 columns

\n", - "
" - ], - "text/plain": [ - " As of Rank Year to Date Rank Last Week Rank \\\n", - "0 2020-04-01 1 1 1 \n", - "1 2020-04-01 2 2 - \n", - "2 2020-04-01 3 3 2 \n", - "3 2020-04-01 4 4 - \n", - "4 2020-04-01 5 5 4 \n", - "... ... ... ... ... \n", - "7095 2022-03-11 6 5 1 \n", - "7096 2022-03-11 7 7 2 \n", - "7097 2022-03-11 8 8 - \n", - "7098 2022-03-11 9 9 7 \n", - "7099 2022-03-11 10 10 - \n", - "\n", - " Title Type Netflix Exclusive \\\n", - "0 Tiger King: Murder, Mayhem … TV Show Yes \n", - "1 Ozark TV Show Yes \n", - "2 All American TV Show NaN \n", - "3 Blood Father Movie NaN \n", - "4 The Platform Movie Yes \n", - "... ... ... ... \n", - "7095 Worst Roommate Ever TV Show Yes \n", - "7096 Vikings: Valhalla TV Show Yes \n", - "7097 Shooter Movie NaN \n", - "7098 Shrek 2 Movie NaN \n", - "7099 Shrek Movie NaN \n", - "\n", - " Netflix Release Date Days In Top 10 Viewership Score \n", - "0 Mar 20, 2020 9 90 \n", - "1 Jul 21, 2017 5 45 \n", - "2 Mar 28, 2019 9 76 \n", - "3 Mar 26, 2020 5 30 \n", - "4 Mar 20, 2020 9 55 \n", - "... ... ... ... \n", - "7095 Mar 1, 2022 10 81 \n", - "7096 Feb 25, 2022 14 100 \n", - "7097 Aug 1, 2014 3 7 \n", - "7098 Mar 1, 2022 10 33 \n", - "7099 May 1, 2018 7 12 \n", - "\n", - "[7100 rows x 10 columns]" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_top10" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "id": "345a2c18", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
show_idtypetitledirectorcastcountrydate_addedrelease_yearratingduration...As ofRankYear to Date RankLast Week RankTitleTypeNetflix ExclusiveNetflix Release DateDays In Top 10Viewership Score
0s1MovieDick Johnson Is DeadKirsten JohnsonNaNUnited StatesSeptember 25, 20212020.0PG-1390 min...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
1s2TV ShowBlood & WaterNaNAma Qamata, Khosi Ngema, Gail Mabalane, Thaban...South AfricaSeptember 24, 20212021.0TV-MA2 Seasons...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2s3TV ShowGanglandsJulien LeclercqSami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi...NaNSeptember 24, 20212021.0TV-MA1 Season...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
3s4TV ShowJailbirds New OrleansNaNNaNNaNSeptember 24, 20212021.0TV-MA1 Season...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
4s5TV ShowKota FactoryNaNMayur More, Jitendra Kumar, Ranjan Raj, Alam K...IndiaSeptember 24, 20212021.0TV-MA2 Seasons...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
..................................................................
7095NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...2022-03-116.051Worst Roommate EverTV ShowYesMar 1, 202210.081.0
7096NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...2022-03-117.072Vikings: ValhallaTV ShowYesFeb 25, 202214.0100.0
7097NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...2022-03-118.08-ShooterMovieNaNAug 1, 20143.07.0
7098NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...2022-03-119.097Shrek 2MovieNaNMar 1, 202210.033.0
7099NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN...2022-03-1110.010-ShrekMovieNaNMay 1, 20187.012.0
\n", - "

15907 rows × 22 columns

\n", - "
" - ], - "text/plain": [ - " show_id type title director \\\n", - "0 s1 Movie Dick Johnson Is Dead Kirsten Johnson \n", - "1 s2 TV Show Blood & Water NaN \n", - "2 s3 TV Show Ganglands Julien Leclercq \n", - "3 s4 TV Show Jailbirds New Orleans NaN \n", - "4 s5 TV Show Kota Factory NaN \n", - "... ... ... ... ... \n", - "7095 NaN NaN NaN NaN \n", - "7096 NaN NaN NaN NaN \n", - "7097 NaN NaN NaN NaN \n", - "7098 NaN NaN NaN NaN \n", - "7099 NaN NaN NaN NaN \n", - "\n", - " cast country \\\n", - "0 NaN United States \n", - "1 Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban... South Africa \n", - "2 Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi... NaN \n", - "3 NaN NaN \n", - "4 Mayur More, Jitendra Kumar, Ranjan Raj, Alam K... India \n", - "... ... ... \n", - "7095 NaN NaN \n", - "7096 NaN NaN \n", - "7097 NaN NaN \n", - "7098 NaN NaN \n", - "7099 NaN NaN \n", - "\n", - " date_added release_year rating duration ... As of \\\n", - "0 September 25, 2021 2020.0 PG-13 90 min ... NaN \n", - "1 September 24, 2021 2021.0 TV-MA 2 Seasons ... NaN \n", - "2 September 24, 2021 2021.0 TV-MA 1 Season ... NaN \n", - "3 September 24, 2021 2021.0 TV-MA 1 Season ... NaN \n", - "4 September 24, 2021 2021.0 TV-MA 2 Seasons ... NaN \n", - "... ... ... ... ... ... ... \n", - "7095 NaN NaN NaN NaN ... 2022-03-11 \n", - "7096 NaN NaN NaN NaN ... 2022-03-11 \n", - "7097 NaN NaN NaN NaN ... 2022-03-11 \n", - "7098 NaN NaN NaN NaN ... 2022-03-11 \n", - "7099 NaN NaN NaN NaN ... 2022-03-11 \n", - "\n", - " Rank Year to Date Rank Last Week Rank Title Type \\\n", - "0 NaN NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN NaN \n", - "... ... ... ... ... ... \n", - "7095 6.0 5 1 Worst Roommate Ever TV Show \n", - "7096 7.0 7 2 Vikings: Valhalla TV Show \n", - "7097 8.0 8 - Shooter Movie \n", - "7098 9.0 9 7 Shrek 2 Movie \n", - "7099 10.0 10 - Shrek Movie \n", - "\n", - " Netflix Exclusive Netflix Release Date Days In Top 10 Viewership Score \n", - "0 NaN NaN NaN NaN \n", - "1 NaN NaN NaN NaN \n", - "2 NaN NaN NaN NaN \n", - "3 NaN NaN NaN NaN \n", - "4 NaN NaN NaN NaN \n", - "... ... ... ... ... \n", - "7095 Yes Mar 1, 2022 10.0 81.0 \n", - "7096 Yes Feb 25, 2022 14.0 100.0 \n", - "7097 NaN Aug 1, 2014 3.0 7.0 \n", - "7098 NaN Mar 1, 2022 10.0 33.0 \n", - "7099 NaN May 1, 2018 7.0 12.0 \n", - "\n", - "[15907 rows x 22 columns]" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.concat([net_titles,net_top10])" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "id": "df66aef0", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
show_idtypetitledirectorcastcountrydate_addedrelease_yearratingduration...As ofRankYear to Date RankLast Week RankTitleTypeNetflix ExclusiveNetflix Release DateDays In Top 10Viewership Score
0s1MovieDick Johnson Is DeadKirsten JohnsonNaNUnited StatesSeptember 25, 20212020PG-1390 min...2020-04-011.011Tiger King: Murder, Mayhem …TV ShowYesMar 20, 20209.090.0
1s2TV ShowBlood & WaterNaNAma Qamata, Khosi Ngema, Gail Mabalane, Thaban...South AfricaSeptember 24, 20212021TV-MA2 Seasons...2020-04-012.02-OzarkTV ShowYesJul 21, 20175.045.0
2s3TV ShowGanglandsJulien LeclercqSami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi...NaNSeptember 24, 20212021TV-MA1 Season...2020-04-013.032All AmericanTV ShowNaNMar 28, 20199.076.0
3s4TV ShowJailbirds New OrleansNaNNaNNaNSeptember 24, 20212021TV-MA1 Season...2020-04-014.04-Blood FatherMovieNaNMar 26, 20205.030.0
4s5TV ShowKota FactoryNaNMayur More, Jitendra Kumar, Ranjan Raj, Alam K...IndiaSeptember 24, 20212021TV-MA2 Seasons...2020-04-015.054The PlatformMovieYesMar 20, 20209.055.0
..................................................................
8802s8803MovieZodiacDavid FincherMark Ruffalo, Jake Gyllenhaal, Robert Downey J...United StatesNovember 20, 20192007R158 min...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
8803s8804TV ShowZombie DumbNaNNaNNaNJuly 1, 20192018TV-Y72 Seasons...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
8804s8805MovieZombielandRuben FleischerJesse Eisenberg, Woody Harrelson, Emma Stone, ...United StatesNovember 1, 20192009R88 min...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
8805s8806MovieZoomPeter HewittTim Allen, Courteney Cox, Chevy Chase, Kate Ma...United StatesJanuary 11, 20202006PG88 min...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
8806s8807MovieZubaanMozez SinghVicky Kaushal, Sarah-Jane Dias, Raaghav Chanan...IndiaMarch 2, 20192015TV-14111 min...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", - "

8807 rows × 22 columns

\n", - "
" - ], - "text/plain": [ - " show_id type title director \\\n", - "0 s1 Movie Dick Johnson Is Dead Kirsten Johnson \n", - "1 s2 TV Show Blood & Water NaN \n", - "2 s3 TV Show Ganglands Julien Leclercq \n", - "3 s4 TV Show Jailbirds New Orleans NaN \n", - "4 s5 TV Show Kota Factory NaN \n", - "... ... ... ... ... \n", - "8802 s8803 Movie Zodiac David Fincher \n", - "8803 s8804 TV Show Zombie Dumb NaN \n", - "8804 s8805 Movie Zombieland Ruben Fleischer \n", - "8805 s8806 Movie Zoom Peter Hewitt \n", - "8806 s8807 Movie Zubaan Mozez Singh \n", - "\n", - " cast country \\\n", - "0 NaN United States \n", - "1 Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban... South Africa \n", - "2 Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi... NaN \n", - "3 NaN NaN \n", - "4 Mayur More, Jitendra Kumar, Ranjan Raj, Alam K... India \n", - "... ... ... \n", - "8802 Mark Ruffalo, Jake Gyllenhaal, Robert Downey J... United States \n", - "8803 NaN NaN \n", - "8804 Jesse Eisenberg, Woody Harrelson, Emma Stone, ... United States \n", - "8805 Tim Allen, Courteney Cox, Chevy Chase, Kate Ma... United States \n", - "8806 Vicky Kaushal, Sarah-Jane Dias, Raaghav Chanan... India \n", - "\n", - " date_added release_year rating duration ... As of \\\n", - "0 September 25, 2021 2020 PG-13 90 min ... 2020-04-01 \n", - "1 September 24, 2021 2021 TV-MA 2 Seasons ... 2020-04-01 \n", - "2 September 24, 2021 2021 TV-MA 1 Season ... 2020-04-01 \n", - "3 September 24, 2021 2021 TV-MA 1 Season ... 2020-04-01 \n", - "4 September 24, 2021 2021 TV-MA 2 Seasons ... 2020-04-01 \n", - "... ... ... ... ... ... ... \n", - "8802 November 20, 2019 2007 R 158 min ... NaN \n", - "8803 July 1, 2019 2018 TV-Y7 2 Seasons ... NaN \n", - "8804 November 1, 2019 2009 R 88 min ... NaN \n", - "8805 January 11, 2020 2006 PG 88 min ... NaN \n", - "8806 March 2, 2019 2015 TV-14 111 min ... NaN \n", - "\n", - " Rank Year to Date Rank Last Week Rank Title \\\n", - "0 1.0 1 1 Tiger King: Murder, Mayhem … \n", - "1 2.0 2 - Ozark \n", - "2 3.0 3 2 All American \n", - "3 4.0 4 - Blood Father \n", - "4 5.0 5 4 The Platform \n", - "... ... ... ... ... \n", - "8802 NaN NaN NaN NaN \n", - "8803 NaN NaN NaN NaN \n", - "8804 NaN NaN NaN NaN \n", - "8805 NaN NaN NaN NaN \n", - "8806 NaN NaN NaN NaN \n", - "\n", - " Type Netflix Exclusive Netflix Release Date Days In Top 10 \\\n", - "0 TV Show Yes Mar 20, 2020 9.0 \n", - "1 TV Show Yes Jul 21, 2017 5.0 \n", - "2 TV Show NaN Mar 28, 2019 9.0 \n", - "3 Movie NaN Mar 26, 2020 5.0 \n", - "4 Movie Yes Mar 20, 2020 9.0 \n", - "... ... ... ... ... \n", - "8802 NaN NaN NaN NaN \n", - "8803 NaN NaN NaN NaN \n", - "8804 NaN NaN NaN NaN \n", - "8805 NaN NaN NaN NaN \n", - "8806 NaN NaN NaN NaN \n", - "\n", - " Viewership Score \n", - "0 90.0 \n", - "1 45.0 \n", - "2 76.0 \n", - "3 30.0 \n", - "4 55.0 \n", - "... ... \n", - "8802 NaN \n", - "8803 NaN \n", - "8804 NaN \n", - "8805 NaN \n", - "8806 NaN \n", - "\n", - "[8807 rows x 22 columns]" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "net_titles.join(net_top10)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "966833da", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/README.md b/README.md new file mode 100644 index 0000000..62da6f3 --- /dev/null +++ b/README.md @@ -0,0 +1 @@ +# Data-Science \ No newline at end of file pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy