diff --git a/1-js/01-getting-started/1-intro/article.md b/1-js/01-getting-started/1-intro/article.md index 927eba75d..d4322c1ac 100644 --- a/1-js/01-getting-started/1-intro/article.md +++ b/1-js/01-getting-started/1-intro/article.md @@ -46,16 +46,26 @@ The terms above are good to remember because they are used in developer articles Engines sind kompliziert. Aber die Grundlagen sind einfach. +<<<<<<< HEAD 1. Die Engine (eingebettet, wenn es sich um einen Browser handelt) liest ("parses") den Script. 2. Danach wird der Script in die Maschinensprache übersetzt ("Kompilieren"). 3. Und zum Schluss wird der Maschienen Code ausgeführt, was ziemlich schnell passiert. +======= +1. The engine (embedded if it's a browser) reads ("parses") the script. +2. Then it converts ("compiles") the script to machine code. +3. And then the machine code runs, pretty fast. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Die Engine wendet in jedem Schritt des Prozesses Optimierungen an. Es beobachtet sogar das kompilierte Skript, während es läuft, analysiert die Daten, die durch es fließen, und optimiert den Maschinencode basierend auf diesem Wissen weiter. ``` ## Was kann in-browser JavaScript tun? +<<<<<<< HEAD Modernes JavaScript ist eine "sichere" Programmiersprache. Es bietet keinen Low-Level-Zugriff auf Speicher oder CPU, da es ursprünglich für Browser erstellt wurde. +======= +Modern JavaScript is a "safe" programming language. It does not provide low-level access to memory or the CPU, because it was initially created for browsers which do not require it. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Die Funktionen von JavaScript hängen stark von der Umgebung ab, in der es ausgeführt wird. Beispielsweise unterstützt [Node.js](https://wikipedia.org/wiki/Node.js) Funktionen, die es JavaScript z.B. ermöglichen, beliebige Dateien zu lesen oder zu schreiben, sowie Netzwerkanfragen durchzuführen. @@ -71,11 +81,15 @@ So ist beispielsweise In-Browser JavaScript in der Lage: ## Was kann JavaScript im Browser nicht tun? +<<<<<<< HEAD <<<<<<< HEAD Die Fähigkeiten von JavaScript im Browser sind aus Gründen der Sicherheit des Benutzers eingeschränkt. Ziel ist es, zu verhindern, dass eine bösartige Webseite auf private Informationen zugreift oder die Daten des Benutzers schädigt. ======= JavaScript's abilities in the browser are limited for the sake of a user's safety. The aim is to prevent an evil webpage from accessing private information or harming the user's data. >>>>>>> a82915575863d33db6b892087975f84dea6cb425 +======= +JavaScript's abilities in the browser are limited to protect the user's safety. The aim is to prevent an evil webpage from accessing private information or harming the user's data. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Beispiele für solche Beschränkungen sind: @@ -83,6 +97,7 @@ Beispiele für solche Beschränkungen sind: Moderne Browsers erlauben es mit Dateien zu arbeiten. Der Zugriff ist jedoch beschränkt und nur möglich wenn der Benutzer bestimmte Aktionen ausführt, z.B. die Datei in den Browser per "drag and drop" lädt oder sie via `` tag auswählt. +<<<<<<< HEAD Es gibt auch Möglichkeiten mit der Kamera oder dem Mikrofon des Geräts zu interagieren. Dies benötigt aber die explizite Zustimmung des Benutzers. Deshalb kann eine JavaScript-enabled Website nicht heimlich die Webcam aktivieren, die Umgebung beobachten und die Informationen and die [NSA](https://en.wikipedia.org/wiki/National_Security_Agency) übermitteln. - Unterschiedliche Tabs und Fenster wissen in der Regel nicht voneinander. Es gibt jedoch Ausnahmen, bei welchen dies doch der Fall ist. Dies kann z.B. passieren, wenn durch JavaScript ein neues Fenster geöffnet wird. Aber selbst in diesem Fall kann es sein, dass JavaScript von einer Seite nicht auf die andere Seite zugreifen kann, wenn sie von verschiedenen Seiten (von einer anderen Domäne, einem anderen Protokoll oder Port) kommen. @@ -95,6 +110,19 @@ Obwohl es möglich ist, erfordert es eine ausdrückliche Zustimmung (ausgedrück ![](limitations.svg) Solche Einschränkungen bestehen nicht, wenn JavaScript außerhalb des Browsers, z.B. auf einem Server, verwendet wird. Moderne Browser erlauben auch Plugins/Erweiterungen, die unter Umständen nach erweiterten Rechten fragen. +======= + There are ways to interact with the camera/microphone and other devices, but they require a user's explicit permission. So a JavaScript-enabled page may not sneakily enable a web-camera, observe the surroundings and send the information to the [NSA](https://en.wikipedia.org/wiki/National_Security_Agency). +- Different tabs/windows generally do not know about each other. Sometimes they do, for example when one window uses JavaScript to open the other one. But even in this case, JavaScript from one page may not access the other page if they come from different sites (from a different domain, protocol or port). + + This is called the "Same Origin Policy". To work around that, *both pages* must agree for data exchange and must contain special JavaScript code that handles it. We'll cover that in the tutorial. + + This limitation is, again, for the user's safety. A page from `http://anysite.com` which a user has opened must not be able to access another browser tab with the URL `http://gmail.com`, for example, and steal information from there. +- JavaScript can easily communicate over the net to the server where the current page came from. But its ability to receive data from other sites/domains is crippled. Though possible, it requires explicit agreement (expressed in HTTP headers) from the remote side. Once again, that's a safety limitation. + +![](limitations.svg) + +Such limitations do not exist if JavaScript is used outside of the browser, for example on a server. Modern browsers also allow plugins/extensions which may ask for extended permissions. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 ## What makes JavaScript unique? @@ -115,7 +143,11 @@ JavaScript ist die einzige Browser-Technologie, die diese drei Dinge vereint. Das macht JavaScript einzigartig. Deshalb ist es das am weitesten verbreitete Werkzeug zur Erstellung von Browser-Oberflächen. +<<<<<<< HEAD Trotzdem erlaubt JavaScript auch die Erstellung von Servern, mobilen Anwendungen, etc. +======= +That said, JavaScript can be used to create servers, mobile applications, etc. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 ## Sprachen "über" JavaScript @@ -123,12 +155,17 @@ Die Syntax von JavaScript ist nicht für jeden geeignet. Verschiedene Menschen w Das ist zu erwarten, denn Projekte und Anforderungen sind für jeden anders. +<<<<<<< HEAD So sind vor kurzem eine Fülle neuer Sprachen erschienen, die in JavaScript *transpiled* (konvertiert) werden, bevor sie im Browser laufen. +======= +So, recently a plethora of new languages appeared, which are *transpiled* (converted) to JavaScript before they run in the browser. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Moderne Werkzeuge machen die Transpilation sehr schnell und transparent und erlauben es den Entwicklern tatsächlich, in einer anderen Sprache zu programmieren und diese "unter der Haube" automatisch zu konvertieren. Beispiele für solche Sprachen sind: +<<<<<<< HEAD <<<<<<< HEAD - [CoffeeScript](http://coffeescript.org/) ist ein "syntactic sugar" für JavaScript. Es führt eine kürzere Syntax ein, was uns erlaubt, klareren und präziseren Code zu schreiben. Usually, Ruby devs like it. - [TypeScript](http://www.typescriptlang.org/) ist darauf konzentriert "strict data typing" hinzuzufügen. TypeScript verfolg das Ziel den Entwicklungsprozess und den Support für komplexe Systeme zu vereinfachen. Die Sprache wurde von Microsoft entwickelt. @@ -138,12 +175,21 @@ Beispiele für solche Sprachen sind: - [CoffeeScript](http://coffeescript.org/) is a "syntactic sugar" for JavaScript. It introduces shorter syntax, allowing us to write clearer and more precise code. Usually, Ruby devs like it. - [TypeScript](http://www.typescriptlang.org/) is concentrated on adding "strict data typing" to simplify the development and support of complex systems. It is developed by Microsoft. - [Flow](http://flow.org/) also adds data typing, but in a different way. Developed by Facebook. +======= +- [CoffeeScript](https://coffeescript.org/) is "syntactic sugar" for JavaScript. It introduces shorter syntax, allowing us to write clearer and more precise code. Usually, Ruby devs like it. +- [TypeScript](https://www.typescriptlang.org/) is concentrated on adding "strict data typing" to simplify the development and support of complex systems. It is developed by Microsoft. +- [Flow](https://flow.org/) also adds data typing, but in a different way. Developed by Facebook. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 - [Dart](https://www.dartlang.org/) is a standalone language that has its own engine that runs in non-browser environments (like mobile apps), but also can be transpiled to JavaScript. Developed by Google. - [Brython](https://brython.info/) is a Python transpiler to JavaScript that enables the writing of applications in pure Python without JavaScript. - [Kotlin](https://kotlinlang.org/docs/reference/js-overview.html) is a modern, concise and safe programming language that can target the browser or Node. >>>>>>> a82915575863d33db6b892087975f84dea6cb425 +<<<<<<< HEAD Es gibt noch mehr. Auch wenn wir eine der transpilierten Sprachen verwenden sollten wir auch JavaScript trozdem kennen. Es ist wichtig zu verstehen, was im Hintergrund passiert und was wir eigentlich tun. +======= +There are more. Of course, even if we use one of these transpiled languages, we should also know JavaScript to really understand what we're doing. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 ## Zusammenfassung diff --git a/1-js/01-getting-started/2-manuals-specifications/article.md b/1-js/01-getting-started/2-manuals-specifications/article.md index 0fafddb71..e3b0ce304 100644 --- a/1-js/01-getting-started/2-manuals-specifications/article.md +++ b/1-js/01-getting-started/2-manuals-specifications/article.md @@ -1,7 +1,11 @@ # Handbücher und Spezifikationen +<<<<<<< HEAD Dieses Buch ist ein *Tutorial*. Es soll dir helfen, die Sprache nach und nach zu erlernen. Aber sobald du mit den Grundlagen vertraut bist, wirst du andere Quellen benötigen. +======= +This book is a *tutorial*. It aims to help you gradually learn the language. But once you're familiar with the basics, you'll need other resources. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 ## Spezifikation @@ -9,7 +13,11 @@ Dieses Buch ist ein *Tutorial*. Es soll dir helfen, die Sprache nach und nach zu Die Tatsache dass es so festgschrieben ist, macht es am Anfgan etwas schwer verständlich. Wenn du also die vertrauenswürdigste Informationsquelle benötigst, dann ist die Spezifikation dir richtige Stelle. Sie ist jedoch nicht für den alltäglichen Gebrauch passend. +<<<<<<< HEAD Eine neue Spezifikationsversion wird jedes Jahr veröffentlicht. In der Zwischenzeit kann der letzte entwurf unter gefunden werden. +======= +A new specification version is released every year. Between these releases, the latest specification draft is at . +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Um mehr über die neuen bleeding-edge features, einschliesslich derjendigen, die "fast Standard" sind ("stage 3" genannt), siehe Vorschläge unter . @@ -27,6 +35,7 @@ Also, if you're developing for the browser, then there are other specifications - **MDN (Mozilla) JavaScript Reference** is the main manual with examples and other information. It's great to get in-depth information about individual language functions, methods etc. >>>>>>> a82915575863d33db6b892087975f84dea6cb425 +<<<<<<< HEAD Man kann es unter finden. <<<<<<< HEAD @@ -39,6 +48,11 @@ Also, if you're developing for the browser, then there are other specifications ======= Although, it's often best to use an internet search instead. Just use "MDN [term]" in the query, e.g. to search for `parseInt` function. >>>>>>> a82915575863d33db6b892087975f84dea6cb425 +======= + You can find it at . + +Although, it's often best to use an internet search instead. Just use "MDN [term]" in the query, e.g. to search for the `parseInt` function. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 ## Kompatibilitäts-Tabellen @@ -46,9 +60,16 @@ JavaScript ist eine Entwicklungssprache, neue Funktionen werden regelmäßig hin Um ihre Unterstützung unter den Browser-basierten und anderen Engines zu sehen, siehe: +<<<<<<< HEAD - - pro Feature-Tabellen der Unterstützung, z.B. um zu sehen, welche Engines moderne Kryptographie-Funktionen unterstützen: . - - eine Tabelle mit Sprachfunktionen und Engines, die diese unterstützen oder nicht unterstützen. All diese Ressourcen sind in der realen Entwicklung nützlich, da sie wertvolle Informationen über sprachliche Details, ihre Unterstützung usw. enthalten. +======= +- - per-feature tables of support, e.g. to see which engines support modern cryptography functions: . +- - a table with language features and engines that support those or don't support. + +All these resources are useful in real-life development, as they contain valuable information about language details, their support, etc. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Bitte merke dir diese (oder diese Seite) für die Fälle, in denen du vertiefte Informationen über eine bestimmte Funktion benötigst. diff --git a/1-js/01-getting-started/3-code-editors/article.md b/1-js/01-getting-started/3-code-editors/article.md index 9497b6022..5df74e8d5 100644 --- a/1-js/01-getting-started/3-code-editors/article.md +++ b/1-js/01-getting-started/3-code-editors/article.md @@ -12,8 +12,13 @@ Eine IDE lädt das Projekt (das aus vielen Dateien bestehen kann), erlaubt die N Falls du für dich noch keine IDE ausgesucht hast, sind die nachfolgenden Optionen empfehlenswert: +<<<<<<< HEAD - [Visual Studio Code](https://code.visualstudio.com/) (Cross-Plattform, kostenlos). - [WebStorm](http://www.jetbrains.com/webstorm/) (Cross-Plattform, ksotenpflichtig). +======= +- [Visual Studio Code](https://code.visualstudio.com/) (cross-platform, free). +- [WebStorm](https://www.jetbrains.com/webstorm/) (cross-platform, paid). +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Für Windows steht außerdem "Visual Studio" zur Verfügung, diese IDE sollte nicht mit "Visual Studio Code" verwechselt werden. "Visual Studio" ist ein kostenpflichtiger und umfangreicher Editor, der insbesondere für die Arbeit mit der .Net-Plattform geeignet ist. "Visual Studio" ist außerdem gut für Javascript geeignet. Eine kostenlose Version ist unter folgender Adresse verfügbar: [Visual Studio Community](https://www.visualstudio.com/vs/community/). @@ -29,12 +34,19 @@ Der hauptsächliche Unterschied zwischen einem Quelltext-Editor und einer IDE li In der Praxis verfügen auch viele Quelltext-Editoren über eine breite Auswahl an Plugins, darunter etwa Analyse-Werkzeuge für die Code-Syntax und Unterstützung zur Autovervollständigung, so dass sich eine klare Grenze zwischen IDEs und Quelltext-Editoren gar nicht ziehen lässt. +<<<<<<< HEAD Die nachfolgenden Optionen sind gute Beispiele für Quelltext-Editoren +======= +There are many options, for instance: +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 -- [Atom](https://atom.io/) (cross-platform, free). -- [Sublime Text](http://www.sublimetext.com) (cross-platform, shareware). +- [Sublime Text](https://www.sublimetext.com/) (cross-platform, shareware). - [Notepad++](https://notepad-plus-plus.org/) (Windows, free). +<<<<<<< HEAD - [Vim](http://www.vim.org/) and [Emacs](https://www.gnu.org/software/emacs/) können ebenfalls sehr gut sein, wenn man damit umgehen kann. +======= +- [Vim](https://www.vim.org/) and [Emacs](https://www.gnu.org/software/emacs/) are also cool if you know how to use them. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 ## ABER: Die Auswahl des Editors ist keinen Streit wert. @@ -42,4 +54,13 @@ Die Editoren in der Liste wurden entweder von mir oder von Freunden ausgewählt, Aber es gibt natürlich auch andere Editoren in der großen Welt des Internets. Such dir einfach den Editor aus, mit dem du arbeiten möchtest. +<<<<<<< HEAD Die Wahl des Editors ist, wie bei jedem anderen Werkzeug, eine persönliche Vorliebe und hängt von deinem Projekt, deinen Arbeitsgewohnheiten und persönlichen Vorlieben ab. +======= +The choice of an editor, like any other tool, is individual and depends on your projects, habits, and personal preferences. + +The author's personal opinion: + +- I'd use [Visual Studio Code](https://code.visualstudio.com/) if I develop mostly frontend. +- Otherwise, if it's mostly another language/platform and partially frontend, then consider other editors, such as XCode (Mac), Visual Studio (Windows) or Jetbrains family (Webstorm, PHPStorm, RubyMine etc, depending on the language). +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 diff --git a/1-js/02-first-steps/04-variables/3-uppercast-constant/task.md b/1-js/02-first-steps/04-variables/3-uppercast-constant/task.md index eac711d90..8706a6ff4 100644 --- a/1-js/02-first-steps/04-variables/3-uppercast-constant/task.md +++ b/1-js/02-first-steps/04-variables/3-uppercast-constant/task.md @@ -12,13 +12,24 @@ const birthday = '18.04.1982'; const age = someCode(birthday); ``` +<<<<<<< HEAD Hier haben wir ein konstantes Geburtsdatum `birthday` und das Alter `age`, welches berechnet wird aus `birthday` mittels eines gewissen Codes (dieser wird der Kürze wegen nicht angegeben und weil Details hier keine Rolle spielen). +======= +Here we have a constant `birthday` for the date, and also the `age` constant. + +The `age` is calculated from `birthday` using `someCode()`, which means a function call that we didn't explain yet (we will soon!), but the details don't matter here, the point is that `age` is calculated somehow based on the `birthday`. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Wäre es richtig, für `birthday` Großbuchstaben zu verwenden? Für `age`? der sogar für beide ```js +<<<<<<< HEAD const BIRTHDAY = '18.04.1982'; // in Großbuchstaben? const AGE = someCode(BIRTHDAY); // in Großbuchstaben? -``` +======= +const BIRTHDAY = '18.04.1982'; // make birthday uppercase? +const AGE = someCode(BIRTHDAY); // make age uppercase? +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 +``` diff --git a/1-js/02-first-steps/04-variables/article.md b/1-js/02-first-steps/04-variables/article.md index 85cfc3e29..816cead04 100644 --- a/1-js/02-first-steps/04-variables/article.md +++ b/1-js/02-first-steps/04-variables/article.md @@ -67,7 +67,11 @@ let age = 25; let message = 'Hello'; ``` +<<<<<<< HEAD Einige Leute definieren auch mehrere Variablen in diesem mehrzeiligen Stil: +======= +Some people also define multiple variables in this multiline style: +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 ```js no-beautify let user = 'John', @@ -114,7 +118,12 @@ Zum Beispiel kann man sich die Variable `message` als eine Kiste vorstellen mit Wir können jeden Wert in die Kiste legen. +<<<<<<< HEAD Wir können den Wert auch so oft ändern, wie wir wollen: +======= +We can also change it as many times as we want: + +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 ```js run let message; @@ -165,12 +174,20 @@ So, we should declare a variable once and then refer to it without `let`. ```` ```smart header="Functional languages" +<<<<<<< HEAD It's interesting to note that there exist [functional](https://en.wikipedia.org/wiki/Functional_programming) programming languages, like [Scala](http://www.scala-lang.org/) or [Erlang](http://www.erlang.org/) that forbid changing variable values. >>>>>>> d35baee32dcce127a69325c274799bb81db1afd8 +======= +It's interesting to note that there exist so-called [pure functional](https://en.wikipedia.org/wiki/Purely_functional_programming) programming languages, such as [Haskell](https://en.wikipedia.org/wiki/Haskell), that forbid changing variable values. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 In solchen Sprachen ist der Wert, sobald er "in der Kiste" gespeichert ist, für immer da. Wenn wir etwas anderes speichern wollen, zwingt uns die Sprache dazu, eine neue Kiste zu erstellen (eine neue Variable zu deklarieren). Wir können die alte nicht wiederverwenden. +<<<<<<< HEAD Auch wenn es auf den ersten Blick etwas seltsam erscheint, sind diese Sprachen durchaus für seriöse Softwareentwicklung geeignet. Mehr noch, es gibt Bereiche wie Parallelberechnungen, in denen diese Einschränkung gewisse Vorteile bringt. Das Studium einer solchen Sprache (auch wenn man nicht vorhat, sie bald zu benutzen) wird empfohlen, um den Geist zu erweitern. +======= +Though it may seem a little odd at first sight, these languages are quite capable of serious development. More than that, there are areas like parallel computations where this limitation confers certain benefits. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 ``` ## Benennen der Variablen [#variable-naming] @@ -208,12 +225,21 @@ let 1a; // kann nicht mit einer Ziffer beginnen let my-name; // Bindestriche '-' sind im Namen nicht erlaubt ``` +<<<<<<< HEAD ```smart header="Groß- und Kleinschreibung" Variablen mit den Namen `apple` und `AppLE` sind zwei unterschiedliche Variablen. ``` ````smart header="nicht-lateinische Buchstaben sind erlaubt, aber nicht empfohlen" Es ist möglich, jede Sprache, einschließlich kyrillischer Buchstaben oder sogar chinesische Schriftzeichen, wie diese zu verwenden: +======= +```smart header="Case matters" +Variables named `apple` and `APPLE` are two different variables. +``` + +````smart header="Non-Latin letters are allowed, but not recommended" +It is possible to use any language, including cyrillic letters, Chinese logograms and so on, like this: +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 ```js let имя = '...'; @@ -281,8 +307,12 @@ myBirthday = '01.01.2001'; // Fehler, Konstante kann nicht neu zugewiesen werden Wenn ein Programmierer sicher ist, dass eine Variable sich nie ändern wird, kann er sie mit `const` deklarieren, um diese Tatsache zu garantieren und jedem klar zu kommunizieren. +<<<<<<< HEAD ### Konstanten in Großbuchstaben +======= +### Uppercase constants +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Es ist eine weit verbreitete Vorgehensweise, Konstanten als Alias für schwer zu merkende Werte zu verwenden, die bereits vor der Ausführung bekannt sind. @@ -311,14 +341,23 @@ Wann sollten wir Großbuchstaben für eine Konstante verwenden und wann sollten Eine "Konstante" zu sein bedeutet nur, dass sich der Wert einer Variablen nie ändert. Aber es gibt Konstanten, die vor der Ausführung bekannt sind (wie ein hexadezimaler Wert für die Farbe rot) und es gibt Konstanten, die zur Laufzeit, also während der Ausführung, *berechnet* werden, sich aber nach ihrer anfänglichen Zuweisung nicht mehr ändern. +<<<<<<< HEAD Zum Beispiel: +======= +For instance: + +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 ```js const pageLoadTime = /* Zeit, die eine Website braucht, um geladen zu werden */; ``` Der Wert von `pageLoadTime` ist vor dem Laden der Seite nicht bekannt, daher wird er normal benannt. Aber es ist immer noch eine Konstante, weil er sich nach der Zuweisung nicht mehr ändert. +<<<<<<< HEAD Mit anderen Worten, großgeschriebene Konstanten werden nur als Aliase für "hart kodierte" Werte verwendet. +======= +In other words, capital-named constants are only used as aliases for "hard-coded" values. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 ## Dinge richtig benennen diff --git a/1-js/02-first-steps/05-types/article.md b/1-js/02-first-steps/05-types/article.md index bbbb9bf26..7e6cd479a 100644 --- a/1-js/02-first-steps/05-types/article.md +++ b/1-js/02-first-steps/05-types/article.md @@ -78,6 +78,7 @@ Mehr über das Arbeiten mit Zahlen erfahren wir in diesem Kapitel . ## BigInt [#bigint-type] +<<<<<<< HEAD <<<<<<< HEAD In JavaScript kann der Typ "Zahl" keine ganzzahligen Werte darstellen, die größer als (253-1) (das ist `9007199254740991`) oder kleiner als -(-253-1) für Negative sind. Es handelt sich um eine technische Einschränkung, die durch ihre interne Darstellung bedingt ist. ======= @@ -85,6 +86,22 @@ In JavaScript, the "number" type cannot represent integer values larger than >>>>>> a82915575863d33db6b892087975f84dea6cb425 Für die meisten Zwecke reicht das völlig aus, aber manchmal brauchen wir wirklich große Zahlen, z.B. für die Kryptographie oder Zeitstempel mit Mikrosekunden-Genauigkeit. +======= +In JavaScript, the "number" type cannot safely represent integer values larger than (253-1) (that's `9007199254740991`), or less than -(253-1) for negatives. + +To be really precise, the "number" type can store larger integers (up to 1.7976931348623157 * 10308), but outside of the safe integer range ±(253-1) there'll be a precision error, because not all digits fit into the fixed 64-bit storage. So an "approximate" value may be stored. + +For example, these two numbers (right above the safe range) are the same: + +```js +console.log(9007199254740991 + 1); // 9007199254740992 +console.log(9007199254740991 + 2); // 9007199254740992 +``` + +So to say, all odd integers greater than (253-1) can't be stored at all in the "number" type. + +For most purposes ±(253-1) range is quite enough, but sometimes we need the entire range of really big integers, e.g. for cryptography or microsecond-precision timestamps. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Der Typ `BigInt` wurde kürzlich der Sprache hinzugefügt, um Ganzzahlen beliebiger Länge darzustellen. @@ -237,8 +254,12 @@ Der Typ `symbol` wird verwendet, um eindeutige Bezeichner für Objekte zu erstel Der Operator `typeof` gibt den Typ des Arguments zurück. Dies ist nützlich, wenn wir Werte verschiedener Typen unterschiedlich verarbeiten oder nur eine schnelle Überprüfung durchführen möchten. +<<<<<<< HEAD <<<<<<< HEAD Es werden zwei Syntaxformen unterstützt: +======= +The `typeof` operator returns the type of the operand. It's useful when we want to process values of different types differently or just want to do a quick check. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 1. Als Operator: `typeof x`. 2. Als Funktion: `typeof(x)`. @@ -300,6 +321,7 @@ Some people prefer `typeof(x)`, although the `typeof x` syntax is much more comm ``` ## Summary +<<<<<<< HEAD >>>>>>> 29216730a877be28d0a75a459676db6e7f5c4834 Es gibt 8 grundlegende Datentypen in JavaScript. @@ -323,6 +345,21 @@ Es gibt 8 grundlegende Datentypen in JavaScript. - `object` for more complex data structures. - `symbol` for unique identifiers. >>>>>>> a82915575863d33db6b892087975f84dea6cb425 +======= + +There are 8 basic data types in JavaScript. + +- Seven primitive data types: + - `number` for numbers of any kind: integer or floating-point, integers are limited by ±(253-1). + - `bigint` for integer numbers of arbitrary length. + - `string` for strings. A string may have zero or more characters, there's no separate single-character type. + - `boolean` for `true`/`false`. + - `null` for unknown values -- a standalone type that has a single value `null`. + - `undefined` for unassigned values -- a standalone type that has a single value `undefined`. + - `symbol` for unique identifiers. +- And one non-primitive data type: + - `object` for more complex data structures. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Mit dem Operator `typeof` können wir sehen, welcher Typ in einer Variablen gespeichert ist. diff --git a/1-js/02-first-steps/07-type-conversions/article.md b/1-js/02-first-steps/07-type-conversions/article.md index 952402eb6..3b33441af 100644 --- a/1-js/02-first-steps/07-type-conversions/article.md +++ b/1-js/02-first-steps/07-type-conversions/article.md @@ -39,7 +39,11 @@ Die String Umwandlung ist meist offensichtlich. Ein `false` wird zu `"false"`, ` ## Numerische Umwandlungen +<<<<<<< HEAD Numerische Umwandlung passiert automatisch in mathematischen Funktionen und Ausdrücken. +======= +Numeric conversion in mathematical functions and expressions happens automatically. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Zum Beispiel, wenn die Division `/` an Werten angewendet wird, die keine Zahlen ("Number") sind: @@ -74,8 +78,13 @@ Regeln zur numerischen Umwandlung: |-------|-------------| |`undefined`|`NaN`| |`null`|`0`| +<<<<<<< HEAD |true und false | `1` und `0` | | `string` | Leerzeichen am Anfang und am Ende werden entfernt. Wenn der verbleibende String leer ist, ist das Ergebnis `0`. Andernfalls wird die Zahl aus dem String "gelesen". Ein Fehler ergibt `NaN`. | +======= +|true and false | `1` and `0` | +| `string` | Whitespaces (includes spaces, tabs `\t`, newlines `\n` etc.) from the start and end are removed. If the remaining string is empty, the result is `0`. Otherwise, the number is "read" from the string. An error gives `NaN`. | +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Beispiele: @@ -135,7 +144,11 @@ Die Umwandlung folgt diesen Regeln: |`undefined`|`NaN`| |`null`|`0`| |true / false | `1 / 0` | +<<<<<<< HEAD | `string` | Der String wird "als solches" gelesen, Leerzeichen auf beiden Seiten werden ignoriert. Ein leerer String wird zu `0`. Ein Fehler ergibt `NaN`. | +======= +| `string` | The string is read "as is", whitespaces (includes spaces, tabs `\t`, newlines `\n` etc.) from both sides are ignored. An empty string becomes `0`. An error gives `NaN`. | +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 **`Boolean Umwandlung`** -- Tritt in logischen Operationen auf. Kann mit `Boolean(value)` explizit ausgeführt werden. diff --git a/1-js/02-first-steps/08-operators/3-primitive-conversions-questions/solution.md b/1-js/02-first-steps/08-operators/3-primitive-conversions-questions/solution.md index 213051c80..abad3d86b 100644 --- a/1-js/02-first-steps/08-operators/3-primitive-conversions-questions/solution.md +++ b/1-js/02-first-steps/08-operators/3-primitive-conversions-questions/solution.md @@ -16,6 +16,7 @@ undefined + 1 = NaN // (6) " \t \n" - 2 = -2 // (7) ``` +<<<<<<< HEAD 1. Die Addition mit einem String `"" + 1` konvertiert `1` in einen String: `"" + 1 = "1"`, und dann haben wir `"1" + 0`, die gleiche Regel wird angewendet. 2. Die Subtraktion `-` funktioniert (wie die meisten mathematischen Operationen) nur mit Zahlen. Sie konvertiert eine leere Zeichenfolge `""` in `0`. 3. Die Addition mit einem String fügt dem String die Zahl `5` hinzu. @@ -23,3 +24,12 @@ undefined + 1 = NaN // (6) 5. `null` wird nach der numerischen Umwandlung zu `0`. 6. `undefined` wird nach der numerischen Umwandlung zu `NaN`. 7. Leerzeichen werden am Anfang und Ende eines Strings abgeschnitten, wenn ein String in eine Zahl umgewandelt wird. Hier besteht der gesamte String aus Leerzeichen wie `\t`, `\n` und einem "regulären" Leerzeichen dazwischen. Ähnlich wie bei einem leeren String wird sie zu `0`. +======= +1. The addition with a string `"" + 1` converts `1` to a string: `"" + 1 = "1"`, and then we have `"1" + 0`, the same rule is applied. +2. The subtraction `-` (like most math operations) only works with numbers, it converts an empty string `""` to `0`. +3. The addition with a string appends the number `5` to the string. +4. The subtraction always converts to numbers, so it makes `" -9 "` a number `-9` (ignoring spaces around it). +5. `null` becomes `0` after the numeric conversion. +6. `undefined` becomes `NaN` after the numeric conversion. +7. Space characters are trimmed off string start and end when a string is converted to a number. Here the whole string consists of space characters, such as `\t`, `\n` and a "regular" space between them. So, similarly to an empty string, it becomes `0`. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 diff --git a/1-js/02-first-steps/08-operators/article.md b/1-js/02-first-steps/08-operators/article.md index 7275ff072..547c4c88e 100644 --- a/1-js/02-first-steps/08-operators/article.md +++ b/1-js/02-first-steps/08-operators/article.md @@ -50,8 +50,14 @@ Das Ergebnis von `a % b` ist der [Rest](https://en.wikipedia.org/wiki/Remainder) Zum Beispiel: ```js run +<<<<<<< HEAD alert( 5 % 2 ); // 1, der Rest von 5 geteilt durch 2 alert( 8 % 3 ); // 2, der Rest von 8 geteilt durch 3 +======= +alert( 5 % 2 ); // 1, the remainder of 5 divided by 2 +alert( 8 % 3 ); // 2, the remainder of 8 divided by 3 +alert( 8 % 4 ); // 0, the remainder of 8 divided by 4 +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 ``` ### Potenzierung ** @@ -71,7 +77,11 @@ alert( 2 ** 4 ); // 16 (2 * 2 * 2 * 2, 4 mal) ``` +<<<<<<< HEAD Genau wie in der Mathematik ist der Potenzierungsoperator auch für nicht-ganzzahlige Zahlen definiert. +======= +Just like in maths, the exponentiation operator is defined for non-integer numbers as well. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Zum Beispiel ist eine Quadratwurzel eine Potenzierung durch ½: @@ -83,7 +93,11 @@ alert( 8 ** (1/3) ); // 2 (Die Potenz von 1/3 ist gleich der dritten Wurzel) ## Binäre String-Verkettung + +<<<<<<< HEAD Lernen wir Funktionen von JavaScript-Operatoren kennen, die über das schulische Rechnen hinausgehen. +======= +Let's meet the features of JavaScript operators that are beyond school arithmetics. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Normalerweise summiert der Plus-Operator `+` Zahlen. @@ -201,6 +215,7 @@ Hier ist ein Auszug aus der [Ranglistentabelle](https://developer.mozilla.org/de | Vorrang | Name | Zeichen | |------------|------|------| | ... | ... | ... | +<<<<<<< HEAD | 17 | Unäres Plus | `+` | | 17 | Unäres Minus | `-` | @@ -209,13 +224,26 @@ Hier ist ein Auszug aus der [Ranglistentabelle](https://developer.mozilla.org/de | 15 | Division | `/` | | 13 | Addition | `+` | | 13 | Subtraktion | `-` | +======= +| 14 | unary plus | `+` | +| 14 | unary negation | `-` | +| 13 | exponentiation | `**` | +| 12 | multiplication | `*` | +| 12 | division | `/` | +| 11 | addition | `+` | +| 11 | subtraction | `-` | +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 | ... | ... | ... | | 3 | Zuweisung | `=` | | ... | ... | ... | +<<<<<<< HEAD Wie wir sehen können, hat das "unäre Plus" eine Priorität von `17`, die höher ist als die `13` der "Addition" (binäres Plus). Deshalb wirken in dem Ausdruck `"+apples + +oranges"` unäre Pluszeichen vor der Addition. +======= +As we can see, the "unary plus" has a priority of `14` which is higher than the `11` of "addition" (binary plus). That's why, in the expression `"+apples + +oranges"`, unary pluses work before the addition. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 ## Zuweisung @@ -321,9 +349,13 @@ Solche Operatoren haben den gleichen Stellenwert wie eine normale Zuweisung, sod ```js run let n = 2; -n *= 3 + 5; +n *= 3 + 5; // right part evaluated first, same as n *= 8 +<<<<<<< HEAD alert( n ); // 16 (der rechte Teil wird zuerst ausgewertet, wie n *= 8) +======= +alert( n ); // 16 +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 ``` ## Inkrementieren/Dekrementieren diff --git a/1-js/02-first-steps/10-ifelse/article.md b/1-js/02-first-steps/10-ifelse/article.md index e53185905..819365e3c 100644 --- a/1-js/02-first-steps/10-ifelse/article.md +++ b/1-js/02-first-steps/10-ifelse/article.md @@ -73,6 +73,10 @@ if (cond) { Die `if`-Anweisung kann einen optionalen "else"-Block enthalten. Er wird ausgeführt, wenn die Bedingung falsch ist. +<<<<<<< HEAD +======= +The `if` statement may contain an optional `else` block. It executes when the condition is falsy. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Beispiel: ```js run @@ -184,10 +188,17 @@ alert( message ); Es ist vielleicht auf den ersten Blick schwer zu erkennen, was hier eigentlich passiert. Aber bei näherer Betrachtung sehen wir, dass es sich um eine ganz normale Abfolge von Tests handelt: +<<<<<<< HEAD 1. Das erste Fragezeichen prüft, ob `age < 3`. 2. Falls wahr, gibt es `Hallo, Kleines!` zurück. Andernfalls fährt es mit dem Ausdruck nach dem Doppelpunkt '":"' fort, und prüft `age < 18`. 3. Falls das wahr ist, gibt es `'Hallo!'` zurück. Andernfalls fährt es mit dem Ausdruck nach dem Doppelpunkt '":"' fort, und prüft `age < 100`. 4. Falls das wahr ist, gibt es `'Grüße!'` zurück. Andernfalls fährt es mit dem Ausdruck nach dem letzten Doppelpunkt '":"' fort, und gibt `'Was für ein ungewöhnliches Alter!'` zurück. +======= +1. The first question mark checks whether `age < 3`. +2. If true -- it returns `'Hi, baby!'`. Otherwise, it continues to the expression after the colon ":", checking `age < 18`. +3. If that's true -- it returns `'Hello!'`. Otherwise, it continues to the expression after the next colon ":", checking `age < 100`. +4. If that's true -- it returns `'Greetings!'`. Otherwise, it continues to the expression after the last colon ":", returning `'What an unusual age!'`. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 So sieht es mit `if..else` aus: diff --git a/1-js/02-first-steps/11-logical-operators/3-alert-1-null-2/solution.md b/1-js/02-first-steps/11-logical-operators/3-alert-1-null-2/solution.md index 7191b9ad5..b1f8ba5db 100644 --- a/1-js/02-first-steps/11-logical-operators/3-alert-1-null-2/solution.md +++ b/1-js/02-first-steps/11-logical-operators/3-alert-1-null-2/solution.md @@ -1,6 +1,6 @@ Antwort: `null`, denn das ist der erste effektiv nicht wahre Wert aus der Liste. ```js run -alert( 1 && null && 2 ); +alert(1 && null && 2); ``` diff --git a/1-js/02-first-steps/12-nullish-coalescing-operator/article.md b/1-js/02-first-steps/12-nullish-coalescing-operator/article.md index 2d046aa90..0b2f092ab 100644 --- a/1-js/02-first-steps/12-nullish-coalescing-operator/article.md +++ b/1-js/02-first-steps/12-nullish-coalescing-operator/article.md @@ -29,7 +29,7 @@ For example, here we show `user` if its value isn't `null/undefined`, otherwise ```js run let user; -alert(user ?? "Anonymous"); // Anonymous (user not defined) +alert(user ?? "Anonymous"); // Anonymous (user is undefined) ``` Here's the example with `user` assigned to a name: @@ -37,7 +37,7 @@ Here's the example with `user` assigned to a name: ```js run let user = "John"; -alert(user ?? "Anonymous"); // John (user defined) +alert(user ?? "Anonymous"); // John (user is not null/undefined) ``` We can also use a sequence of `??` to select the first value from a list that isn't `null/undefined`. @@ -76,7 +76,7 @@ alert(firstName || lastName || nickName || "Anonymous"); // Supercoder */!* ``` -Historically, the OR `||` operator was there first. It exists since the beginning of JavaScript, so developers were using it for such purposes for a long time. +Historically, the OR `||` operator was there first. It's been there since the beginning of JavaScript, so developers were using it for such purposes for a long time. On the other hand, the nullish coalescing operator `??` was added to JavaScript only recently, and the reason for that was that people weren't quite happy with `||`. @@ -106,7 +106,7 @@ In practice, the zero height is often a valid value, that shouldn't be replaced ## Precedence -The precedence of the `??` operator is the same as `||`. They both equal `4` in the [MDN table](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence#Table). +The precedence of the `??` operator is the same as `||`. They both equal `3` in the [MDN table](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence#Table). That means that, just like `||`, the nullish coalescing operator `??` is evaluated before `=` and `?`, but after most other operations, such as `+`, `*`. diff --git a/1-js/02-first-steps/13-while-for/article.md b/1-js/02-first-steps/13-while-for/article.md index a7a211569..d1b749888 100644 --- a/1-js/02-first-steps/13-while-for/article.md +++ b/1-js/02-first-steps/13-while-for/article.md @@ -6,6 +6,19 @@ For example, outputting goods from a list one after another or just running the *Loops* are a way to repeat the same code multiple times. +```smart header="The for..of and for..in loops" +A small announcement for advanced readers. + +This article covers only basic loops: `while`, `do..while` and `for(..;..;..)`. + +If you came to this article searching for other types of loops, here are the pointers: + +- See [for..in](info:object#forin) to loop over object properties. +- See [for..of](info:array#loops) and [iterables](info:iterable) for looping over arrays and iterable objects. + +Otherwise, please read on. +``` + ## The "while" loop The `while` loop has the following syntax: @@ -162,10 +175,8 @@ for (i = 0; i < 3; i++) { // use an existing variable alert(i); // 3, visible, because declared outside of the loop ``` - ```` - ### Skipping parts Any part of `for` can be skipped. @@ -268,7 +279,7 @@ for (let i = 0; i < 10; i++) { From a technical point of view, this is identical to the example above. Surely, we can just wrap the code in an `if` block instead of using `continue`. -But as a side-effect, this created one more level of nesting (the `alert` call inside the curly braces). If the code inside of `if` is longer than a few lines, that may decrease the overall readability. +But as a side effect, this created one more level of nesting (the `alert` call inside the curly braces). If the code inside of `if` is longer than a few lines, that may decrease the overall readability. ```` ````warn header="No `break/continue` to the right side of '?'" @@ -286,7 +297,6 @@ if (i > 5) { ...and rewrite it using a question mark: - ```js no-beautify (i > 5) ? alert(i) : *!*continue*/!*; // continue isn't allowed here ``` @@ -321,6 +331,7 @@ We need a way to stop the process if the user cancels the input. The ordinary `break` after `input` would only break the inner loop. That's not sufficient -- labels, come to the rescue! A *label* is an identifier with a colon before a loop: + ```js labelName: for (...) { ... @@ -342,6 +353,7 @@ The `break ` statement in the loop below breaks out to the label: // do something with the value... } } + alert('Done!'); ``` @@ -362,6 +374,7 @@ The `continue` directive can also be used with a label. In this case, code execu Labels do not allow us to jump into an arbitrary place in the code. For example, it is impossible to do this: + ```js break label; // jump to the label below (doesn't work) @@ -369,6 +382,7 @@ label: for (...) ``` A `break` directive must be inside a code block. Technically, any labelled code block will do, e.g.: + ```js label: { // ... diff --git a/1-js/02-first-steps/14-switch/article.md b/1-js/02-first-steps/14-switch/article.md index effdafcf9..d86babcec 100644 --- a/1-js/02-first-steps/14-switch/article.md +++ b/1-js/02-first-steps/14-switch/article.md @@ -139,7 +139,7 @@ switch (a) { Now both `3` and `5` show the same message. -The ability to "group" cases is a side-effect of how `switch/case` works without `break`. Here the execution of `case 3` starts from the line `(*)` and goes through `case 5`, because there's no `break`. +The ability to "group" cases is a side effect of how `switch/case` works without `break`. Here the execution of `case 3` starts from the line `(*)` and goes through `case 5`, because there's no `break`. ## Type matters diff --git a/1-js/02-first-steps/15-function-basics/article.md b/1-js/02-first-steps/15-function-basics/article.md index 262dff809..415fed3e0 100644 --- a/1-js/02-first-steps/15-function-basics/article.md +++ b/1-js/02-first-steps/15-function-basics/article.md @@ -24,7 +24,7 @@ The `function` keyword goes first, then goes the *name of the function*, then a ```js function name(parameter1, parameter2, ... parameterN) { - ...body... + // body } ``` @@ -206,7 +206,13 @@ function showMessage(from, *!*text = "no text given"*/!*) { showMessage("Ann"); // Ann: no text given ``` -Now if the `text` parameter is not passed, it will get the value `"no text given"` +Now if the `text` parameter is not passed, it will get the value `"no text given"`. + +The default value also jumps in if the parameter exists, but strictly equals `undefined`, like this: + +```js +showMessage("Ann", undefined); // Ann: no text given +``` Here `"no text given"` is a string, but it can be a more complex expression, which is only evaluated and assigned if the parameter is missing. So, this is also possible: @@ -259,7 +265,7 @@ function showMessage(from, text) { ### Alternative default parameters -Sometimes it makes sense to assign default values for parameters not in the function declaration, but at a later stage. +Sometimes it makes sense to assign default values for parameters at a later stage after the function declaration. We can check if the parameter is passed during the function execution, by comparing it with `undefined`: @@ -454,7 +460,7 @@ These examples assume common meanings of prefixes. You and your team are free to ```smart header="Ultrashort function names" Functions that are used *very often* sometimes have ultrashort names. -For example, the [jQuery](http://jquery.com) framework defines a function with `$`. The [Lodash](http://lodash.com/) library has its core function named `_`. +For example, the [jQuery](https://jquery.com/) framework defines a function with `$`. The [Lodash](https://lodash.com/) library has its core function named `_`. These are exceptions. Generally function names should be concise and descriptive. ``` @@ -522,7 +528,7 @@ function name(parameters, delimited, by, comma) { To make the code clean and easy to understand, it's recommended to use mainly local variables and parameters in the function, not outer variables. -It is always easier to understand a function which gets parameters, works with them and returns a result than a function which gets no parameters, but modifies outer variables as a side-effect. +It is always easier to understand a function which gets parameters, works with them and returns a result than a function which gets no parameters, but modifies outer variables as a side effect. Function naming: diff --git a/1-js/02-first-steps/16-function-expressions/article.md b/1-js/02-first-steps/16-function-expressions/article.md index 0135cf1cb..b952d5943 100644 --- a/1-js/02-first-steps/16-function-expressions/article.md +++ b/1-js/02-first-steps/16-function-expressions/article.md @@ -90,7 +90,7 @@ Everything would work the same. ````smart header="Why is there a semicolon at the end?" -You might wonder, why does Function Expression have a semicolon `;` at the end, but Function Declaration does not: +You might wonder, why do Function Expressions have a semicolon `;` at the end, but Function Declarations do not: ```js function sayHi() { @@ -144,13 +144,13 @@ function showCancel() { ask("Do you agree?", showOk, showCancel); ``` -In practice, such functions are quite useful. The major difference between a real-life `ask` and the example above is that real-life functions use more complex ways to interact with the user than a simple `confirm`. In the browser, such function usually draws a nice-looking question window. But that's another story. +In practice, such functions are quite useful. The major difference between a real-life `ask` and the example above is that real-life functions use more complex ways to interact with the user than a simple `confirm`. In the browser, such functions usually draw a nice-looking question window. But that's another story. **The arguments `showOk` and `showCancel` of `ask` are called *callback functions* or just *callbacks*.** The idea is that we pass a function and expect it to be "called back" later if necessary. In our case, `showOk` becomes the callback for "yes" answer, and `showCancel` for "no" answer. -We can use Function Expressions to write the same function much shorter: +We can use Function Expressions to write an equivalent, shorter function: ```js run no-beautify function ask(question, yes, no) { @@ -186,7 +186,7 @@ Let's formulate the key differences between Function Declarations and Expression First, the syntax: how to differentiate between them in the code. -- *Function Declaration:* a function, declared as a separate statement, in the main code flow. +- *Function Declaration:* a function, declared as a separate statement, in the main code flow: ```js // Function Declaration @@ -360,7 +360,7 @@ welcome(); // ok now ```smart header="When to choose Function Declaration versus Function Expression?" -As a rule of thumb, when we need to declare a function, the first to consider is Function Declaration syntax. It gives more freedom in how to organize our code, because we can call such functions before they are declared. +As a rule of thumb, when we need to declare a function, the first thing to consider is Function Declaration syntax. It gives more freedom in how to organize our code, because we can call such functions before they are declared. That's also better for readability, as it's easier to look up `function f(…) {…}` in the code than `let f = function(…) {…};`. Function Declarations are more "eye-catching". diff --git a/1-js/02-first-steps/18-javascript-specials/article.md b/1-js/02-first-steps/18-javascript-specials/article.md index a4d05e12f..e7ddacac4 100644 --- a/1-js/02-first-steps/18-javascript-specials/article.md +++ b/1-js/02-first-steps/18-javascript-specials/article.md @@ -55,7 +55,7 @@ To fully enable all features of modern JavaScript, we should start scripts with The directive must be at the top of a script or at the beginning of a function body. -Without `"use strict"`, everything still works, but some features behave in the old-fashion, "compatible" way. We'd generally prefer the modern behavior. +Without `"use strict"`, everything still works, but some features behave in the old-fashioned, "compatible" way. We'd generally prefer the modern behavior. Some modern features of the language (like classes that we'll study in the future) enable strict mode implicitly. @@ -103,13 +103,13 @@ More in: and . We're using a browser as a working environment, so basic UI functions will be: -[`prompt(question, [default])`](mdn:api/Window/prompt) +[`prompt(question, [default])`](https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt) : Ask a `question`, and return either what the visitor entered or `null` if they clicked "cancel". -[`confirm(question)`](mdn:api/Window/confirm) +[`confirm(question)`](https://developer.mozilla.org/en-US/docs/Web/API/Window/confirm) : Ask a `question` and suggest to choose between Ok and Cancel. The choice is returned as `true/false`. -[`alert(message)`](mdn:api/Window/alert) +[`alert(message)`](https://developer.mozilla.org/en-US/docs/Web/API/Window/alert) : Output a `message`. All these functions are *modal*, they pause the code execution and prevent the visitor from interacting with the page until they answer. @@ -144,7 +144,7 @@ Assignments : There is a simple assignment: `a = b` and combined ones like `a *= 2`. Bitwise -: Bitwise operators work with 32-bit integers at the lowest, bit-level: see the [docs](mdn:/JavaScript/Guide/Expressions_and_Operators#Bitwise) when they are needed. +: Bitwise operators work with 32-bit integers at the lowest, bit-level: see the [docs](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#bitwise_operators) when they are needed. Conditional : The only operator with three parameters: `cond ? resultA : resultB`. If `cond` is truthy, returns `resultA`, otherwise `resultB`. diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-open-sources.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-open-sources.svg index a3c7db6ec..5fc6dce3a 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-open-sources.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-open-sources.svg @@ -1 +1 @@ -open sources \ No newline at end of file +open sources \ No newline at end of file diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-breakpoint.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-breakpoint.svg index 6e7b60f85..63bf4966e 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-breakpoint.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-breakpoint.svg @@ -1 +1 @@ -here's the listbreakpoints \ No newline at end of file +here's the listbreakpoints \ No newline at end of file diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-console.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-console.svg index d5d2a0b93..3fe5f124f 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-console.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-console.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-pause.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-pause.svg index 83468fddb..0147c2e0a 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-pause.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-pause.svg @@ -1 +1 @@ -213see the outer call detailswatch expressionscurrent variables \ No newline at end of file +213see the outer call detailswatch expressionscurrent variables \ No newline at end of file diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-trace-1.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-trace-1.svg index 23937e0d6..9fa1b3b8c 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-trace-1.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-sources-debugger-trace-1.svg @@ -1 +1 @@ -nested calls \ No newline at end of file +nested calls \ No newline at end of file diff --git a/1-js/03-code-quality/01-debugging-chrome/chrome-tabs.svg b/1-js/03-code-quality/01-debugging-chrome/chrome-tabs.svg index 41a3d8784..016708256 100644 --- a/1-js/03-code-quality/01-debugging-chrome/chrome-tabs.svg +++ b/1-js/03-code-quality/01-debugging-chrome/chrome-tabs.svg @@ -1 +1 @@ -213 \ No newline at end of file +213 \ No newline at end of file diff --git a/1-js/03-code-quality/02-coding-style/code-style.svg b/1-js/03-code-quality/02-coding-style/code-style.svg index 12a755c97..739d9f1ed 100644 --- a/1-js/03-code-quality/02-coding-style/code-style.svg +++ b/1-js/03-code-quality/02-coding-style/code-style.svg @@ -1 +1 @@ -2No space between the function name and parentheses between the parentheses and the parameterIndentation 2 spacesA space after for/if/while…} else { without a line breakSpaces around a nested callAn empty line between logical blocksLines are not very longA semicolon ; is mandatorySpaces around operatorsCurly brace { on the same line, after a spaceA space between argumentsA space between parameters \ No newline at end of file +2No space between the function name and parentheses between the parentheses and the parameterIndentation 2 spacesA space after for/if/while…} else { without a line breakSpaces around a nested callAn empty line between logical blocksLines are not very longA semicolon ; is mandatorySpaces around operatorsCurly brace { on the same line, after a spaceA space between argumentsA space between parameters \ No newline at end of file diff --git a/1-js/03-code-quality/03-comments/article.md b/1-js/03-code-quality/03-comments/article.md index 29903848f..2e7f1d31e 100644 --- a/1-js/03-code-quality/03-comments/article.md +++ b/1-js/03-code-quality/03-comments/article.md @@ -141,7 +141,11 @@ Solche Kommentare erlauben es uns, den Zweck der Funktion zu verstehen und sie r Übrigens, viele Entwicklungsumgebungen wie [WebStorm](https://www.jetbrains.com/de-de/webstorm/) können diese auch verstehen und verwenden diese, um Autovervollständigungen und einige automatische Code-Überprüfungen anzubieten. +<<<<<<< HEAD Außerdem gibt es Tools wie [JSDoc 3](https://github.com/jsdoc3/jsdoc) die aus den Kommentaren eine HTML-Dokumentation generieren können. Weitere Informationen über JSDoc findest du unter . +======= +Also, there are tools like [JSDoc 3](https://github.com/jsdoc/jsdoc) that can generate HTML-documentation from the comments. You can read more information about JSDoc at . +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Warum wird die Aufgabe auf diese Weise gelöst? : Was geschrieben wird, ist wichtig. Aber was *nicht* geschrieben ist, kann noch wichtiger sein, um zu verstehen, was vor sich geht. Warum wird die Aufgabe genau auf diese Weise gelöst? Der Code gibt keine Antwort. diff --git a/1-js/03-code-quality/05-testing-mocha/article.md b/1-js/03-code-quality/05-testing-mocha/article.md index 9037b484d..4c2b1aa5e 100644 --- a/1-js/03-code-quality/05-testing-mocha/article.md +++ b/1-js/03-code-quality/05-testing-mocha/article.md @@ -51,7 +51,7 @@ describe("pow", function() { A spec has three main building blocks that you can see above: `describe("title", function() { ... })` -: What functionality we're describing. In our case we're describing the function `pow`. Used to group "workers" -- the `it` blocks. +: What functionality we're describing? In our case we're describing the function `pow`. Used to group "workers" -- the `it` blocks. `it("use case description", function() { ... })` : In the title of `it` we *in a human-readable way* describe the particular use case, and the second argument is a function that tests it. @@ -69,7 +69,7 @@ The flow of development usually looks like this: 1. An initial spec is written, with tests for the most basic functionality. 2. An initial implementation is created. -3. To check whether it works, we run the testing framework [Mocha](http://mochajs.org/) (more details soon) that runs the spec. While the functionality is not complete, errors are displayed. We make corrections until everything works. +3. To check whether it works, we run the testing framework [Mocha](https://mochajs.org/) (more details soon) that runs the spec. While the functionality is not complete, errors are displayed. We make corrections until everything works. 4. Now we have a working initial implementation with tests. 5. We add more use cases to the spec, probably not yet supported by the implementations. Tests start to fail. 6. Go to 3, update the implementation till tests give no errors. @@ -79,15 +79,15 @@ So, the development is *iterative*. We write the spec, implement it, make sure t Let's see this development flow in our practical case. -The first step is already complete: we have an initial spec for `pow`. Now, before making the implementation, let's use few JavaScript libraries to run the tests, just to see that they are working (they will all fail). +The first step is already complete: we have an initial spec for `pow`. Now, before making the implementation, let's use a few JavaScript libraries to run the tests, just to see that they are working (they will all fail). ## The spec in action Here in the tutorial we'll be using the following JavaScript libraries for tests: -- [Mocha](http://mochajs.org/) -- the core framework: it provides common testing functions including `describe` and `it` and the main function that runs tests. -- [Chai](http://chaijs.com) -- the library with many assertions. It allows to use a lot of different assertions, for now we need only `assert.equal`. -- [Sinon](http://sinonjs.org/) -- a library to spy over functions, emulate built-in functions and more, we'll need it much later. +- [Mocha](https://mochajs.org/) -- the core framework: it provides common testing functions including `describe` and `it` and the main function that runs tests. +- [Chai](https://www.chaijs.com/) -- the library with many assertions. It allows to use a lot of different assertions, for now we need only `assert.equal`. +- [Sinon](https://sinonjs.org/) -- a library to spy over functions, emulate built-in functions and more, we'll need it much later. These libraries are suitable for both in-browser and server-side testing. Here we'll consider the browser variant. @@ -338,14 +338,14 @@ The newly added tests fail, because our implementation does not support them. Th ```smart header="Other assertions" Please note the assertion `assert.isNaN`: it checks for `NaN`. -There are other assertions in [Chai](http://chaijs.com) as well, for instance: +There are other assertions in [Chai](https://www.chaijs.com/) as well, for instance: - `assert.equal(value1, value2)` -- checks the equality `value1 == value2`. - `assert.strictEqual(value1, value2)` -- checks the strict equality `value1 === value2`. - `assert.notEqual`, `assert.notStrictEqual` -- inverse checks to the ones above. - `assert.isTrue(value)` -- checks that `value === true` - `assert.isFalse(value)` -- checks that `value === false` -- ...the full list is in the [docs](http://chaijs.com/api/assert/) +- ...the full list is in the [docs](https://www.chaijs.com/api/assert/) ``` So we should add a couple of lines to `pow`: diff --git a/1-js/03-code-quality/06-polyfills/article.md b/1-js/03-code-quality/06-polyfills/article.md index 5f9b75902..c12a59f07 100644 --- a/1-js/03-code-quality/06-polyfills/article.md +++ b/1-js/03-code-quality/06-polyfills/article.md @@ -1,11 +1,19 @@ # Polyfills and transpilers +<<<<<<< HEAD JavaScript entwickelt sich stetig weiter. Neue Vorschläge für die Sprache erscheinen regelmäßig, sie werden analysiert und, wenn sie als würdig erachtet werden, an die Liste unter angehängt und dann zur [Spezifikation](http:// www.ecma-international.org/publications/standards/Ecma-262.htm) freigegeben. +======= +The JavaScript language steadily evolves. New proposals to the language appear regularly, they are analyzed and, if considered worthy, are appended to the list at and then progress to the [specification](https://www.ecma-international.org/publications-and-standards/standards/ecma-262/). +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Teams hinter JavaScript-Engines haben ihre eigenen Vorstellungen davon, was zuerst implementiert werden soll. Sie können beschließen, Vorschläge zu implementieren, die sich im Entwurf befinden, und Dinge, die bereits in der Spezifikation enthalten sind, verschieben, weil sie weniger interessant oder einfach schwieriger zu machen sind. +<<<<<<< HEAD Es ist also durchaus üblich, dass eine Engine nur einen Teil des Standards implementiert. +======= +So it's quite common for an engine to implement only part of the standard. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Eine gute Seite, um den aktuellen Stand der Unterstützung für Sprachfunktionen zu sehen, ist (es ist groß, wir haben noch viel zu lernen). @@ -67,6 +75,7 @@ Now the rewritten code is suitable for older JavaScript engines. Usually, a developer runs the transpiler on their own computer, and then deploys the transpiled code to the server. +<<<<<<< HEAD <<<<<<< HEAD ````online Die meisten Beispiele sind direkt lauffähig, wie folgt: @@ -85,8 +94,11 @@ Während Sie die Offline-Version lesen, sind PDF-Beispiele nicht lauffähig. In Google Chrome ist in der Regel mit Sprachfunktionen auf dem neuesten Stand und eignet sich gut, um topaktuelle Demos ohne Transpiler auszuführen, aber auch andere moderne Browser funktionieren einwandfrei. ======= Speaking of names, [Babel](https://babeljs.io) is one of the most prominent transpilers out there. +======= +Speaking of names, [Babel](https://babeljs.io) is one of the most prominent transpilers out there. +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 -Modern project build systems, such as [webpack](https://webpack.js.org/), provide means to run transpiler automatically on every code change, so it's very easy to integrate into development process. +Modern project build systems, such as [webpack](https://webpack.js.org/), provide a means to run a transpiler automatically on every code change, so it's very easy to integrate into the development process. ## Polyfills @@ -113,20 +125,20 @@ if (!Math.trunc) { // if no such function } ``` -JavaScript is a highly dynamic language, scripts may add/modify any functions, even including built-in ones. +JavaScript is a highly dynamic language. Scripts may add/modify any function, even built-in ones. -Two interesting libraries of polyfills are: +Two interesting polyfill libraries are: - [core js](https://github.com/zloirock/core-js) that supports a lot, allows to include only needed features. -- [polyfill.io](http://polyfill.io) service that provides a script with polyfills, depending on the features and user's browser. +- [polyfill.io](https://polyfill.io/) service that provides a script with polyfills, depending on the features and user's browser. ## Summary In this chapter we'd like to motivate you to study modern and even "bleeding-edge" language features, even if they aren't yet well-supported by JavaScript engines. -Just don't forget to use transpiler (if using modern syntax or operators) and polyfills (to add functions that may be missing). And they'll ensure that the code works. +Just don't forget to use a transpiler (if using modern syntax or operators) and polyfills (to add functions that may be missing). They'll ensure that the code works. -For example, later when you're familiar with JavaScript, you can setup a code build system based on [webpack](https://webpack.js.org/) with [babel-loader](https://github.com/babel/babel-loader) plugin. +For example, later when you're familiar with JavaScript, you can setup a code build system based on [webpack](https://webpack.js.org/) with the [babel-loader](https://github.com/babel/babel-loader) plugin. Good resources that show the current state of support for various features: - - for pure JavaScript. diff --git a/1-js/04-object-basics/01-object/article.md b/1-js/04-object-basics/01-object/article.md index 81c9e1382..0fe5979fa 100644 --- a/1-js/04-object-basics/01-object/article.md +++ b/1-js/04-object-basics/01-object/article.md @@ -355,7 +355,7 @@ In the code above, the property `obj.test` technically exists. So the `in` opera Situations like this happen very rarely, because `undefined` should not be explicitly assigned. We mostly use `null` for "unknown" or "empty" values. So the `in` operator is an exotic guest in the code. -## The "for..in" loop +## The "for..in" loop [#forin] To walk over all keys of an object, there exists a special form of the loop: `for..in`. This is a completely different thing from the `for(;;)` construct that we studied before. diff --git a/1-js/04-object-basics/02-object-copy/article.md b/1-js/04-object-basics/02-object-copy/article.md index b56a8034b..e80f748ab 100644 --- a/1-js/04-object-basics/02-object-copy/article.md +++ b/1-js/04-object-basics/02-object-copy/article.md @@ -37,7 +37,7 @@ And here's how it's actually stored in memory: The object is stored somewhere in memory (at the right of the picture), while the `user` variable (at the left) has a "reference" to it. -We may think of an object variable, such as `user`, as like a sheet of paper with the address of the object on it. +We may think of an object variable, such as `user`, like a sheet of paper with the address of the object on it. When we perform actions with the object, e.g. take a property `user.name`, the JavaScript engine looks at what's at that address and performs the operation on the actual object. @@ -100,15 +100,37 @@ alert( a == b ); // false For comparisons like `obj1 > obj2` or for a comparison against a primitive `obj == 5`, objects are converted to primitives. We'll study how object conversions work very soon, but to tell the truth, such comparisons are needed very rarely -- usually they appear as a result of a programming mistake. +````smart header="Const objects can be modified" +An important side effect of storing objects as references is that an object declared as `const` *can* be modified. + +For instance: + +```js run +const user = { + name: "John" +}; + +*!* +user.name = "Pete"; // (*) +*/!* + +alert(user.name); // Pete +``` + +It might seem that the line `(*)` would cause an error, but it does not. The value of `user` is constant, it must always reference the same object, but properties of that object are free to change. + +In other words, the `const user` gives an error only if we try to set `user=...` as a whole. + +That said, if we really need to make constant object properties, it's also possible, but using totally different methods. We'll mention that in the chapter . +```` + ## Cloning and merging, Object.assign [#cloning-and-merging-object-assign] So, copying an object variable creates one more reference to the same object. -But what if we need to duplicate an object? Create an independent copy, a clone? - -That's also doable, but a little bit more difficult, because there's no built-in method for that in JavaScript. But there is rarely a need -- copying by reference is good most of the time. +But what if we need to duplicate an object? -But if we really want that, then we need to create a new object and replicate the structure of the existing one by iterating over its properties and copying them on the primitive level. +We can create a new object and replicate the structure of the existing one, by iterating over its properties and copying them on the primitive level. Like this: @@ -133,21 +155,22 @@ clone.name = "Pete"; // changed the data in it alert( user.name ); // still John in the original object ``` -Also we can use the method [Object.assign](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign) for that. +We can also use the method [Object.assign](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign). The syntax is: ```js -Object.assign(dest, [src1, src2, src3...]) +Object.assign(dest, ...sources) ``` - The first argument `dest` is a target object. -- Further arguments `src1, ..., srcN` (can be as many as needed) are source objects. -- It copies the properties of all source objects `src1, ..., srcN` into the target `dest`. In other words, properties of all arguments starting from the second are copied into the first object. -- The call returns `dest`. +- Further arguments is a list of source objects. -For instance, we can use it to merge several objects into one: -```js +It copies the properties of all source objects into the target `dest`, and then returns it as the result. + +For example, we have `user` object, let's add a couple of permissions to it: + +```js run let user = { name: "John" }; let permissions1 = { canView: true }; @@ -159,6 +182,9 @@ Object.assign(user, permissions1, permissions2); */!* // now user = { name: "John", canView: true, canEdit: true } +alert(user.name); // John +alert(user.canView); // true +alert(user.canEdit); // true ``` If the copied property name already exists, it gets overwritten: @@ -171,9 +197,9 @@ Object.assign(user, { name: "Pete" }); alert(user.name); // now user = { name: "Pete" } ``` -We also can use `Object.assign` to replace `for..in` loop for simple cloning: +We also can use `Object.assign` to perform a simple object cloning: -```js +```js run let user = { name: "John", age: 30 @@ -182,15 +208,18 @@ let user = { *!* let clone = Object.assign({}, user); */!* + +alert(clone.name); // John +alert(clone.age); // 30 ``` -It copies all properties of `user` into the empty object and returns it. +Here it copies all properties of `user` into the empty object and returns it. There are also other methods of cloning an object, e.g. using the [spread syntax](info:rest-parameters-spread) `clone = {...user}`, covered later in the tutorial. ## Nested cloning -Until now we assumed that all properties of `user` are primitive. But properties can be references to other objects. What to do with them? +Until now we assumed that all properties of `user` are primitive. But properties can be references to other objects. Like this: ```js run @@ -205,9 +234,7 @@ let user = { alert( user.sizes.height ); // 182 ``` -Now it's not enough to copy `clone.sizes = user.sizes`, because the `user.sizes` is an object, it will be copied by reference. So `clone` and `user` will share the same sizes: - -Like this: +Now it's not enough to copy `clone.sizes = user.sizes`, because `user.sizes` is an object, and will be copied by reference, so `clone` and `user` will share the same sizes: ```js run let user = { @@ -223,37 +250,71 @@ let clone = Object.assign({}, user); alert( user.sizes === clone.sizes ); // true, same object // user and clone share sizes -user.sizes.width++; // change a property from one place -alert(clone.sizes.width); // 51, see the result from the other one +user.sizes.width = 60; // change a property from one place +alert(clone.sizes.width); // 60, get the result from the other one ``` -To fix that, we should use a cloning loop that examines each value of `user[key]` and, if it's an object, then replicate its structure as well. That is called a "deep cloning". +To fix that and make `user` and `clone` truly separate objects, we should use a cloning loop that examines each value of `user[key]` and, if it's an object, then replicate its structure as well. That is called a "deep cloning" or "structured cloning". There's [structuredClone](https://developer.mozilla.org/en-US/docs/Web/API/structuredClone) method that implements deep cloning. -We can use recursion to implement it. Or, to not reinvent the wheel, take an existing implementation, for instance [_.cloneDeep(obj)](https://lodash.com/docs#cloneDeep) from the JavaScript library [lodash](https://lodash.com). -````smart header="Const objects can be modified" -An important side effect of storing objects as references is that an object declared as `const` *can* be modified. +### structuredClone -For instance: +The call `structuredClone(object)` clones the `object` with all nested properties. + +Here's how we can use it in our example: ```js run -const user = { - name: "John" +let user = { + name: "John", + sizes: { + height: 182, + width: 50 + } }; *!* -user.name = "Pete"; // (*) +let clone = structuredClone(user); */!* -alert(user.name); // Pete +alert( user.sizes === clone.sizes ); // false, different objects + +// user and clone are totally unrelated now +user.sizes.width = 60; // change a property from one place +alert(clone.sizes.width); // 50, not related ``` -It might seem that the line `(*)` would cause an error, but it does not. The value of `user` is constant, it must always reference the same object, but properties of that object are free to change. +The `structuredClone` method can clone most data types, such as objects, arrays, primitive values. -In other words, the `const user` gives an error only if we try to set `user=...` as a whole. +It also supports circular references, when an object property references the object itself (directly or via a chain or references). -That said, if we really need to make constant object properties, it's also possible, but using totally different methods. We'll mention that in the chapter . -```` +For instance: + +```js run +let user = {}; +// let's create a circular reference: +// user.me references the user itself +user.me = user; + +let clone = structuredClone(user); +alert(clone.me === clone); // true +``` + +As you can see, `clone.me` references the `clone`, not the `user`! So the circular reference was cloned correctly as well. + +Although, there are cases when `structuredClone` fails. + +For instance, when an object has a function property: + +```js run +// error +structuredClone({ + f: function() {} +}); +``` + +Function properties aren't supported. + +To handle such complex cases we may need to use a combination of cloning methods, write custom code or, to not reinvent the wheel, take an existing implementation, for instance [_.cloneDeep(obj)](https://lodash.com/docs#cloneDeep) from the JavaScript library [lodash](https://lodash.com). ## Summary @@ -261,4 +322,4 @@ Objects are assigned and copied by reference. In other words, a variable stores All operations via copied references (like adding/removing properties) are performed on the same single object. -To make a "real copy" (a clone) we can use `Object.assign` for the so-called "shallow copy" (nested objects are copied by reference) or a "deep cloning" function, such as [_.cloneDeep(obj)](https://lodash.com/docs#cloneDeep). +To make a "real copy" (a clone) we can use `Object.assign` for the so-called "shallow copy" (nested objects are copied by reference) or a "deep cloning" function `structuredClone` or use a custom cloning implementation, such as [_.cloneDeep(obj)](https://lodash.com/docs#cloneDeep). diff --git a/1-js/04-object-basics/03-garbage-collection/article.md b/1-js/04-object-basics/03-garbage-collection/article.md index 72e30469c..1b576d629 100644 --- a/1-js/04-object-basics/03-garbage-collection/article.md +++ b/1-js/04-object-basics/03-garbage-collection/article.md @@ -74,7 +74,7 @@ Now if we do the same: user = null; ``` -...Then the object is still reachable via `admin` global variable, so it's in memory. If we overwrite `admin` too, then it can be removed. +...Then the object is still reachable via `admin` global variable, so it must stay in memory. If we overwrite `admin` too, then it can be removed. ## Interlinked objects @@ -169,11 +169,11 @@ The first step marks the roots: ![](garbage-collection-2.svg) -Then their references are marked: +Then we follow their references and mark referenced objects: ![](garbage-collection-3.svg) -...And their references, while possible: +...And continue to follow further references, while possible: ![](garbage-collection-4.svg) @@ -183,12 +183,12 @@ Now the objects that could not be visited in the process are considered unreacha We can also imagine the process as spilling a huge bucket of paint from the roots, that flows through all references and marks all reachable objects. The unmarked ones are then removed. -That's the concept of how garbage collection works. JavaScript engines apply many optimizations to make it run faster and not affect the execution. +That's the concept of how garbage collection works. JavaScript engines apply many optimizations to make it run faster and not introduce any delays into the code execution. Some of the optimizations: -- **Generational collection** -- objects are split into two sets: "new ones" and "old ones". Many objects appear, do their job and die fast, they can be cleaned up aggressively. Those that survive for long enough, become "old" and are examined less often. -- **Incremental collection** -- if there are many objects, and we try to walk and mark the whole object set at once, it may take some time and introduce visible delays in the execution. So the engine tries to split the garbage collection into pieces. Then the pieces are executed one by one, separately. That requires some extra bookkeeping between them to track changes, but we have many tiny delays instead of a big one. +- **Generational collection** -- objects are split into two sets: "new ones" and "old ones". In typical code, many objects have a short life span: they appear, do their job and die fast, so it makes sense to track new objects and clear the memory from them if that's the case. Those that survive for long enough, become "old" and are examined less often. +- **Incremental collection** -- if there are many objects, and we try to walk and mark the whole object set at once, it may take some time and introduce visible delays in the execution. So the engine splits the whole set of existing objects into multiple parts. And then clear these parts one after another. There are many small garbage collections instead of a total one. That requires some extra bookkeeping between them to track changes, but we get many tiny delays instead of a big one. - **Idle-time collection** -- the garbage collector tries to run only while the CPU is idle, to reduce the possible effect on the execution. There exist other optimizations and flavours of garbage collection algorithms. As much as I'd like to describe them here, I have to hold off, because different engines implement different tweaks and techniques. And, what's even more important, things change as engines develop, so studying deeper "in advance", without a real need is probably not worth that. Unless, of course, it is a matter of pure interest, then there will be some links for you below. @@ -199,14 +199,14 @@ The main things to know: - Garbage collection is performed automatically. We cannot force or prevent it. - Objects are retained in memory while they are reachable. -- Being referenced is not the same as being reachable (from a root): a pack of interlinked objects can become unreachable as a whole. +- Being referenced is not the same as being reachable (from a root): a pack of interlinked objects can become unreachable as a whole, as we've seen in the example above. Modern engines implement advanced algorithms of garbage collection. A general book "The Garbage Collection Handbook: The Art of Automatic Memory Management" (R. Jones et al) covers some of them. -If you are familiar with low-level programming, the more detailed information about V8 garbage collector is in the article [A tour of V8: Garbage Collection](http://jayconrod.com/posts/55/a-tour-of-v8-garbage-collection). +If you are familiar with low-level programming, more detailed information about V8's garbage collector is in the article [A tour of V8: Garbage Collection](https://jayconrod.com/posts/55/a-tour-of-v8-garbage-collection). -[V8 blog](https://v8.dev/) also publishes articles about changes in memory management from time to time. Naturally, to learn the garbage collection, you'd better prepare by learning about V8 internals in general and read the blog of [Vyacheslav Egorov](http://mrale.ph) who worked as one of V8 engineers. I'm saying: "V8", because it is best covered with articles in the internet. For other engines, many approaches are similar, but garbage collection differs in many aspects. +The [V8 blog](https://v8.dev/) also publishes articles about changes in memory management from time to time. Naturally, to learn more about garbage collection, you'd better prepare by learning about V8 internals in general and read the blog of [Vyacheslav Egorov](https://mrale.ph) who worked as one of the V8 engineers. I'm saying: "V8", because it is best covered by articles on the internet. For other engines, many approaches are similar, but garbage collection differs in many aspects. -In-depth knowledge of engines is good when you need low-level optimizations. It would be wise to plan that as the next step after you're familiar with the language. +In-depth knowledge of engines is good when you need low-level optimizations. It would be wise to plan that as the next step after you're familiar with the language. diff --git a/1-js/04-object-basics/04-object-methods/article.md b/1-js/04-object-basics/04-object-methods/article.md index 88e8883fd..cea2b6a70 100644 --- a/1-js/04-object-basics/04-object-methods/article.md +++ b/1-js/04-object-basics/04-object-methods/article.md @@ -90,7 +90,7 @@ user = { As demonstrated, we can omit `"function"` and just write `sayHi()`. -To tell the truth, the notations are not fully identical. There are subtle differences related to object inheritance (to be covered later), but for now they do not matter. In almost all cases the shorter syntax is preferred. +To tell the truth, the notations are not fully identical. There are subtle differences related to object inheritance (to be covered later), but for now they do not matter. In almost all cases, the shorter syntax is preferred. ## "this" in methods diff --git a/1-js/04-object-basics/06-constructor-new/1-two-functions-one-object/task.md b/1-js/04-object-basics/06-constructor-new/1-two-functions-one-object/task.md index d80113acc..e932a201a 100644 --- a/1-js/04-object-basics/06-constructor-new/1-two-functions-one-object/task.md +++ b/1-js/04-object-basics/06-constructor-new/1-two-functions-one-object/task.md @@ -10,8 +10,8 @@ Is it possible to create functions `A` and `B` so that `new A() == new B()`? function A() { ... } function B() { ... } -let a = new A; -let b = new B; +let a = new A(); +let b = new B(); alert( a == b ); // true ``` diff --git a/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/task.md b/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/task.md index 60e7c373e..c862bec40 100644 --- a/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/task.md +++ b/1-js/04-object-basics/06-constructor-new/2-calculator-constructor/task.md @@ -6,7 +6,7 @@ importance: 5 Create a constructor function `Calculator` that creates objects with 3 methods: -- `read()` asks for two values using `prompt` and remembers them in object properties. +- `read()` prompts for two values and saves them as object properties with names `a` and `b` respectively. - `sum()` returns the sum of these properties. - `mul()` returns the multiplication product of these properties. diff --git a/1-js/04-object-basics/06-constructor-new/article.md b/1-js/04-object-basics/06-constructor-new/article.md index f3e9c3ec0..a335464f1 100644 --- a/1-js/04-object-basics/06-constructor-new/article.md +++ b/1-js/04-object-basics/06-constructor-new/article.md @@ -171,7 +171,7 @@ alert( new SmallUser().name ); // John Usually constructors don't have a `return` statement. Here we mention the special behavior with returning objects mainly for the sake of completeness. ````smart header="Omitting parentheses" -By the way, we can omit parentheses after `new`, if it has no arguments: +By the way, we can omit parentheses after `new`: ```js let user = new User; // <-- no parentheses diff --git a/1-js/04-object-basics/08-symbol/article.md b/1-js/04-object-basics/08-symbol/article.md index f61e88583..10a98af0a 100644 --- a/1-js/04-object-basics/08-symbol/article.md +++ b/1-js/04-object-basics/08-symbol/article.md @@ -8,7 +8,7 @@ By specification, only two primitive types may serve as object property keys: Otherwise, if one uses another type, such as number, it's autoconverted to string. So that `obj[1]` is the same as `obj["1"]`, and `obj[true]` is the same as `obj["true"]`. -Till now we've been using only strings. +Until now we've been using only strings. Now let's explore symbols, see what they can do for us. @@ -22,14 +22,14 @@ A value of this type can be created using `Symbol()`: let id = Symbol(); ``` -Upon creation, we can give symbol a description (also called a symbol name), mostly useful for debugging purposes: +Upon creation, we can give symbols a description (also called a symbol name), mostly useful for debugging purposes: ```js // id is a symbol with the description "id" let id = Symbol("id"); ``` -Symbols are guaranteed to be unique. Even if we create many symbols with the same description, they are different values. The description is just a label that doesn't affect anything. +Symbols are guaranteed to be unique. Even if we create many symbols with exactly the same description, they are different values. The description is just a label that doesn't affect anything. For instance, here are two symbols with the same description -- they are not equal: @@ -44,7 +44,7 @@ alert(id1 == id2); // false If you are familiar with Ruby or another language that also has some sort of "symbols" -- please don't be misguided. JavaScript symbols are different. -So, to summarize, symbols are "primitive unique values" with optional description. Let's see where we can use them. +So, to summarize, a symbol is a "primitive unique value" with an optional description. Let's see where we can use them. ````warn header="Symbols don't auto-convert to a string" Most values in JavaScript support implicit conversion to a string. For instance, we can `alert` almost any value, and it will work. Symbols are special. They don't auto-convert. @@ -103,9 +103,9 @@ alert( user[id] ); // we can access the data using the symbol as the key What's the benefit of using `Symbol("id")` over a string `"id"`? -As `user` objects belongs to another code, and that code also works with them, we shouldn't just add any fields to it. That's unsafe. But a symbol cannot be accessed accidentally, the third-party code probably won't even see it, so it's probably all right to do. +As `user` objects belong to another codebase, it's unsafe to add fields to them, since we might affect pre-defined behavior in that other codebase. However, symbols cannot be accessed accidentally. The third-party code won't be aware of newly defined symbols, so it's safe to add symbols to the `user` objects. -Also, imagine that another script wants to have its own identifier inside `user`, for its own purposes. That may be another JavaScript library, so that the scripts are completely unaware of each other. +Also, imagine that another script wants to have its own identifier inside `user`, for its own purposes. Then that script can create its own `Symbol("id")`, like this: @@ -169,7 +169,7 @@ for (let key in user) alert(key); // name, age (no symbols) */!* // the direct access by the symbol works -alert( "Direct: " + user[id] ); +alert( "Direct: " + user[id] ); // Direct: 123 ``` [Object.keys(user)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/keys) also ignores them. That's a part of the general "hiding symbolic properties" principle. If another script or a library loops over our object, it won't unexpectedly access a symbolic property. @@ -217,12 +217,12 @@ Symbols inside the registry are called *global symbols*. If we want an applicati ```smart header="That sounds like Ruby" In some programming languages, like Ruby, there's a single symbol per name. -In JavaScript, as we can see, that's right for global symbols. +In JavaScript, as we can see, that's true for global symbols. ``` ### Symbol.keyFor -For global symbols, not only `Symbol.for(key)` returns a symbol by name, but there's a reverse call: `Symbol.keyFor(sym)`, that does the reverse: returns a name by a global symbol. +We have seen that for global symbols, `Symbol.for(key)` returns a symbol by name. To do the opposite -- return a name by global symbol -- we can use: `Symbol.keyFor(sym)`: For instance: @@ -238,7 +238,7 @@ alert( Symbol.keyFor(sym2) ); // id The `Symbol.keyFor` internally uses the global symbol registry to look up the key for the symbol. So it doesn't work for non-global symbols. If the symbol is not global, it won't be able to find it and returns `undefined`. -That said, any symbols have `description` property. +That said, all symbols have the `description` property. For instance: @@ -286,4 +286,4 @@ Symbols have two main use cases: 2. There are many system symbols used by JavaScript which are accessible as `Symbol.*`. We can use them to alter some built-in behaviors. For instance, later in the tutorial we'll use `Symbol.iterator` for [iterables](info:iterable), `Symbol.toPrimitive` to setup [object-to-primitive conversion](info:object-toprimitive) and so on. -Technically, symbols are not 100% hidden. There is a built-in method [Object.getOwnPropertySymbols(obj)](mdn:js/Object/getOwnPropertySymbols) that allows us to get all symbols. Also there is a method named [Reflect.ownKeys(obj)](mdn:js/Reflect/ownKeys) that returns *all* keys of an object including symbolic ones. So they are not really hidden. But most libraries, built-in functions and syntax constructs don't use these methods. +Technically, symbols are not 100% hidden. There is a built-in method [Object.getOwnPropertySymbols(obj)](mdn:js/Object/getOwnPropertySymbols) that allows us to get all symbols. Also there is a method named [Reflect.ownKeys(obj)](mdn:js/Reflect/ownKeys) that returns *all* keys of an object including symbolic ones. But most libraries, built-in functions and syntax constructs don't use these methods. diff --git a/1-js/04-object-basics/09-object-toprimitive/article.md b/1-js/04-object-basics/09-object-toprimitive/article.md index 872c1f5b2..0a16b5399 100644 --- a/1-js/04-object-basics/09-object-toprimitive/article.md +++ b/1-js/04-object-basics/09-object-toprimitive/article.md @@ -3,7 +3,7 @@ What happens when objects are added `obj1 + obj2`, subtracted `obj1 - obj2` or printed using `alert(obj)`? -JavaScript doesn't exactly allow to customize how operators work on objects. Unlike some other programming languages, such as Ruby or C++, we can't implement a special object method to handle an addition (or other operators). +JavaScript doesn't allow you to customize how operators work on objects. Unlike some other programming languages, such as Ruby or C++, we can't implement a special object method to handle addition (or other operators). In case of such operations, objects are auto-converted to primitives, and then the operation is carried out over these primitives and results in a primitive value. @@ -136,8 +136,8 @@ As we can see from the code, `user` becomes a self-descriptive string or a money If there's no `Symbol.toPrimitive` then JavaScript tries to find methods `toString` and `valueOf`: -- For the `"string"` hint: call `toString` method, and if it doesn't exist, then `valueOf` (so `toString` has the priority for string conversions). -- For other hints: `valueOf`, and if it doesn't exist, then `toString` (so `valueOf` has the priority for maths). +- For the `"string"` hint: call `toString` method, and if it doesn't exist or if it returns an object instead of a primitive value, then call `valueOf` (so `toString` has the priority for string conversions). +- For other hints: call `valueOf`, and if it doesn't exist or if it returns an object instead of a primitive value, then call `toString` (so `valueOf` has the priority for maths). Methods `toString` and `valueOf` come from ancient times. They are not symbols (symbols did not exist that long ago), but rather "regular" string-named methods. They provide an alternative "old-style" way to implement the conversion. @@ -226,7 +226,7 @@ As we know already, many operators and functions perform type conversions, e.g. If we pass an object as an argument, then there are two stages of calculations: 1. The object is converted to a primitive (using the rules described above). -2. If the necessary for further calculations, the resulting primitive is also converted. +2. If necessary for further calculations, the resulting primitive is also converted. For instance: diff --git a/1-js/05-data-types/01-primitives-methods/1-string-new-property/task.md b/1-js/05-data-types/01-primitives-methods/1-string-new-property/task.md index 50c781ea5..208f84cc7 100644 --- a/1-js/05-data-types/01-primitives-methods/1-string-new-property/task.md +++ b/1-js/05-data-types/01-primitives-methods/1-string-new-property/task.md @@ -15,4 +15,4 @@ str.test = 5; alert(str.test); ``` -How do you think, will it work? What will be shown? +What do you think, will it work? What will be shown? diff --git a/1-js/05-data-types/01-primitives-methods/article.md b/1-js/05-data-types/01-primitives-methods/article.md index ced8c3f13..69e7196e9 100644 --- a/1-js/05-data-types/01-primitives-methods/article.md +++ b/1-js/05-data-types/01-primitives-methods/article.md @@ -104,9 +104,10 @@ if (zero) { // zero is true, because it's an object } ``` -On the other hand, using the same functions `String/Number/Boolean` without `new` is a totally sane and useful thing. They convert a value to the corresponding type: to a string, a number, or a boolean (primitive). +On the other hand, using the same functions `String/Number/Boolean` without `new` is totally fine and useful thing. They convert a value to the corresponding type: to a string, a number, or a boolean (primitive). For example, this is entirely valid: + ```js let num = Number("123"); // convert a string to number ``` diff --git a/1-js/05-data-types/02-number/2-why-rounded-down/solution.md b/1-js/05-data-types/02-number/2-why-rounded-down/solution.md index a17a4671a..4bcd74512 100644 --- a/1-js/05-data-types/02-number/2-why-rounded-down/solution.md +++ b/1-js/05-data-types/02-number/2-why-rounded-down/solution.md @@ -28,6 +28,6 @@ Note that `63.5` has no precision loss at all. That's because the decimal part ` ```js run -alert( Math.round(6.35 * 10) / 10); // 6.35 -> 63.5 -> 64(rounded) -> 6.4 +alert( Math.round(6.35 * 10) / 10 ); // 6.35 -> 63.5 -> 64(rounded) -> 6.4 ``` diff --git a/1-js/05-data-types/02-number/article.md b/1-js/05-data-types/02-number/article.md index afb679890..c704bd980 100644 --- a/1-js/05-data-types/02-number/article.md +++ b/1-js/05-data-types/02-number/article.md @@ -2,9 +2,9 @@ In modern JavaScript, there are two types of numbers: -1. Regular numbers in JavaScript are stored in 64-bit format [IEEE-754](https://en.wikipedia.org/wiki/IEEE_754-2008_revision), also known as "double precision floating point numbers". These are numbers that we're using most of the time, and we'll talk about them in this chapter. +1. Regular numbers in JavaScript are stored in 64-bit format [IEEE-754](https://en.wikipedia.org/wiki/IEEE_754), also known as "double precision floating point numbers". These are numbers that we're using most of the time, and we'll talk about them in this chapter. -2. BigInt numbers, to represent integers of arbitrary length. They are sometimes needed, because a regular number can't safely exceed 253 or be less than -253. As bigints are used in few special areas, we devote them a special chapter . +2. BigInt numbers represent integers of arbitrary length. They are sometimes needed because a regular integer number can't safely exceed (253-1) or be less than -(253-1), as we mentioned earlier in the chapter . As bigints are used in few special areas, we devote them a special chapter . So here we'll talk about regular numbers. Let's expand our knowledge of them. @@ -50,7 +50,7 @@ let mсs = 0.000001; Just like before, using `"e"` can help. If we'd like to avoid writing the zeroes explicitly, we could write the same as: ```js -let mcs = 1e-6; // six zeroes to the left from 1 +let mcs = 1e-6; // five zeroes to the left from 1 ``` If we count the zeroes in `0.000001`, there are 6 of them. So naturally it's `1e-6`. @@ -63,6 +63,9 @@ In other words, a negative number after `"e"` means a division by 1 with the giv // -6 divides by 1 with 6 zeroes 1.23e-6 === 1.23 / 1000000; // 0.00000123 + +// an example with a bigger number +1234e-2 === 1234 / 100; // 12.34, decimal point moves 2 times ``` ### Hex, binary and octal numbers @@ -178,7 +181,7 @@ There are two ways to do so: alert( num.toFixed(1) ); // "12.4" ``` - Please note that result of `toFixed` is a string. If the decimal part is shorter than required, zeroes are appended to the end: + Please note that the result of `toFixed` is a string. If the decimal part is shorter than required, zeroes are appended to the end: ```js run let num = 12.34; @@ -189,7 +192,7 @@ There are two ways to do so: ## Imprecise calculations -Internally, a number is represented in 64-bit format [IEEE-754](https://en.wikipedia.org/wiki/IEEE_754-2008_revision), so there are exactly 64 bits to store a number: 52 of them are used to store the digits, 11 of them store the position of the decimal point (they are zero for integer numbers), and 1 bit is for the sign. +Internally, a number is represented in 64-bit format [IEEE-754](https://en.wikipedia.org/wiki/IEEE_754), so there are exactly 64 bits to store a number: 52 of them are used to store the digits, 11 of them store the position of the decimal point, and 1 bit is for the sign. If a number is really huge, it may overflow the 64-bit storage and become a special numeric value `Infinity`: @@ -246,7 +249,7 @@ Can we work around the problem? Sure, the most reliable method is to round the r ```js run let sum = 0.1 + 0.2; -alert( sum.toFixed(2) ); // 0.30 +alert( sum.toFixed(2) ); // "0.30" ``` Please note that `toFixed` always returns a string. It ensures that it has 2 digits after the decimal point. That's actually convenient if we have an e-shopping and need to show `$0.30`. For other cases, we can use the unary plus to coerce it into a number: @@ -305,7 +308,7 @@ They belong to the type `number`, but are not "normal" numbers, so there are spe alert( isNaN("str") ); // true ``` - But do we need this function? Can't we just use the comparison `=== NaN`? Sorry, but the answer is no. The value `NaN` is unique in that it does not equal anything, including itself: + But do we need this function? Can't we just use the comparison `=== NaN`? Unfortunately not. The value `NaN` is unique in that it does not equal anything, including itself: ```js run alert( NaN === NaN ); // false @@ -331,15 +334,44 @@ alert( isFinite(num) ); Please note that an empty or a space-only string is treated as `0` in all numeric functions including `isFinite`. -```smart header="Compare with `Object.is`" +````smart header="`Number.isNaN` and `Number.isFinite`" +[Number.isNaN](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isNaN) and [Number.isFinite](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isFinite) methods are the more "strict" versions of `isNaN` and `isFinite` functions. They do not autoconvert their argument into a number, but check if it belongs to the `number` type instead. + +- `Number.isNaN(value)` returns `true` if the argument belongs to the `number` type and it is `NaN`. In any other case it returns `false`. + + ```js run + alert( Number.isNaN(NaN) ); // true + alert( Number.isNaN("str" / 2) ); // true + + // Note the difference: + alert( Number.isNaN("str") ); // false, because "str" belongs to the string type, not the number type + alert( isNaN("str") ); // true, because isNaN converts string "str" into a number and gets NaN as a result of this conversion + ``` + +- `Number.isFinite(value)` returns `true` if the argument belongs to the `number` type and it is not `NaN/Infinity/-Infinity`. In any other case it returns `false`. + + ```js run + alert( Number.isFinite(123) ); // true + alert( Number.isFinite(Infinity) ); // false + alert( Number.isFinite(2 / 0) ); // false + + // Note the difference: + alert( Number.isFinite("123") ); // false, because "123" belongs to the string type, not the number type + alert( isFinite("123") ); // true, because isFinite converts string "123" into a number 123 + ``` + +In a way, `Number.isNaN` and `Number.isFinite` are simpler and more straightforward than `isNaN` and `isFinite` functions. In practice though, `isNaN` and `isFinite` are mostly used, as they're shorter to write. +```` + +```smart header="Comparison with `Object.is`" There is a special built-in method `Object.is` that compares values like `===`, but is more reliable for two edge cases: 1. It works with `NaN`: `Object.is(NaN, NaN) === true`, that's a good thing. -2. Values `0` and `-0` are different: `Object.is(0, -0) === false`, technically that's true, because internally the number has a sign bit that may be different even if all other bits are zeroes. +2. Values `0` and `-0` are different: `Object.is(0, -0) === false`, technically that's correct, because internally the number has a sign bit that may be different even if all other bits are zeroes. In all other cases, `Object.is(a, b)` is the same as `a === b`. -This way of comparison is often used in JavaScript specification. When an internal algorithm needs to compare two values for being exactly the same, it uses `Object.is` (internally called [SameValue](https://tc39.github.io/ecma262/#sec-samevalue)). +We mention `Object.is` here, because it's often used in JavaScript specification. When an internal algorithm needs to compare two values for being exactly the same, it uses `Object.is` (internally called [SameValue](https://tc39.github.io/ecma262/#sec-samevalue)). ``` @@ -399,8 +431,8 @@ A few examples: alert( Math.random() ); // ... (any random numbers) ``` -`Math.max(a, b, c...)` / `Math.min(a, b, c...)` -: Returns the greatest/smallest from the arbitrary number of arguments. +`Math.max(a, b, c...)` and `Math.min(a, b, c...)` +: Returns the greatest and smallest from the arbitrary number of arguments. ```js run alert( Math.max(3, 5, -10, 0, 1) ); // 5 @@ -429,6 +461,13 @@ For different numeral systems: - `parseInt(str, base)` parses the string `str` into an integer in numeral system with given `base`, `2 ≤ base ≤ 36`. - `num.toString(base)` converts a number to a string in the numeral system with the given `base`. +For regular number tests: + +- `isNaN(value)` converts its argument to a number and then tests it for being `NaN` +- `Number.isNaN(value)` checks whether its argument belongs to the `number` type, and if so, tests it for being `NaN` +- `isFinite(value)` converts its argument to a number and then tests it for not being `NaN/Infinity/-Infinity` +- `Number.isFinite(value)` checks whether its argument belongs to the `number` type, and if so, tests it for not being `NaN/Infinity/-Infinity` + For converting values like `12pt` and `100px` to a number: - Use `parseInt/parseFloat` for the "soft" conversion, which reads a number from a string and then returns the value they could read before the error. diff --git a/1-js/05-data-types/03-string/1-ucfirst/solution.md b/1-js/05-data-types/03-string/1-ucfirst/solution.md index f7a332d0d..be5dd2aaf 100644 --- a/1-js/05-data-types/03-string/1-ucfirst/solution.md +++ b/1-js/05-data-types/03-string/1-ucfirst/solution.md @@ -8,12 +8,7 @@ let newStr = str[0].toUpperCase() + str.slice(1); There's a small problem though. If `str` is empty, then `str[0]` is `undefined`, and as `undefined` doesn't have the `toUpperCase()` method, we'll get an error. -There are two variants here: - -1. Use `str.charAt(0)`, as it always returns a string (maybe empty). -2. Add a test for an empty string. - -Here's the 2nd variant: +The easiest way out is to add a test for an empty string, like this: ```js run demo function ucFirst(str) { @@ -24,4 +19,3 @@ function ucFirst(str) { alert( ucFirst("john") ); // John ``` - diff --git a/1-js/05-data-types/03-string/article.md b/1-js/05-data-types/03-string/article.md index 41bda2254..60ce2b6f0 100644 --- a/1-js/05-data-types/03-string/article.md +++ b/1-js/05-data-types/03-string/article.md @@ -48,9 +48,9 @@ let guestList = "Guests: // Error: Unexpected token ILLEGAL * John"; ``` -Single and double quotes come from ancient times of language creation when the need for multiline strings was not taken into account. Backticks appeared much later and thus are more versatile. +Single and double quotes come from ancient times of language creation, when the need for multiline strings was not taken into account. Backticks appeared much later and thus are more versatile. -Backticks also allow us to specify a "template function" before the first backtick. The syntax is: func`string`. The function `func` is called automatically, receives the string and embedded expressions and can process them. This is called "tagged templates". This feature makes it easier to implement custom templating, but is rarely used in practice. You can read more about it in the [manual](mdn:/JavaScript/Reference/Template_literals#Tagged_templates). +Backticks also allow us to specify a "template function" before the first backtick. The syntax is: func`string`. The function `func` is called automatically, receives the string and embedded expressions and can process them. This feature is called "tagged templates", it's rarely seen, but you can read about it in the MDN: [Template literals](mdn:/JavaScript/Reference/Template_literals#Tagged_templates). ## Special characters @@ -59,10 +59,10 @@ It is still possible to create multiline strings with single and double quotes b ```js run let guestList = "Guests:\n * John\n * Pete\n * Mary"; -alert(guestList); // a multiline list of guests +alert(guestList); // a multiline list of guests, same as above ``` -For example, these two lines are equal, just written differently: +As a simpler example, these two lines are equal, just written differently: ```js run let str1 = "Hello\nWorld"; // two lines using a "newline symbol" @@ -74,33 +74,26 @@ World`; alert(str1 == str2); // true ``` -There are other, less common "special" characters. - -Here's the full list: +There are other, less common special characters: | Character | Description | |-----------|-------------| |`\n`|New line| |`\r`|In Windows text files a combination of two characters `\r\n` represents a new break, while on non-Windows OS it's just `\n`. That's for historical reasons, most Windows software also understands `\n`. | -|`\'`, `\"`|Quotes| +|`\'`, `\"`, \\`|Quotes| |`\\`|Backslash| |`\t`|Tab| -|`\b`, `\f`, `\v`| Backspace, Form Feed, Vertical Tab -- kept for compatibility, not used nowadays. | -|`\xXX`|Unicode character with the given hexadecimal Unicode `XX`, e.g. `'\x7A'` is the same as `'z'`.| -|`\uXXXX`|A Unicode symbol with the hex code `XXXX` in UTF-16 encoding, for instance `\u00A9` -- is a Unicode for the copyright symbol `©`. It must be exactly 4 hex digits. | -|`\u{X…XXXXXX}` (1 to 6 hex characters)|A Unicode symbol with the given UTF-32 encoding. Some rare characters are encoded with two Unicode symbols, taking 4 bytes. This way we can insert long codes. | +|`\b`, `\f`, `\v`| Backspace, Form Feed, Vertical Tab -- mentioned for completeness, coming from old times, not used nowadays (you can forget them right now). | + +As you can see, all special characters start with a backslash character `\`. It is also called an "escape character". -Examples with Unicode: +Because it's so special, if we need to show an actual backslash `\` within the string, we need to double it: ```js run -alert( "\u00A9" ); // © -alert( "\u{20331}" ); // 佫, a rare Chinese hieroglyph (long Unicode) -alert( "\u{1F60D}" ); // 😍, a smiling face symbol (another long Unicode) +alert( `The backslash: \\` ); // The backslash: \ ``` -All special characters start with a backslash character `\`. It is also called an "escape character". - -We might also use it if we wanted to insert a quote into the string. +So-called "escaped" quotes `\'`, `\"`, \\` are used to insert a quote into the same-quoted string. For instance: @@ -113,18 +106,10 @@ As you can see, we have to prepend the inner quote by the backslash `\'`, becaus Of course, only the quotes that are the same as the enclosing ones need to be escaped. So, as a more elegant solution, we could switch to double quotes or backticks instead: ```js run -alert( `I'm the Walrus!` ); // I'm the Walrus! +alert( "I'm the Walrus!" ); // I'm the Walrus! ``` -Note that the backslash `\` serves for the correct reading of the string by JavaScript, then disappears. The in-memory string has no `\`. You can clearly see that in `alert` from the examples above. - -But what if we need to show an actual backslash `\` within the string? - -That's possible, but we need to double it like `\\`: - -```js run -alert( `The backslash: \\` ); // The backslash: \ -``` +Besides these special characters, there's also a special notation for Unicode codes `\u…`, it's rarely used and is covered in the optional chapter about [Unicode](info:unicode). ## String length @@ -139,33 +124,36 @@ Note that `\n` is a single "special" character, so the length is indeed `3`. ```warn header="`length` is a property" People with a background in some other languages sometimes mistype by calling `str.length()` instead of just `str.length`. That doesn't work. -Please note that `str.length` is a numeric property, not a function. There is no need to add parenthesis after it. +Please note that `str.length` is a numeric property, not a function. There is no need to add parenthesis after it. Not `.length()`, but `.length`. ``` ## Accessing characters -To get a character at position `pos`, use square brackets `[pos]` or call the method [str.charAt(pos)](mdn:js/String/charAt). The first character starts from the zero position: +To get a character at position `pos`, use square brackets `[pos]` or call the method [str.at(pos)](mdn:js/String/at). The first character starts from the zero position: ```js run let str = `Hello`; // the first character alert( str[0] ); // H -alert( str.charAt(0) ); // H +alert( str.at(0) ); // H // the last character alert( str[str.length - 1] ); // o +alert( str.at(-1) ); ``` -The square brackets are a modern way of getting a character, while `charAt` exists mostly for historical reasons. +As you can see, the `.at(pos)` method has a benefit of allowing negative position. If `pos` is negative, then it's counted from the end of the string. -The only difference between them is that if no character is found, `[]` returns `undefined`, and `charAt` returns an empty string: +So `.at(-1)` means the last character, and `.at(-2)` is the one before it, etc. + +The square brackets always return `undefined` for negative indexes, for instance: ```js run let str = `Hello`; -alert( str[1000] ); // undefined -alert( str.charAt(1000) ); // '' (an empty string) +alert( str[-2] ); // undefined +alert( str.at(-2) ); // l ``` We can also iterate over characters using `for..of`: @@ -214,7 +202,7 @@ alert( 'Interface'.toLowerCase() ); // interface Or, if we want a single character lowercased: -```js +```js run alert( 'Interface'[0].toLowerCase() ); // 'i' ``` @@ -310,45 +298,6 @@ if (str.indexOf("Widget") != -1) { } ``` -#### The bitwise NOT trick - -One of the old tricks used here is the [bitwise NOT](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_NOT) `~` operator. It converts the number to a 32-bit integer (removes the decimal part if exists) and then reverses all bits in its binary representation. - -In practice, that means a simple thing: for 32-bit integers `~n` equals `-(n+1)`. - -For instance: - -```js run -alert( ~2 ); // -3, the same as -(2+1) -alert( ~1 ); // -2, the same as -(1+1) -alert( ~0 ); // -1, the same as -(0+1) -*!* -alert( ~-1 ); // 0, the same as -(-1+1) -*/!* -``` - -As we can see, `~n` is zero only if `n == -1` (that's for any 32-bit signed integer `n`). - -So, the test `if ( ~str.indexOf("...") )` is truthy only if the result of `indexOf` is not `-1`. In other words, when there is a match. - -People use it to shorten `indexOf` checks: - -```js run -let str = "Widget"; - -if (~str.indexOf("Widget")) { - alert( 'Found it!' ); // works -} -``` - -It is usually not recommended to use language features in a non-obvious way, but this particular trick is widely used in old code, so we should understand it. - -Just remember: `if (~str.indexOf(...))` reads as "if found". - -To be precise though, as big numbers are truncated to 32 bits by `~` operator, there exist other numbers that give `0`, the smallest is `~4294967295=0`. That makes such check correct only if a string is not that long. - -Right now we can see this trick only in the old code, as modern JavaScript provides `.includes` method (see below). - ### includes, startsWith, endsWith The more modern method [str.includes(substr, pos)](mdn:js/String/includes) returns `true/false` depending on whether `str` contains `substr` within. @@ -371,8 +320,8 @@ alert( "Widget".includes("id", 3) ); // false, from position 3 there is no "id" The methods [str.startsWith](mdn:js/String/startsWith) and [str.endsWith](mdn:js/String/endsWith) do exactly what they say: ```js run -alert( "Widget".startsWith("Wid") ); // true, "Widget" starts with "Wid" -alert( "Widget".endsWith("get") ); // true, "Widget" ends with "get" +alert( "*!*Wid*/!*get".startsWith("Wid") ); // true, "Widget" starts with "Wid" +alert( "Wid*!*get*/!*".endsWith("get") ); // true, "Widget" ends with "get" ``` ## Getting a substring @@ -407,9 +356,9 @@ There are 3 methods in JavaScript to get a substring: `substring`, `substr` and ``` `str.substring(start [, end])` -: Returns the part of the string *between* `start` and `end`. +: Returns the part of the string *between* `start` and `end` (not including `end`). - This is almost the same as `slice`, but it allows `start` to be greater than `end`. + This is almost the same as `slice`, but it allows `start` to be greater than `end` (in this case it simply swaps `start` and `end` values). For instance: @@ -445,18 +394,22 @@ There are 3 methods in JavaScript to get a substring: `substring`, `substr` and alert( str.substr(-4, 2) ); // 'gi', from the 4th position get 2 characters ``` + This method resides in the [Annex B](https://tc39.es/ecma262/#sec-string.prototype.substr) of the language specification. It means that only browser-hosted Javascript engines should support it, and it's not recommended to use it. In practice, it's supported everywhere. + Let's recap these methods to avoid any confusion: | method | selects... | negatives | |--------|-----------|-----------| | `slice(start, end)` | from `start` to `end` (not including `end`) | allows negatives | -| `substring(start, end)` | between `start` and `end` | negative values mean `0` | +| `substring(start, end)` | between `start` and `end` (not including `end`)| negative values mean `0` | | `substr(start, length)` | from `start` get `length` characters | allows negative `start` | ```smart header="Which one to choose?" All of them can do the job. Formally, `substr` has a minor drawback: it is described not in the core JavaScript specification, but in Annex B, which covers browser-only features that exist mainly for historical reasons. So, non-browser environments may fail to support it. But in practice it works everywhere. -Of the other two variants, `slice` is a little bit more flexible, it allows negative arguments and shorter to write. So, it's enough to remember solely `slice` of these three methods. +Of the other two variants, `slice` is a little bit more flexible, it allows negative arguments and shorter to write. + +So, for practical use it's enough to remember only `slice`. ``` ## Comparing strings @@ -479,17 +432,18 @@ Although, there are some oddities. This may lead to strange results if we sort these country names. Usually people would expect `Zealand` to come after `Österreich` in the list. -To understand what happens, let's review the internal representation of strings in JavaScript. +To understand what happens, we should be aware that strings in Javascript are encoded using [UTF-16](https://en.wikipedia.org/wiki/UTF-16). That is: each character has a corresponding numeric code. -All strings are encoded using [UTF-16](https://en.wikipedia.org/wiki/UTF-16). That is: each character has a corresponding numeric code. There are special methods that allow to get the character for the code and back. +There are special methods that allow to get the character for the code and back: `str.codePointAt(pos)` -: Returns the code for the character at position `pos`: +: Returns a decimal number representing the code for the character at position `pos`: ```js run // different case letters have different codes - alert( "z".codePointAt(0) ); // 122 alert( "Z".codePointAt(0) ); // 90 + alert( "z".codePointAt(0) ); // 122 + alert( "z".codePointAt(0).toString(16) ); // 7a (if we need a hexadecimal value) ``` `String.fromCodePoint(code)` @@ -497,13 +451,7 @@ All strings are encoded using [UTF-16](https://en.wikipedia.org/wiki/UTF-16). Th ```js run alert( String.fromCodePoint(90) ); // Z - ``` - - We can also add Unicode characters by their codes using `\u` followed by the hex code: - - ```js run - // 90 is 5a in hexadecimal system - alert( '\u005a' ); // Z + alert( String.fromCodePoint(0x5a) ); // Z (we can also use a hex value as an argument) ``` Now let's see the characters with codes `65..220` (the latin alphabet and a little bit extra) by making a string of them: @@ -515,6 +463,7 @@ for (let i = 65; i <= 220; i++) { str += String.fromCodePoint(i); } alert( str ); +// Output: // ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„ // ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜ ``` @@ -534,7 +483,7 @@ The "right" algorithm to do string comparisons is more complex than it may seem, So, the browser needs to know the language to compare. -Luckily, all modern browsers (IE10- requires the additional library [Intl.js](https://github.com/andyearnshaw/Intl.js/)) support the internationalization standard [ECMA-402](http://www.ecma-international.org/ecma-402/1.0/ECMA-402.pdf). +Luckily, modern browsers support the internationalization standard [ECMA-402](https://www.ecma-international.org/publications-and-standards/standards/ecma-402/). It provides a special method to compare strings in different languages, following their rules. @@ -552,119 +501,11 @@ alert( 'Österreich'.localeCompare('Zealand') ); // -1 This method actually has two additional arguments specified in [the documentation](mdn:js/String/localeCompare), which allows it to specify the language (by default taken from the environment, letter order depends on the language) and setup additional rules like case sensitivity or should `"a"` and `"á"` be treated as the same etc. -## Internals, Unicode - -```warn header="Advanced knowledge" -The section goes deeper into string internals. This knowledge will be useful for you if you plan to deal with emoji, rare mathematical or hieroglyphic characters or other rare symbols. - -You can skip the section if you don't plan to support them. -``` - -### Surrogate pairs - -All frequently used characters have 2-byte codes. Letters in most european languages, numbers, and even most hieroglyphs, have a 2-byte representation. - -But 2 bytes only allow 65536 combinations and that's not enough for every possible symbol. So rare symbols are encoded with a pair of 2-byte characters called "a surrogate pair". - -The length of such symbols is `2`: - -```js run -alert( '𝒳'.length ); // 2, MATHEMATICAL SCRIPT CAPITAL X -alert( '😂'.length ); // 2, FACE WITH TEARS OF JOY -alert( '𩷶'.length ); // 2, a rare Chinese hieroglyph -``` - -Note that surrogate pairs did not exist at the time when JavaScript was created, and thus are not correctly processed by the language! - -We actually have a single symbol in each of the strings above, but the `length` shows a length of `2`. - -`String.fromCodePoint` and `str.codePointAt` are few rare methods that deal with surrogate pairs right. They recently appeared in the language. Before them, there were only [String.fromCharCode](mdn:js/String/fromCharCode) and [str.charCodeAt](mdn:js/String/charCodeAt). These methods are actually the same as `fromCodePoint/codePointAt`, but don't work with surrogate pairs. - -Getting a symbol can be tricky, because surrogate pairs are treated as two characters: - -```js run -alert( '𝒳'[0] ); // strange symbols... -alert( '𝒳'[1] ); // ...pieces of the surrogate pair -``` - -Note that pieces of the surrogate pair have no meaning without each other. So the alerts in the example above actually display garbage. - -Technically, surrogate pairs are also detectable by their codes: if a character has the code in the interval of `0xd800..0xdbff`, then it is the first part of the surrogate pair. The next character (second part) must have the code in interval `0xdc00..0xdfff`. These intervals are reserved exclusively for surrogate pairs by the standard. - -In the case above: - -```js run -// charCodeAt is not surrogate-pair aware, so it gives codes for parts - -alert( '𝒳'.charCodeAt(0).toString(16) ); // d835, between 0xd800 and 0xdbff -alert( '𝒳'.charCodeAt(1).toString(16) ); // dcb3, between 0xdc00 and 0xdfff -``` - -You will find more ways to deal with surrogate pairs later in the chapter . There are probably special libraries for that too, but nothing famous enough to suggest here. - -### Diacritical marks and normalization - -In many languages there are symbols that are composed of the base character with a mark above/under it. - -For instance, the letter `a` can be the base character for: `àáâäãåā`. Most common "composite" character have their own code in the UTF-16 table. But not all of them, because there are too many possible combinations. - -To support arbitrary compositions, UTF-16 allows us to use several Unicode characters: the base character followed by one or many "mark" characters that "decorate" it. - -For instance, if we have `S` followed by the special "dot above" character (code `\u0307`), it is shown as Ṡ. - -```js run -alert( 'S\u0307' ); // Ṡ -``` - -If we need an additional mark above the letter (or below it) -- no problem, just add the necessary mark character. - -For instance, if we append a character "dot below" (code `\u0323`), then we'll have "S with dots above and below": `Ṩ`. - -For example: - -```js run -alert( 'S\u0307\u0323' ); // Ṩ -``` - -This provides great flexibility, but also an interesting problem: two characters may visually look the same, but be represented with different Unicode compositions. - -For instance: - -```js run -let s1 = 'S\u0307\u0323'; // Ṩ, S + dot above + dot below -let s2 = 'S\u0323\u0307'; // Ṩ, S + dot below + dot above - -alert( `s1: ${s1}, s2: ${s2}` ); - -alert( s1 == s2 ); // false though the characters look identical (?!) -``` - -To solve this, there exists a "Unicode normalization" algorithm that brings each string to the single "normal" form. - -It is implemented by [str.normalize()](mdn:js/String/normalize). - -```js run -alert( "S\u0307\u0323".normalize() == "S\u0323\u0307".normalize() ); // true -``` - -It's funny that in our situation `normalize()` actually brings together a sequence of 3 characters to one: `\u1e68` (S with two dots). - -```js run -alert( "S\u0307\u0323".normalize().length ); // 1 - -alert( "S\u0307\u0323".normalize() == "\u1e68" ); // true -``` - -In reality, this is not always the case. The reason being that the symbol `Ṩ` is "common enough", so UTF-16 creators included it in the main table and gave it the code. - -If you want to learn more about normalization rules and variants -- they are described in the appendix of the Unicode standard: [Unicode Normalization Forms](http://www.unicode.org/reports/tr15/), but for most practical purposes the information from this section is enough. - ## Summary - There are 3 types of quotes. Backticks allow a string to span multiple lines and embed expressions `${…}`. -- Strings in JavaScript are encoded using UTF-16. -- We can use special characters like `\n` and insert letters by their Unicode using `\u...`. -- To get a character, use: `[]`. +- We can use special characters, such as a line break `\n`. +- To get a character, use: `[]` or `at` method. - To get a substring, use: `slice` or `substring`. - To lowercase/uppercase a string, use: `toLowerCase/toUpperCase`. - To look for a substring, use: `indexOf`, or `includes/startsWith/endsWith` for simple checks. @@ -677,3 +518,5 @@ There are several other helpful methods in strings: - ...and more to be found in the [manual](mdn:js/String). Strings also have methods for doing search/replace with regular expressions. But that's big topic, so it's explained in a separate tutorial section . + +Also, as of now it's important to know that strings are based on Unicode encoding, and hence there're issues with comparisons. There's more about Unicode in the chapter . diff --git a/1-js/05-data-types/04-array/10-maximal-subarray/solution.md b/1-js/05-data-types/04-array/10-maximal-subarray/solution.md index befd80296..7e1ca3bde 100644 --- a/1-js/05-data-types/04-array/10-maximal-subarray/solution.md +++ b/1-js/05-data-types/04-array/10-maximal-subarray/solution.md @@ -59,7 +59,7 @@ alert( getMaxSubSum([100, -9, 2, -3, 5]) ); // 100 The solution has a time complexity of [O(n2)](https://en.wikipedia.org/wiki/Big_O_notation). In other words, if we increase the array size 2 times, the algorithm will work 4 times longer. -For big arrays (1000, 10000 or more items) such algorithms can lead to a serious sluggishness. +For big arrays (1000, 10000 or more items) such algorithms can lead to serious sluggishness. # Fast solution @@ -91,4 +91,4 @@ alert( getMaxSubSum([-1, -2, -3]) ); // 0 The algorithm requires exactly 1 array pass, so the time complexity is O(n). -You can find more detail information about the algorithm here: [Maximum subarray problem](http://en.wikipedia.org/wiki/Maximum_subarray_problem). If it's still not obvious why that works, then please trace the algorithm on the examples above, see how it works, that's better than any words. +You can find more detailed information about the algorithm here: [Maximum subarray problem](http://en.wikipedia.org/wiki/Maximum_subarray_problem). If it's still not obvious why that works, then please trace the algorithm on the examples above, see how it works, that's better than any words. diff --git a/1-js/05-data-types/04-array/2-create-array/task.md b/1-js/05-data-types/04-array/2-create-array/task.md index 16d14071f..d4551c79c 100644 --- a/1-js/05-data-types/04-array/2-create-array/task.md +++ b/1-js/05-data-types/04-array/2-create-array/task.md @@ -8,7 +8,7 @@ Let's try 5 array operations. 1. Create an array `styles` with items "Jazz" and "Blues". 2. Append "Rock-n-Roll" to the end. -3. Replace the value in the middle by "Classics". Your code for finding the middle value should work for any arrays with odd length. +3. Replace the value in the middle with "Classics". Your code for finding the middle value should work for any arrays with odd length. 4. Strip off the first value of the array and show it. 5. Prepend `Rap` and `Reggae` to the array. diff --git a/1-js/05-data-types/04-array/article.md b/1-js/05-data-types/04-array/article.md index 95a78f29a..ee2e3d713 100644 --- a/1-js/05-data-types/04-array/article.md +++ b/1-js/05-data-types/04-array/article.md @@ -96,9 +96,9 @@ The "trailing comma" style makes it easier to insert/remove items, because all l [recent browser="new"] -Let's say we want a last element of the array. +Let's say we want the last element of the array. -Some programming languages allow to use negative indexes for the same purpose, like `fruits[-1]`. +Some programming languages allow the use of negative indexes for the same purpose, like `fruits[-1]`. Although, in JavaScript it won't work. The result will be `undefined`, because the index in square brackets is treated literally. @@ -153,9 +153,9 @@ A stack is usually illustrated as a pack of cards: new cards are added to the to For stacks, the latest pushed item is received first, that's also called LIFO (Last-In-First-Out) principle. For queues, we have FIFO (First-In-First-Out). -Arrays in JavaScript can work both as a queue and as a stack. They allow you to add/remove elements both to/from the beginning or the end. +Arrays in JavaScript can work both as a queue and as a stack. They allow you to add/remove elements, both to/from the beginning or the end. -In computer science the data structure that allows this, is called [deque](https://en.wikipedia.org/wiki/Double-ended_queue). +In computer science, the data structure that allows this, is called [deque](https://en.wikipedia.org/wiki/Double-ended_queue). **Methods that work with the end of the array:** @@ -281,7 +281,7 @@ Why is it faster to work with the end of an array than with its beginning? Let's fruits.shift(); // take 1 element from the start ``` -It's not enough to take and remove the element with the number `0`. Other elements need to be renumbered as well. +It's not enough to take and remove the element with the index `0`. Other elements need to be renumbered as well. The `shift` operation must do 3 things: @@ -399,11 +399,11 @@ There is one more syntax to create an array: let arr = *!*new Array*/!*("Apple", "Pear", "etc"); ``` -It's rarely used, because square brackets `[]` are shorter. Also there's a tricky feature with it. +It's rarely used, because square brackets `[]` are shorter. Also, there's a tricky feature with it. If `new Array` is called with a single argument which is a number, then it creates an array *without items, but with the given length*. -Let's see how one can shoot themself in the foot: +Let's see how one can shoot themselves in the foot: ```js run let arr = new Array(2); // will it create an array of [2] ? @@ -512,21 +512,26 @@ That's simple: don't use the `==` operator. Instead, compare them item-by-item i Array is a special kind of object, suited to storing and managing ordered data items. -- The declaration: +The declaration: - ```js - // square brackets (usual) - let arr = [item1, item2...]; +```js +// square brackets (usual) +let arr = [item1, item2...]; - // new Array (exceptionally rare) - let arr = new Array(item1, item2...); - ``` +// new Array (exceptionally rare) +let arr = new Array(item1, item2...); +``` - The call to `new Array(number)` creates an array with the given length, but without elements. +The call to `new Array(number)` creates an array with the given length, but without elements. - The `length` property is the array length or, to be precise, its last numeric index plus one. It is auto-adjusted by array methods. - If we shorten `length` manually, the array is truncated. +Getting the elements: + +- we can get element by its index, like `arr[0]` +- also we can use `at(i)` method that allows negative indexes. For negative values of `i`, it steps back from the end of the array. If `i >= 0`, it works same as `arr[i]`. + We can use an array as a deque with the following operations: - `push(...items)` adds `items` to the end. diff --git a/1-js/05-data-types/05-array-methods/article.md b/1-js/05-data-types/05-array-methods/article.md index b14e9a0be..4db1a16b6 100644 --- a/1-js/05-data-types/05-array-methods/article.md +++ b/1-js/05-data-types/05-array-methods/article.md @@ -234,12 +234,13 @@ Now let's cover methods that search in an array. ### indexOf/lastIndexOf and includes -The methods [arr.indexOf](mdn:js/Array/indexOf), [arr.lastIndexOf](mdn:js/Array/lastIndexOf) and [arr.includes](mdn:js/Array/includes) have the same syntax and do essentially the same as their string counterparts, but operate on items instead of characters: +The methods [arr.indexOf](mdn:js/Array/indexOf) and [arr.includes](mdn:js/Array/includes) have the similar syntax and do essentially the same as their string counterparts, but operate on items instead of characters: - `arr.indexOf(item, from)` -- looks for `item` starting from index `from`, and returns the index where it was found, otherwise `-1`. -- `arr.lastIndexOf(item, from)` -- same, but looks for from right to left. - `arr.includes(item, from)` -- looks for `item` starting from index `from`, returns `true` if found. +Usually these methods are used with only one argument: the `item` to search. By default, the search is from the beginning. + For instance: ```js run @@ -252,19 +253,31 @@ alert( arr.indexOf(null) ); // -1 alert( arr.includes(1) ); // true ``` -Note that the methods use `===` comparison. So, if we look for `false`, it finds exactly `false` and not the zero. +Please note that `indexOf` uses the strict equality `===` for comparison. So, if we look for `false`, it finds exactly `false` and not the zero. + +If we want to check if `item` exists in the array, and don't need the index, then `arr.includes` is preferred. + +The method [arr.lastIndexOf](mdn:js/Array/lastIndexOf) is the same as `indexOf`, but looks for from right to left. -If we want to check for inclusion, and don't want to know the exact index, then `arr.includes` is preferred. +```js run +let fruits = ['Apple', 'Orange', 'Apple'] + +alert( fruits.indexOf('Apple') ); // 0 (first Apple) +alert( fruits.lastIndexOf('Apple') ); // 2 (last Apple) +``` -Also, a very minor difference of `includes` is that it correctly handles `NaN`, unlike `indexOf/lastIndexOf`: +````smart header="The `includes` method handles `NaN` correctly" +A minor, but noteworthy feature of `includes` is that it correctly handles `NaN`, unlike `indexOf`: ```js run const arr = [NaN]; -alert( arr.indexOf(NaN) ); // -1 (should be 0, but === equality doesn't work for NaN) +alert( arr.indexOf(NaN) ); // -1 (wrong, should be 0) alert( arr.includes(NaN) );// true (correct) ``` +That's because `includes` was added to JavaScript much later and uses the more up to date comparison algorithm internally. +```` -### find and findIndex +### find and findIndex/findLastIndex Imagine we have an array of objects. How do we find an object with the specific condition? @@ -304,7 +317,26 @@ In real life arrays of objects is a common thing, so the `find` method is very u Note that in the example we provide to `find` the function `item => item.id == 1` with one argument. That's typical, other arguments of this function are rarely used. -The [arr.findIndex](mdn:js/Array/findIndex) method is essentially the same, but it returns the index where the element was found instead of the element itself and `-1` is returned when nothing is found. +The [arr.findIndex](mdn:js/Array/findIndex) method has the same syntax, but returns the index where the element was found instead of the element itself. The value of `-1` is returned if nothing is found. + +The [arr.findLastIndex](mdn:js/Array/findLastIndex) method is like `findIndex`, but searches from right to left, similar to `lastIndexOf`. + +Here's an example: + +```js run +let users = [ + {id: 1, name: "John"}, + {id: 2, name: "Pete"}, + {id: 3, name: "Mary"}, + {id: 4, name: "John"} +]; + +// Find the index of the first John +alert(users.findIndex(user => user.name == 'John')); // 0 + +// Find the index of the last John +alert(users.findLastIndex(user => user.name == 'John')); // 3 +``` ### filter @@ -389,6 +421,7 @@ Literally, all elements are converted to strings for comparisons. For strings, l To use our own sorting order, we need to supply a function as the argument of `arr.sort()`. The function should compare two arbitrary values and return: + ```js function compare(a, b) { if (a > b) return 1; // if the first value is greater than the second @@ -633,7 +666,6 @@ So it's advised to always specify the initial value. The method [arr.reduceRight](mdn:js/Array/reduceRight) does the same, but goes from right to left. - ## Array.isArray Arrays do not form a separate language type. They are based on objects. @@ -642,7 +674,7 @@ So `typeof` does not help to distinguish a plain object from an array: ```js run alert(typeof {}); // object -alert(typeof []); // same +alert(typeof []); // object (same) ``` ...But arrays are used so often that there's a special method for that: [Array.isArray(value)](mdn:js/Array/isArray). It returns `true` if the `value` is an array, and `false` otherwise. @@ -733,7 +765,7 @@ A cheat sheet of array methods: - `reduce/reduceRight(func, initial)` -- calculate a single value over the array by calling `func` for each element and passing an intermediate result between the calls. - Additionally: - - `Array.isArray(arr)` checks `arr` for being an array. + - `Array.isArray(value)` checks `value` for being an array, if so returns `true`, otherwise `false`. Please note that methods `sort`, `reverse` and `splice` modify the array itself. @@ -746,6 +778,7 @@ These methods are the most used ones, they cover 99% of use cases. But there are These methods behave sort of like `||` and `&&` operators: if `fn` returns a truthy value, `arr.some()` immediately returns `true` and stops iterating over the rest of items; if `fn` returns a falsy value, `arr.every()` immediately returns `false` and stops iterating over the rest of items as well. We can use `every` to compare arrays: + ```js run function arraysEqual(arr1, arr2) { return arr1.length === arr2.length && arr1.every((value, index) => value === arr2[index]); diff --git a/1-js/05-data-types/06-iterable/article.md b/1-js/05-data-types/06-iterable/article.md index ce9074cc7..76f74036c 100644 --- a/1-js/05-data-types/06-iterable/article.md +++ b/1-js/05-data-types/06-iterable/article.md @@ -218,7 +218,7 @@ alert(arr.pop()); // World (method works) The same happens for an iterable: -```js +```js run // assuming that range is taken from the example above let arr = Array.from(range); alert(arr); // 1,2,3,4,5 (array toString conversion works) @@ -233,7 +233,7 @@ The optional second argument `mapFn` can be a function that will be applied to e For instance: -```js +```js run // assuming that range is taken from the example above // square each number diff --git a/1-js/05-data-types/07-map-set/article.md b/1-js/05-data-types/07-map-set/article.md index bd6cad562..37f5e48c2 100644 --- a/1-js/05-data-types/07-map-set/article.md +++ b/1-js/05-data-types/07-map-set/article.md @@ -10,17 +10,17 @@ But that's not enough for real life. That's why `Map` and `Set` also exist. ## Map -[Map](mdn:js/Map) is a collection of keyed data items, just like an `Object`. But the main difference is that `Map` allows keys of any type. +[Map](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map) is a collection of keyed data items, just like an `Object`. But the main difference is that `Map` allows keys of any type. Methods and properties are: -- `new Map()` -- creates the map. -- `map.set(key, value)` -- stores the value by the key. -- `map.get(key)` -- returns the value by the key, `undefined` if `key` doesn't exist in map. -- `map.has(key)` -- returns `true` if the `key` exists, `false` otherwise. -- `map.delete(key)` -- removes the value by the key. -- `map.clear()` -- removes everything from the map. -- `map.size` -- returns the current element count. +- [`new Map()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/Map) -- creates the map. +- [`map.set(key, value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/set) -- stores the value by the key. +- [`map.get(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/get) -- returns the value by the key, `undefined` if `key` doesn't exist in map. +- [`map.has(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/has) -- returns `true` if the `key` exists, `false` otherwise. +- [`map.delete(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/delete) -- removes the element (the key/value pair) by the key. +- [`map.clear()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/clear) -- removes everything from the map. +- [`map.size`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/size) -- returns the current element count. For instance: @@ -100,14 +100,13 @@ map.set('1', 'str1') ``` ```` - ## Iteration over Map For looping over a `map`, there are 3 methods: -- `map.keys()` -- returns an iterable for keys, -- `map.values()` -- returns an iterable for values, -- `map.entries()` -- returns an iterable for entries `[key, value]`, it's used by default in `for..of`. +- [`map.keys()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/keys) -- returns an iterable for keys, +- [`map.values()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/values) -- returns an iterable for values, +- [`map.entries()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/entries) -- returns an iterable for entries `[key, value]`, it's used by default in `for..of`. For instance: @@ -162,7 +161,7 @@ let map = new Map([ alert( map.get('1') ); // str1 ``` -If we have a plain object, and we'd like to create a `Map` from it, then we can use built-in method [Object.entries(obj)](mdn:js/Object/entries) that returns an array of key/value pairs for an object exactly in that format. +If we have a plain object, and we'd like to create a `Map` from it, then we can use built-in method [Object.entries(obj)](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/entries) that returns an array of key/value pairs for an object exactly in that format. So we can create a map from an object like this: @@ -233,16 +232,16 @@ That's the same, because `Object.fromEntries` expects an iterable object as the ## Set -A `Set` is a special type collection - "set of values" (without keys), where each value may occur only once. +A [`Set`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set) is a special type collection - "set of values" (without keys), where each value may occur only once. Its main methods are: -- `new Set(iterable)` -- creates the set, and if an `iterable` object is provided (usually an array), copies values from it into the set. -- `set.add(value)` -- adds a value, returns the set itself. -- `set.delete(value)` -- removes the value, returns `true` if `value` existed at the moment of the call, otherwise `false`. -- `set.has(value)` -- returns `true` if the value exists in the set, otherwise `false`. -- `set.clear()` -- removes everything from the set. -- `set.size` -- is the elements count. +- [`new Set([iterable])`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/Set) -- creates the set, and if an `iterable` object is provided (usually an array), copies values from it into the set. +- [`set.add(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/add) -- adds a value, returns the set itself. +- [`set.delete(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/delete) -- removes the value, returns `true` if `value` existed at the moment of the call, otherwise `false`. +- [`set.has(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/has) -- returns `true` if the value exists in the set, otherwise `false`. +- [`set.clear()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/clear) -- removes everything from the set. +- [`set.size`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/size) -- is the elements count. The main feature is that repeated calls of `set.add(value)` with the same value don't do anything. That's the reason why each value appears in a `Set` only once. @@ -272,7 +271,7 @@ for (let user of set) { } ``` -The alternative to `Set` could be an array of users, and the code to check for duplicates on every insertion using [arr.find](mdn:js/Array/find). But the performance would be much worse, because this method walks through the whole array checking every element. `Set` is much better optimized internally for uniqueness checks. +The alternative to `Set` could be an array of users, and the code to check for duplicates on every insertion using [arr.find](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find). But the performance would be much worse, because this method walks through the whole array checking every element. `Set` is much better optimized internally for uniqueness checks. ## Iteration over Set @@ -291,42 +290,42 @@ set.forEach((value, valueAgain, set) => { Note the funny thing. The callback function passed in `forEach` has 3 arguments: a `value`, then *the same value* `valueAgain`, and then the target object. Indeed, the same value appears in the arguments twice. -That's for compatibility with `Map` where the callback passed `forEach` has three arguments. Looks a bit strange, for sure. But may help to replace `Map` with `Set` in certain cases with ease, and vice versa. +That's for compatibility with `Map` where the callback passed `forEach` has three arguments. Looks a bit strange, for sure. But this may help to replace `Map` with `Set` in certain cases with ease, and vice versa. The same methods `Map` has for iterators are also supported: -- `set.keys()` -- returns an iterable object for values, -- `set.values()` -- same as `set.keys()`, for compatibility with `Map`, -- `set.entries()` -- returns an iterable object for entries `[value, value]`, exists for compatibility with `Map`. +- [`set.keys()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/keys) -- returns an iterable object for values, +- [`set.values()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/values) -- same as `set.keys()`, for compatibility with `Map`, +- [`set.entries()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/entries) -- returns an iterable object for entries `[value, value]`, exists for compatibility with `Map`. ## Summary -`Map` -- is a collection of keyed values. +[`Map`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map) -- is a collection of keyed values. Methods and properties: -- `new Map([iterable])` -- creates the map, with optional `iterable` (e.g. array) of `[key,value]` pairs for initialization. -- `map.set(key, value)` -- stores the value by the key, returns the map itself. -- `map.get(key)` -- returns the value by the key, `undefined` if `key` doesn't exist in map. -- `map.has(key)` -- returns `true` if the `key` exists, `false` otherwise. -- `map.delete(key)` -- removes the value by the key, returns `true` if `key` existed at the moment of the call, otherwise `false`. -- `map.clear()` -- removes everything from the map. -- `map.size` -- returns the current element count. +- [`new Map([iterable])`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/Map) -- creates the map, with optional `iterable` (e.g. array) of `[key,value]` pairs for initialization. +- [`map.set(key, value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/set) -- stores the value by the key, returns the map itself. +- [`map.get(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/get) -- returns the value by the key, `undefined` if `key` doesn't exist in map. +- [`map.has(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/has) -- returns `true` if the `key` exists, `false` otherwise. +- [`map.delete(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/delete) -- removes the element by the key, returns `true` if `key` existed at the moment of the call, otherwise `false`. +- [`map.clear()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/clear) -- removes everything from the map. +- [`map.size`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/size) -- returns the current element count. The differences from a regular `Object`: - Any keys, objects can be keys. - Additional convenient methods, the `size` property. -`Set` -- is a collection of unique values. +[`Set`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set) -- is a collection of unique values. Methods and properties: -- `new Set([iterable])` -- creates the set, with optional `iterable` (e.g. array) of values for initialization. -- `set.add(value)` -- adds a value (does nothing if `value` exists), returns the set itself. -- `set.delete(value)` -- removes the value, returns `true` if `value` existed at the moment of the call, otherwise `false`. -- `set.has(value)` -- returns `true` if the value exists in the set, otherwise `false`. -- `set.clear()` -- removes everything from the set. -- `set.size` -- is the elements count. +- [`new Set([iterable])`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/Set) -- creates the set, with optional `iterable` (e.g. array) of values for initialization. +- [`set.add(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/add) -- adds a value (does nothing if `value` exists), returns the set itself. +- [`set.delete(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/delete) -- removes the value, returns `true` if `value` existed at the moment of the call, otherwise `false`. +- [`set.has(value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/has) -- returns `true` if the value exists in the set, otherwise `false`. +- [`set.clear()`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/clear) -- removes everything from the set. +- [`set.size`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set/size) -- is the elements count. Iteration over `Map` and `Set` is always in the insertion order, so we can't say that these collections are unordered, but we can't reorder elements or directly get an element by its number. diff --git a/1-js/05-data-types/08-weakmap-weakset/article.md b/1-js/05-data-types/08-weakmap-weakset/article.md index 8d5a86981..9795017d4 100644 --- a/1-js/05-data-types/08-weakmap-weakset/article.md +++ b/1-js/05-data-types/08-weakmap-weakset/article.md @@ -1,8 +1,10 @@ + # WeakMap and WeakSet As we know from the chapter , JavaScript engine keeps a value in memory while it is "reachable" and can potentially be used. For instance: + ```js let john = { name: "John" }; @@ -54,13 +56,13 @@ john = null; // overwrite the reference */!* ``` -`WeakMap` is fundamentally different in this aspect. It doesn't prevent garbage-collection of key objects. +[`WeakMap`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap) is fundamentally different in this aspect. It doesn't prevent garbage-collection of key objects. Let's see what it means on examples. ## WeakMap -The first difference between `Map` and `WeakMap` is that keys must be objects, not primitive values: +The first difference between [`Map`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map) and [`WeakMap`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap) is that keys must be objects, not primitive values: ```js run let weakMap = new WeakMap(); @@ -94,10 +96,10 @@ Compare it with the regular `Map` example above. Now if `john` only exists as th `WeakMap` has only the following methods: -- `weakMap.get(key)` -- `weakMap.set(key, value)` -- `weakMap.delete(key)` -- `weakMap.has(key)` +- [`weakMap.set(key, value)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap/set) +- [`weakMap.get(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap/get) +- [`weakMap.delete(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap/delete) +- [`weakMap.has(key)`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap/has) Why such a limitation? That's for technical reasons. If an object has lost all other references (like `john` in the code above), then it is to be garbage-collected automatically. But technically it's not exactly specified *when the cleanup happens*. @@ -182,6 +184,7 @@ function process(obj) { let result = /* calculations of the result for */ obj; cache.set(obj, result); + return result; } return cache.get(obj); @@ -221,6 +224,7 @@ function process(obj) { let result = /* calculate the result for */ obj; cache.set(obj, result); + return result; } return cache.get(obj); @@ -242,11 +246,11 @@ obj = null; ## WeakSet -`WeakSet` behaves similarly: +[`WeakSet`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakSet) behaves similarly: - It is analogous to `Set`, but we may only add objects to `WeakSet` (not primitives). - An object exists in the set while it is reachable from somewhere else. -- Like `Set`, it supports `add`, `has` and `delete`, but not `size`, `keys()` and no iterations. +- Like `Set`, it supports [`add`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Weakset/add), [`has`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Weakset/has) and [`delete`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Weakset/delete), but not `size`, `keys()` and no iterations. Being "weak", it also serves as additional storage. But not for arbitrary data, rather for "yes/no" facts. A membership in `WeakSet` may mean something about the object. @@ -280,9 +284,9 @@ The most notable limitation of `WeakMap` and `WeakSet` is the absence of iterati ## Summary -`WeakMap` is `Map`-like collection that allows only objects as keys and removes them together with associated value once they become inaccessible by other means. +[`WeakMap`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap) is `Map`-like collection that allows only objects as keys and removes them together with associated value once they become inaccessible by other means. -`WeakSet` is `Set`-like collection that stores only objects and removes them once they become inaccessible by other means. +[`WeakSet`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakSet) is `Set`-like collection that stores only objects and removes them once they become inaccessible by other means. Their main advantages are that they have weak reference to objects, so they can easily be removed by garbage collector. diff --git a/1-js/05-data-types/11-date/1-new-date/solution.md b/1-js/05-data-types/11-date/1-new-date/solution.md index bed449453..18286c336 100644 --- a/1-js/05-data-types/11-date/1-new-date/solution.md +++ b/1-js/05-data-types/11-date/1-new-date/solution.md @@ -13,6 +13,6 @@ We could also create a date from a string, like this: ```js run //new Date(datastring) -let d2 = new Date("February 20, 2012 03:12:00"); +let d2 = new Date("2012-02-20T03:12"); alert( d2 ); ``` diff --git a/1-js/05-data-types/11-date/article.md b/1-js/05-data-types/11-date/article.md index ed4e21359..6958a3a97 100644 --- a/1-js/05-data-types/11-date/article.md +++ b/1-js/05-data-types/11-date/article.md @@ -57,7 +57,7 @@ To create a new `Date` object call `new Date()` with one of the following argume `new Date(year, month, date, hours, minutes, seconds, ms)` : Create the date with the given components in the local time zone. Only the first two arguments are obligatory. - - The `year` must have 4 digits: `2013` is okay, `98` is not. + - The `year` should have 4 digits. For compatibility, 2 digits are also accepted and considered `19xx`, e.g. `98` is the same as `1998` here, but always using 4 digits is strongly encouraged. - The `month` count starts with `0` (Jan), up to `11` (Dec). - The `date` parameter is actually the day of month, if absent then `1` is assumed. - If `hours/minutes/seconds/ms` is absent, they are assumed to be equal `0`. @@ -376,7 +376,7 @@ for (let i = 0; i < 10; i++) { ```warn header="Be careful doing microbenchmarking" Modern JavaScript engines perform many optimizations. They may tweak results of "artificial tests" compared to "normal usage", especially when we benchmark something very small, such as how an operator works, or a built-in function. So if you seriously want to understand performance, then please study how the JavaScript engine works. And then you probably won't need microbenchmarks at all. -The great pack of articles about V8 can be found at . +The great pack of articles about V8 can be found at . ``` ## Date.parse from a string @@ -407,7 +407,7 @@ We can instantly create a `new Date` object from the timestamp: ```js run let date = new Date( Date.parse('2012-01-26T13:51:50.417-07:00') ); -alert(date); +alert(date); ``` ## Summary diff --git a/1-js/05-data-types/12-json/article.md b/1-js/05-data-types/12-json/article.md index ae5f045af..25bb52fe3 100644 --- a/1-js/05-data-types/12-json/article.md +++ b/1-js/05-data-types/12-json/article.md @@ -27,7 +27,7 @@ Luckily, there's no need to write the code to handle all this. The task has been ## JSON.stringify -The [JSON](http://en.wikipedia.org/wiki/JSON) (JavaScript Object Notation) is a general format to represent values and objects. It is described as in [RFC 4627](https://tools.ietf.org/html/rfc4627) standard. Initially it was made for JavaScript, but many other languages have libraries to handle it as well. So it's easy to use JSON for data exchange when the client uses JavaScript and the server is written on Ruby/PHP/Java/Whatever. +The [JSON](https://en.wikipedia.org/wiki/JSON) (JavaScript Object Notation) is a general format to represent values and objects. It is described as in [RFC 4627](https://tools.ietf.org/html/rfc4627) standard. Initially it was made for JavaScript, but many other languages have libraries to handle it as well. So it's easy to use JSON for data exchange when the client uses JavaScript and the server is written on Ruby/PHP/Java/Whatever. JavaScript provides methods: @@ -41,7 +41,7 @@ let student = { age: 30, isAdmin: false, courses: ['html', 'css', 'js'], - wife: null + spouse: null }; *!* @@ -58,7 +58,7 @@ alert(json); "age": 30, "isAdmin": false, "courses": ["html", "css", "js"], - "wife": null + "spouse": null } */ */!* @@ -451,7 +451,7 @@ let json = `{ Besides, JSON does not support comments. Adding a comment to JSON makes it invalid. -There's another format named [JSON5](http://json5.org/), which allows unquoted keys, comments etc. But this is a standalone library, not in the specification of the language. +There's another format named [JSON5](https://json5.org/), which allows unquoted keys, comments etc. But this is a standalone library, not in the specification of the language. The regular JSON is that strict not because its developers are lazy, but to allow easy, reliable and very fast implementations of the parsing algorithm. diff --git a/1-js/06-advanced-functions/01-recursion/01-sum-to/solution.md b/1-js/06-advanced-functions/01-recursion/01-sum-to/solution.md index 3a281ef3f..11667f940 100644 --- a/1-js/06-advanced-functions/01-recursion/01-sum-to/solution.md +++ b/1-js/06-advanced-functions/01-recursion/01-sum-to/solution.md @@ -37,4 +37,4 @@ P.S. Naturally, the formula is the fastest solution. It uses only 3 operations f The loop variant is the second in terms of speed. In both the recursive and the loop variant we sum the same numbers. But the recursion involves nested calls and execution stack management. That also takes resources, so it's slower. -P.P.S. Some engines support the "tail call" optimization: if a recursive call is the very last one in the function (like in `sumTo` above), then the outer function will not need to resume the execution, so the engine doesn't need to remember its execution context. That removes the burden on memory, so counting `sumTo(100000)` becomes possible. But if the JavaScript engine does not support tail call optimization (most of them don't), there will be an error: maximum stack size exceeded, because there's usually a limitation on the total stack size. +P.P.S. Some engines support the "tail call" optimization: if a recursive call is the very last one in the function, with no other calculations performed, then the outer function will not need to resume the execution, so the engine doesn't need to remember its execution context. That removes the burden on memory. But if the JavaScript engine does not support tail call optimization (most of them don't), there will be an error: maximum stack size exceeded, because there's usually a limitation on the total stack size. diff --git a/1-js/06-advanced-functions/01-recursion/article.md b/1-js/06-advanced-functions/01-recursion/article.md index b7992f162..5ae894474 100644 --- a/1-js/06-advanced-functions/01-recursion/article.md +++ b/1-js/06-advanced-functions/01-recursion/article.md @@ -61,7 +61,7 @@ When `pow(x, n)` is called, the execution splits into two branches: if n==1 = x / pow(x, n) = - \ + \ else = x * pow(x, n - 1) ``` @@ -285,7 +285,7 @@ The iterative `pow` uses a single context changing `i` and `result` in the proce **Any recursion can be rewritten as a loop. The loop variant usually can be made more effective.** -...But sometimes the rewrite is non-trivial, especially when function uses different recursive subcalls depending on conditions and merges their results or when the branching is more intricate. And the optimization may be unneeded and totally not worth the efforts. +...But sometimes the rewrite is non-trivial, especially when a function uses different recursive subcalls depending on conditions and merges their results or when the branching is more intricate. And the optimization may be unneeded and totally not worth the efforts. Recursion can give a shorter code, easier to understand and support. Optimizations are not required in every place, mostly we need a good code, that's why it's used. diff --git a/1-js/06-advanced-functions/02-rest-parameters-spread/article.md b/1-js/06-advanced-functions/02-rest-parameters-spread/article.md index c63fe70cd..dbdfbd6c0 100644 --- a/1-js/06-advanced-functions/02-rest-parameters-spread/article.md +++ b/1-js/06-advanced-functions/02-rest-parameters-spread/article.md @@ -23,7 +23,7 @@ function sum(a, b) { alert( sum(1, 2, 3, 4, 5) ); ``` -There will be no error because of "excessive" arguments. But of course in the result only the first two will be counted. +There will be no error because of "excessive" arguments. But of course in the result only the first two will be counted, so the result in the code above is `3`. The rest of the parameters can be included in the function definition by using three dots `...` followed by the name of the array that will contain them. The dots literally mean "gather the remaining parameters into an array". diff --git a/1-js/06-advanced-functions/03-closure/5-function-in-if/task.md b/1-js/06-advanced-functions/03-closure/5-function-in-if/task.md index d02c53b99..4e386eec5 100644 --- a/1-js/06-advanced-functions/03-closure/5-function-in-if/task.md +++ b/1-js/06-advanced-functions/03-closure/5-function-in-if/task.md @@ -1,4 +1,6 @@ +importance: 5 +--- # Function in if Look at the code. What will be the result of the call at the last line? diff --git a/1-js/06-advanced-functions/03-closure/article.md b/1-js/06-advanced-functions/03-closure/article.md index 199887063..cb43a7968 100644 --- a/1-js/06-advanced-functions/03-closure/article.md +++ b/1-js/06-advanced-functions/03-closure/article.md @@ -7,7 +7,7 @@ We already know that a function can access variables outside of it ("outer" vari But what happens if outer variables change since a function is created? Will the function get newer values or the old ones? -And what if a function is passed along as a parameter and called from another place of code, will it get access to outer variables at the new place? +And what if a function is passed along as an argument and called from another place of code, will it get access to outer variables at the new place? Let's expand our knowledge to understand these scenarios and more complex ones. diff --git a/1-js/06-advanced-functions/04-var/article.md b/1-js/06-advanced-functions/04-var/article.md index 1579afb62..28d7a76ec 100644 --- a/1-js/06-advanced-functions/04-var/article.md +++ b/1-js/06-advanced-functions/04-var/article.md @@ -58,7 +58,7 @@ alert(test); // ReferenceError: test is not defined The same thing for loops: `var` cannot be block- or loop-local: -```js +```js run for (var i = 0; i < 10; i++) { var one = 1; // ... @@ -170,7 +170,7 @@ That's best demonstrated with an example: ```js run function sayHi() { - alert(phrase); + alert(phrase); *!* var phrase = "Hello"; diff --git a/1-js/06-advanced-functions/05-global-object/article.md b/1-js/06-advanced-functions/05-global-object/article.md index e7a83f240..e011c0d67 100644 --- a/1-js/06-advanced-functions/05-global-object/article.md +++ b/1-js/06-advanced-functions/05-global-object/article.md @@ -29,10 +29,14 @@ var gVar = 5; alert(window.gVar); // 5 (wurde Eigentum des globalen Objekts) ``` +<<<<<<< HEAD <<<<<<< HEAD Bitte nicht darauf verlassen! Dieses Verhalten existiert aus Kompatibilitätsgründen. Moderne Skripte verwenden [JavaScript-Module](info:modules), wo so etwas nicht passiert. ======= The same effect have function declarations (statements with `function` keyword in the main code flow, not function expressions). +======= +Function declarations have the same effect (statements with `function` keyword in the main code flow, not function expressions). +>>>>>>> 733ff697c6c1101c130e2996f7eca860b2aa7ab9 Please don't rely on that! This behavior exists for compatibility reasons. Modern scripts use [JavaScript modules](info:modules) where such a thing doesn't happen. >>>>>>> a82915575863d33db6b892087975f84dea6cb425 diff --git a/1-js/06-advanced-functions/06-function-object/article.md b/1-js/06-advanced-functions/06-function-object/article.md index 12342f45a..c84f4e52f 100644 --- a/1-js/06-advanced-functions/06-function-object/article.md +++ b/1-js/06-advanced-functions/06-function-object/article.md @@ -326,7 +326,7 @@ welcome(); // Hello, Guest (nested call works) Now it works, because the name `"func"` is function-local. It is not taken from outside (and not visible there). The specification guarantees that it will always reference the current function. -The outer code still has its variable `sayHi` or `welcome`. And `func` is an "internal function name", how the function can call itself internally. +The outer code still has its variable `sayHi` or `welcome`. And `func` is an "internal function name", the way for the function to can call itself reliably. ```smart header="There's no such thing for Function Declaration" The "internal name" feature described here is only available for Function Expressions, not for Function Declarations. For Function Declarations, there is no syntax for adding an "internal" name. diff --git a/1-js/06-advanced-functions/08-settimeout-setinterval/article.md b/1-js/06-advanced-functions/08-settimeout-setinterval/article.md index 984102687..f96959988 100644 --- a/1-js/06-advanced-functions/08-settimeout-setinterval/article.md +++ b/1-js/06-advanced-functions/08-settimeout-setinterval/article.md @@ -27,7 +27,7 @@ Usually, that's a function. For historical reasons, a string of code can be pass : The delay before run, in milliseconds (1000 ms = 1 second), by default 0. `arg1`, `arg2`... -: Arguments for the function (not supported in IE9-) +: Arguments for the function For instance, this code calls `sayHi()` after one second: @@ -102,7 +102,7 @@ As we can see from `alert` output, in a browser the timer identifier is a number Again, there is no universal specification for these methods, so that's fine. -For browsers, timers are described in the [timers section](https://www.w3.org/TR/html5/webappapis.html#timers) of HTML5 standard. +For browsers, timers are described in the [timers section](https://html.spec.whatwg.org/multipage/timers-and-user-prompts.html#timers) of HTML Living Standard. ## setInterval @@ -232,7 +232,7 @@ setTimeout(function() {...}, 100); For `setInterval` the function stays in memory until `clearInterval` is called. -There's a side-effect. A function references the outer lexical environment, so, while it lives, outer variables live too. They may take much more memory than the function itself. So when we don't need the scheduled function anymore, it's better to cancel it, even if it's very small. +There's a side effect. A function references the outer lexical environment, so, while it lives, outer variables live too. They may take much more memory than the function itself. So when we don't need the scheduled function anymore, it's better to cancel it, even if it's very small. ```` ## Zero delay setTimeout @@ -256,7 +256,7 @@ The first line "puts the call into calendar after 0ms". But the scheduler will o There are also advanced browser-related use cases of zero-delay timeout, that we'll discuss in the chapter . ````smart header="Zero delay is in fact not zero (in a browser)" -In the browser, there's a limitation of how often nested timers can run. The [HTML5 standard](https://html.spec.whatwg.org/multipage/timers-and-user-prompts.html#timers) says: "after five nested timers, the interval is forced to be at least 4 milliseconds.". +In the browser, there's a limitation of how often nested timers can run. The [HTML Living Standard](https://html.spec.whatwg.org/multipage/timers-and-user-prompts.html#timers) says: "after five nested timers, the interval is forced to be at least 4 milliseconds.". Let's demonstrate what it means with the example below. The `setTimeout` call in it re-schedules itself with zero delay. Each call remembers the real time from the previous one in the `times` array. What do the real delays look like? Let's see: @@ -297,6 +297,6 @@ Please note that all scheduling methods do not *guarantee* the exact delay. For example, the in-browser timer may slow down for a lot of reasons: - The CPU is overloaded. - The browser tab is in the background mode. -- The laptop is on battery. +- The laptop is on battery saving mode. All that may increase the minimal timer resolution (the minimal delay) to 300ms or even 1000ms depending on the browser and OS-level performance settings. diff --git a/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/task.md b/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/task.md index 6df7af132..cbd473196 100644 --- a/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/task.md +++ b/1-js/06-advanced-functions/09-call-apply-decorators/04-throttle/task.md @@ -8,7 +8,7 @@ Create a "throttling" decorator `throttle(f, ms)` -- that returns a wrapper. When it's called multiple times, it passes the call to `f` at maximum once per `ms` milliseconds. -The difference with debounce is that it's completely different decorator: +Compared to the debounce decorator, the behavior is completely different: - `debounce` runs the function once after the "cooldown" period. Good for processing the final result. - `throttle` runs it not more often than given `ms` time. Good for regular updates that shouldn't be very often. diff --git a/1-js/06-advanced-functions/10-bind/article.md b/1-js/06-advanced-functions/10-bind/article.md index 9d705cdcd..6d65e7dd1 100644 --- a/1-js/06-advanced-functions/10-bind/article.md +++ b/1-js/06-advanced-functions/10-bind/article.md @@ -202,7 +202,7 @@ for (let key in user) { } ``` -JavaScript libraries also provide functions for convenient mass binding , e.g. [_.bindAll(object, methodNames)](http://lodash.com/docs#bindAll) in lodash. +JavaScript libraries also provide functions for convenient mass binding , e.g. [_.bindAll(object, methodNames)](https://lodash.com/docs#bindAll) in lodash. ```` ## Partial functions diff --git a/1-js/07-object-properties/01-property-descriptors/article.md b/1-js/07-object-properties/01-property-descriptors/article.md index bdc693418..0a945b377 100644 --- a/1-js/07-object-properties/01-property-descriptors/article.md +++ b/1-js/07-object-properties/01-property-descriptors/article.md @@ -123,7 +123,7 @@ user.name = "Pete"; // Error: Cannot assign to read only property 'name' Now no one can change the name of our user, unless they apply their own `defineProperty` to override ours. ```smart header="Errors appear only in strict mode" -In the non-strict mode, no errors occur when writing to non-writable properties and such. But the operation still won't succeed. Flag-violating actions are just silently ignored in non-strict. +In non-strict mode, no errors occur when writing to non-writable properties and such. But the operation still won't succeed. Flag-violating actions are just silently ignored in non-strict. ``` Here's the same example, but the property is created from scratch: diff --git a/1-js/08-prototypes/01-prototype-inheritance/article.md b/1-js/08-prototypes/01-prototype-inheritance/article.md index 8cb301c80..ef6c7ffeb 100644 --- a/1-js/08-prototypes/01-prototype-inheritance/article.md +++ b/1-js/08-prototypes/01-prototype-inheritance/article.md @@ -131,7 +131,6 @@ There are only two limitations: Also it may be obvious, but still: there can be only one `[[Prototype]]`. An object may not inherit from two others. - ```smart header="`__proto__` is a historical getter/setter for `[[Prototype]]`" It's a common mistake of novice developers not to know the difference between these two. diff --git a/1-js/08-prototypes/03-native-prototypes/article.md b/1-js/08-prototypes/03-native-prototypes/article.md index 6cf7aebb4..bdfc86dd8 100644 --- a/1-js/08-prototypes/03-native-prototypes/article.md +++ b/1-js/08-prototypes/03-native-prototypes/article.md @@ -2,7 +2,7 @@ The `"prototype"` property is widely used by the core of JavaScript itself. All built-in constructor functions use it. -First we'll see at the details, and then how to use it for adding new capabilities to built-in objects. +First we'll look at the details, and then how to use it for adding new capabilities to built-in objects. ## Object.prototype diff --git a/1-js/08-prototypes/03-native-prototypes/proto-constructor-animal-rabbit.svg b/1-js/08-prototypes/03-native-prototypes/proto-constructor-animal-rabbit.svg deleted file mode 100644 index ede4e1227..000000000 --- a/1-js/08-prototypes/03-native-prototypes/proto-constructor-animal-rabbit.svg +++ /dev/null @@ -1 +0,0 @@ -eats: truename: "White Rabbit"animalRabbitrabbit[[Prototype]]prototype \ No newline at end of file diff --git a/1-js/08-prototypes/04-prototype-methods/2-dictionary-tostring/solution.md b/1-js/08-prototypes/04-prototype-methods/2-dictionary-tostring/solution.md index a92e17900..f3c9cf0e5 100644 --- a/1-js/08-prototypes/04-prototype-methods/2-dictionary-tostring/solution.md +++ b/1-js/08-prototypes/04-prototype-methods/2-dictionary-tostring/solution.md @@ -28,4 +28,4 @@ alert(dictionary); // "apple,__proto__" When we create a property using a descriptor, its flags are `false` by default. So in the code above, `dictionary.toString` is non-enumerable. -See the the chapter [](info:property-descriptors) for review. +See the chapter [](info:property-descriptors) for review. diff --git a/1-js/08-prototypes/04-prototype-methods/article.md b/1-js/08-prototypes/04-prototype-methods/article.md index a4ce2646c..71f118e1b 100644 --- a/1-js/08-prototypes/04-prototype-methods/article.md +++ b/1-js/08-prototypes/04-prototype-methods/article.md @@ -3,15 +3,18 @@ In the first chapter of this section, we mentioned that there are modern methods to setup a prototype. -The `__proto__` is considered outdated and somewhat deprecated (in browser-only part of the JavaScript standard). +Setting or reading the prototype with `obj.__proto__` is considered outdated and somewhat deprecated (moved to the so-called "Annex B" of the JavaScript standard, meant for browsers only). -The modern methods are: +The modern methods to get/set a prototype are: -- [Object.create(proto, [descriptors])](mdn:js/Object/create) -- creates an empty object with given `proto` as `[[Prototype]]` and optional property descriptors. - [Object.getPrototypeOf(obj)](mdn:js/Object/getPrototypeOf) -- returns the `[[Prototype]]` of `obj`. - [Object.setPrototypeOf(obj, proto)](mdn:js/Object/setPrototypeOf) -- sets the `[[Prototype]]` of `obj` to `proto`. -These should be used instead of `__proto__`. +The only usage of `__proto__`, that's not frowned upon, is as a property when creating a new object: `{ __proto__: ... }`. + +Although, there's a special method for this too: + +- [Object.create(proto, [descriptors])](mdn:js/Object/create) -- creates an empty object with given `proto` as `[[Prototype]]` and optional property descriptors. For instance: @@ -22,7 +25,7 @@ let animal = { // create a new object with animal as a prototype *!* -let rabbit = Object.create(animal); +let rabbit = Object.create(animal); // same as {__proto__: animal} */!* alert(rabbit.eats); // true @@ -36,7 +39,9 @@ Object.setPrototypeOf(rabbit, {}); // change the prototype of rabbit to {} */!* ``` -`Object.create` has an optional second argument: property descriptors. We can provide additional properties to the new object there, like this: +The `Object.create` method is a bit more powerful, as it has an optional second argument: property descriptors. + +We can provide additional properties to the new object there, like this: ```js run let animal = { @@ -57,26 +62,34 @@ The descriptors are in the same format as described in the chapter , arrow functions do not have `super`. If accessed, it's taken from the outer function. For instance: + ```js class Rabbit extends Animal { stop() { @@ -176,7 +177,6 @@ setTimeout(function() { super.stop() }, 1000); ``` ```` - ## Overriding constructor With constructors it gets a little bit tricky. @@ -280,8 +280,6 @@ alert(rabbit.earLength); // 10 */!* ``` - - ### Overriding class fields: a tricky note ```warn header="Advanced note" @@ -370,13 +368,12 @@ In our case, `Rabbit` is the derived class. There's no `constructor()` in it. As So, `new Rabbit()` calls `super()`, thus executing the parent constructor, and (per the rule for derived classes) only after that its class fields are initialized. At the time of the parent constructor execution, there are no `Rabbit` class fields yet, that's why `Animal` fields are used. -This subtle difference between fields and methods is specific to JavaScript +This subtle difference between fields and methods is specific to JavaScript. Luckily, this behavior only reveals itself if an overridden field is used in the parent constructor. Then it may be difficult to understand what's going on, so we're explaining it here. If it becomes a problem, one can fix it by using methods or getters/setters instead of fields. - ## Super: internals, [[HomeObject]] ```warn header="Advanced information" diff --git a/1-js/09-classes/03-static-properties-methods/3-class-extend-object/solution.md b/1-js/09-classes/03-static-properties-methods/3-class-extend-object/solution.md index ca9e80601..cb9829ce0 100644 --- a/1-js/09-classes/03-static-properties-methods/3-class-extend-object/solution.md +++ b/1-js/09-classes/03-static-properties-methods/3-class-extend-object/solution.md @@ -21,14 +21,14 @@ alert( rabbit.hasOwnProperty('name') ); // true But that's not all yet. -Even after the fix, there's still important difference in `"class Rabbit extends Object"` versus `class Rabbit`. +Even after the fix, there's still an important difference between `"class Rabbit extends Object"` and `class Rabbit`. As we know, the "extends" syntax sets up two prototypes: 1. Between `"prototype"` of the constructor functions (for methods). 2. Between the constructor functions themselves (for static methods). -In our case, for `class Rabbit extends Object` it means: +In the case of `class Rabbit extends Object` it means: ```js run class Rabbit extends Object {} @@ -37,7 +37,7 @@ alert( Rabbit.prototype.__proto__ === Object.prototype ); // (1) true alert( Rabbit.__proto__ === Object ); // (2) true ``` -So `Rabbit` now provides access to static methods of `Object` via `Rabbit`, like this: +So `Rabbit` now provides access to the static methods of `Object` via `Rabbit`, like this: ```js run class Rabbit extends Object {} @@ -67,7 +67,7 @@ alert ( Rabbit.getOwnPropertyNames({a: 1, b: 2})); // Error So `Rabbit` doesn't provide access to static methods of `Object` in that case. -By the way, `Function.prototype` has "generic" function methods, like `call`, `bind` etc. They are ultimately available in both cases, because for the built-in `Object` constructor, `Object.__proto__ === Function.prototype`. +By the way, `Function.prototype` also has "generic" function methods, like `call`, `bind` etc. They are ultimately available in both cases, because for the built-in `Object` constructor, `Object.__proto__ === Function.prototype`. Here's the picture: diff --git a/1-js/09-classes/03-static-properties-methods/article.md b/1-js/09-classes/03-static-properties-methods/article.md index 60b9824dc..4b493a5e8 100644 --- a/1-js/09-classes/03-static-properties-methods/article.md +++ b/1-js/09-classes/03-static-properties-methods/article.md @@ -109,6 +109,17 @@ Static methods are also used in database-related classes to search/save/remove e Article.remove({id: 12345}); ``` +````warn header="Static methods aren't available for individual objects" +Static methods are callable on classes, not on individual objects. + +E.g. such code won't work: + +```js +// ... +article.createTodays(); /// Error: article.createTodays is not a function +``` +```` + ## Static properties [recent browser=Chrome] diff --git a/1-js/09-classes/07-mixins/article.md b/1-js/09-classes/07-mixins/article.md index 06001d900..526b832ef 100644 --- a/1-js/09-classes/07-mixins/article.md +++ b/1-js/09-classes/07-mixins/article.md @@ -103,7 +103,7 @@ Here's the diagram (see the right part): That's because methods `sayHi` and `sayBye` were initially created in `sayHiMixin`. So even though they got copied, their `[[HomeObject]]` internal property references `sayHiMixin`, as shown in the picture above. -As `super` looks for parent methods in `[[HomeObject]].[[Prototype]]`, that means it searches `sayHiMixin.[[Prototype]]`, not `User.[[Prototype]]`. +As `super` looks for parent methods in `[[HomeObject]].[[Prototype]]`, that means it searches `sayHiMixin.[[Prototype]]`. ## EventMixin diff --git a/1-js/10-error-handling/1-try-catch/article.md b/1-js/10-error-handling/1-try-catch/article.md index a928da289..bf548373a 100644 --- a/1-js/10-error-handling/1-try-catch/article.md +++ b/1-js/10-error-handling/1-try-catch/article.md @@ -632,7 +632,7 @@ For instance: The role of the global handler `window.onerror` is usually not to recover the script execution -- that's probably impossible in case of programming errors, but to send the error message to developers. -There are also web-services that provide error-logging for such cases, like or . +There are also web-services that provide error-logging for such cases, like or . They work like this: diff --git a/1-js/11-async/01-callbacks/article.md b/1-js/11-async/01-callbacks/article.md index 5950df051..57115a909 100644 --- a/1-js/11-async/01-callbacks/article.md +++ b/1-js/11-async/01-callbacks/article.md @@ -77,6 +77,8 @@ function loadScript(src, *!*callback*/!*) { } ``` +The `onload` event is described in the article , it basically executes a function after the script is loaded and executed. + Now if we want to call new functions from the script, we should write that in the callback: ```js @@ -102,7 +104,7 @@ function loadScript(src, callback) { *!* loadScript('https://cdnjs.cloudflare.com/ajax/libs/lodash.js/3.2.0/lodash.js', script => { alert(`Cool, the script ${script.src} is loaded`); - alert( _ ); // function declared in the loaded script + alert( _ ); // _ is a function declared in the loaded script }); */!* ``` diff --git a/1-js/11-async/02-promise-basics/article.md b/1-js/11-async/02-promise-basics/article.md index f2f533220..207fb2c8c 100644 --- a/1-js/11-async/02-promise-basics/article.md +++ b/1-js/11-async/02-promise-basics/article.md @@ -36,7 +36,7 @@ So to summarize: the executor runs automatically and attempts to perform a job. The `promise` object returned by the `new Promise` constructor has these internal properties: - `state` — initially `"pending"`, then changes to either `"fulfilled"` when `resolve` is called or `"rejected"` when `reject` is called. -- `result` — initially `undefined`, then changes to `value` when `resolve(value)` called or `error` when `reject(error)` is called. +- `result` — initially `undefined`, then changes to `value` when `resolve(value)` is called or `error` when `reject(error)` is called. So the executor eventually moves `promise` to one of these states: @@ -60,7 +60,7 @@ We can see two things by running the code above: 1. The executor is called automatically and immediately (by `new Promise`). 2. The executor receives two arguments: `resolve` and `reject`. These functions are pre-defined by the JavaScript engine, so we don't need to create them. We should only call one of them when ready. - After one second of "processing" the executor calls `resolve("done")` to produce the result. This changes the state of the `promise` object: + After one second of "processing", the executor calls `resolve("done")` to produce the result. This changes the state of the `promise` object: ![](promise-resolve-1.svg) @@ -127,9 +127,9 @@ That's fine. We immediately have a resolved promise. The properties `state` and `result` of the Promise object are internal. We can't directly access them. We can use the methods `.then`/`.catch`/`.finally` for that. They are described below. ``` -## Consumers: then, catch, finally +## Consumers: then, catch -A Promise object serves as a link between the executor (the "producing code" or "singer") and the consuming functions (the "fans"), which will receive the result or error. Consuming functions can be registered (subscribed) using methods `.then`, `.catch` and `.finally`. +A Promise object serves as a link between the executor (the "producing code" or "singer") and the consuming functions (the "fans"), which will receive the result or error. Consuming functions can be registered (subscribed) using the methods `.then` and `.catch`. ### then @@ -144,9 +144,9 @@ promise.then( ); ``` -The first argument of `.then` is a function that runs when the promise is resolved, and receives the result. +The first argument of `.then` is a function that runs when the promise is resolved and receives the result. -The second argument of `.then` is a function that runs when the promise is rejected, and receives the error. +The second argument of `.then` is a function that runs when the promise is rejected and receives the error. For instance, here's a reaction to a successfully resolved promise: @@ -212,59 +212,83 @@ promise.catch(alert); // shows "Error: Whoops!" after 1 second The call `.catch(f)` is a complete analog of `.then(null, f)`, it's just a shorthand. -### finally +## Cleanup: finally Just like there's a `finally` clause in a regular `try {...} catch {...}`, there's `finally` in promises. -The call `.finally(f)` is similar to `.then(f, f)` in the sense that `f` always runs when the promise is settled: be it resolve or reject. +The call `.finally(f)` is similar to `.then(f, f)` in the sense that `f` runs always, when the promise is settled: be it resolve or reject. -`finally` is a good handler for performing cleanup, e.g. stopping our loading indicators, as they are not needed anymore, no matter what the outcome is. +The idea of `finally` is to set up a handler for performing cleanup/finalizing after the previous operations are complete. -Like this: +E.g. stopping loading indicators, closing no longer needed connections, etc. + +Think of it as a party finisher. No matter was a party good or bad, how many friends were in it, we still need (or at least should) do a cleanup after it. + +The code may look like this: ```js new Promise((resolve, reject) => { - /* do something that takes time, and then call resolve/reject */ + /* do something that takes time, and then call resolve or maybe reject */ }) *!* // runs when the promise is settled, doesn't matter successfully or not .finally(() => stop loading indicator) - // so the loading indicator is always stopped before we process the result/error + // so the loading indicator is always stopped before we go on */!* .then(result => show result, err => show error) ``` -That said, `finally(f)` isn't exactly an alias of `then(f,f)` though. There are few subtle differences: +Please note that `finally(f)` isn't exactly an alias of `then(f,f)` though. + +There are important differences: 1. A `finally` handler has no arguments. In `finally` we don't know whether the promise is successful or not. That's all right, as our task is usually to perform "general" finalizing procedures. -2. A `finally` handler passes through results and errors to the next handler. + + Please take a look at the example above: as you can see, the `finally` handler has no arguments, and the promise outcome is handled by the next handler. +2. A `finally` handler "passes through" the result or error to the next suitable handler. For instance, here the result is passed through `finally` to `then`: + ```js run new Promise((resolve, reject) => { - setTimeout(() => resolve("result"), 2000) + setTimeout(() => resolve("value"), 2000); }) - .finally(() => alert("Promise ready")) - .then(result => alert(result)); // <-- .then handles the result + .finally(() => alert("Promise ready")) // triggers first + .then(result => alert(result)); // <-- .then shows "value" ``` - And here there's an error in the promise, passed through `finally` to `catch`: + As you can see, the `value` returned by the first promise is passed through `finally` to the next `then`. + + That's very convenient, because `finally` is not meant to process a promise result. As said, it's a place to do generic cleanup, no matter what the outcome was. + + And here's an example of an error, for us to see how it's passed through `finally` to `catch`: ```js run new Promise((resolve, reject) => { throw new Error("error"); }) - .finally(() => alert("Promise ready")) - .catch(err => alert(err)); // <-- .catch handles the error object + .finally(() => alert("Promise ready")) // triggers first + .catch(err => alert(err)); // <-- .catch shows the error ``` -That's very convenient, because `finally` is not meant to process a promise result. So it passes it through. +3. A `finally` handler also shouldn't return anything. If it does, the returned value is silently ignored. + + The only exception to this rule is when a `finally` handler throws an error. Then this error goes to the next handler, instead of any previous outcome. -We'll talk more about promise chaining and result-passing between handlers in the next chapter. +To summarize: +- A `finally` handler doesn't get the outcome of the previous handler (it has no arguments). This outcome is passed through instead, to the next suitable handler. +- If a `finally` handler returns something, it's ignored. +- When `finally` throws an error, then the execution goes to the nearest error handler. + +These features are helpful and make things work just the right way if we use `finally` how it's supposed to be used: for generic cleanup procedures. ````smart header="We can attach handlers to settled promises" -If a promise is pending, `.then/catch/finally` handlers wait for it. Otherwise, if a promise has already settled, they just run: +If a promise is pending, `.then/catch/finally` handlers wait for its outcome. + +Sometimes, it might be that a promise is already settled when we add a handler to it. + +In such case, these handlers just run immediately: ```js run // the promise becomes resolved immediately upon creation @@ -278,10 +302,10 @@ Note that this makes promises more powerful than the real life "subscription lis Promises are more flexible. We can add handlers any time: if the result is already there, they just execute. ```` -Next, let's see more practical examples of how promises can help us write asynchronous code. - ## Example: loadScript [#loadscript] +Next, let's see more practical examples of how promises can help us write asynchronous code. + We've got the `loadScript` function for loading a script from the previous chapter. Here's the callback-based variant, just to remind us of it: diff --git a/1-js/11-async/03-promise-chaining/article.md b/1-js/11-async/03-promise-chaining/article.md index ebf869156..a33ca258c 100644 --- a/1-js/11-async/03-promise-chaining/article.md +++ b/1-js/11-async/03-promise-chaining/article.md @@ -72,7 +72,7 @@ promise.then(function(result) { }); ``` -What we did here is just several handlers to one promise. They don't pass the result to each other; instead they process it independently. +What we did here is just adding several handlers to one promise. They don't pass the result to each other; instead they process it independently. Here's the picture (compare it with the chaining above): @@ -224,7 +224,7 @@ This feature allows us to integrate custom objects with promise chains without h ## Bigger example: fetch -In frontend programming promises are often used for network requests. So let's see an extended example of that. +In frontend programming, promises are often used for network requests. So let's see an extended example of that. We'll use the [fetch](info:fetch) method to load the information about the user from the remote server. It has a lot of optional parameters covered in [separate chapters](info:fetch), but the basic syntax is quite simple: diff --git a/1-js/11-async/04-promise-error-handling/article.md b/1-js/11-async/04-promise-error-handling/article.md index 9f7159af9..c5b4206ab 100644 --- a/1-js/11-async/04-promise-error-handling/article.md +++ b/1-js/11-async/04-promise-error-handling/article.md @@ -199,6 +199,7 @@ In non-browser environments like Node.js there are other ways to track unhandled ## Summary - `.catch` handles errors in promises of all kinds: be it a `reject()` call, or an error thrown in a handler. +- `.then` also catches errors in the same manner, if given the second argument (which is the error handler). - We should place `.catch` exactly in places where we want to handle errors and know how to handle them. The handler should analyze errors (custom error classes help) and rethrow unknown ones (maybe they are programming mistakes). - It's ok not to use `.catch` at all, if there's no way to recover from an error. - In any case we should have the `unhandledrejection` event handler (for browsers, and analogs for other environments) to track unhandled errors and inform the user (and probably our server) about them, so that our app never "just dies". diff --git a/1-js/11-async/06-promisify/article.md b/1-js/11-async/06-promisify/article.md index 1d81b31a6..855678e5b 100644 --- a/1-js/11-async/06-promisify/article.md +++ b/1-js/11-async/06-promisify/article.md @@ -25,7 +25,7 @@ function loadScript(src, callback) { The function loads a script with the given `src`, and then calls `callback(err)` in case of an error, or `callback(null, script)` in case of successful loading. That's a widespread agreement for using callbacks, we saw it before. -Let's promisify it. +Let's promisify it. We'll make a new function `loadScriptPromise(src)`, that does the same (loads the script), but returns a promise instead of using callbacks. @@ -124,7 +124,7 @@ For more exotic callback formats, like those without `err` at all: `callback(res There are also modules with a bit more flexible promisification functions, e.g. [es6-promisify](https://github.com/digitaldesignlabs/es6-promisify). In Node.js, there's a built-in `util.promisify` function for that. ```smart -Promisification is a great approach, especially when you use `async/await` (see the next chapter), but not a total replacement for callbacks. +Promisification is a great approach, especially when you use `async/await` (covered later in the chapter ), but not a total replacement for callbacks. Remember, a promise may have only one result, but a callback may technically be called many times. diff --git a/1-js/12-generators-iterators/1-generators/01-pseudo-random-generator/solution.md b/1-js/12-generators-iterators/1-generators/01-pseudo-random-generator/solution.md index af2ad0eed..4355d0cfc 100644 --- a/1-js/12-generators-iterators/1-generators/01-pseudo-random-generator/solution.md +++ b/1-js/12-generators-iterators/1-generators/01-pseudo-random-generator/solution.md @@ -3,7 +3,7 @@ function* pseudoRandom(seed) { let value = seed; while(true) { - value = value * 16807 % 2147483647 + value = value * 16807 % 2147483647; yield value; } diff --git a/1-js/13-modules/01-modules-intro/article.md b/1-js/13-modules/01-modules-intro/article.md index fede84069..5ad70d151 100644 --- a/1-js/13-modules/01-modules-intro/article.md +++ b/1-js/13-modules/01-modules-intro/article.md @@ -9,11 +9,11 @@ But eventually scripts became more and more complex, so the community invented a To name some (for historical reasons): -- [AMD](https://en.wikipedia.org/wiki/Asynchronous_module_definition) -- one of the most ancient module systems, initially implemented by the library [require.js](http://requirejs.org/). -- [CommonJS](http://wiki.commonjs.org/wiki/Modules/1.1) -- the module system created for Node.js server. +- [AMD](https://en.wikipedia.org/wiki/Asynchronous_module_definition) -- one of the most ancient module systems, initially implemented by the library [require.js](https://requirejs.org/). +- [CommonJS](https://wiki.commonjs.org/wiki/Modules/1.1) -- the module system created for Node.js server. - [UMD](https://github.com/umdjs/umd) -- one more module system, suggested as a universal one, compatible with AMD and CommonJS. -Now all these slowly become a part of history, but we still can find them in old scripts. +Now these all slowly became a part of history, but we still can find them in old scripts. The language-level module system appeared in the standard in 2015, gradually evolved since then, and is now supported by all major browsers and in Node.js. So we'll study the modern JavaScript modules from now on. @@ -272,7 +272,7 @@ In other words: - module scripts wait until the HTML document is fully ready (even if they are tiny and load faster than HTML), and then run. - relative order of scripts is maintained: scripts that go first in the document, execute first. -As a side-effect, module scripts always "see" the fully loaded HTML-page, including HTML elements below them. +As a side effect, module scripts always "see" the fully loaded HTML-page, including HTML elements below them. For instance: diff --git a/1-js/13-modules/02-import-export/article.md b/1-js/13-modules/02-import-export/article.md index 8af1b3b10..ccbf18cf5 100644 --- a/1-js/13-modules/02-import-export/article.md +++ b/1-js/13-modules/02-import-export/article.md @@ -46,7 +46,7 @@ Also, we can put `export` separately. Here we first declare, and then export: -```js +```js // 📁 say.js function sayHi(user) { alert(`Hello, ${user}!`); @@ -93,25 +93,14 @@ At first sight, "import everything" seems such a cool thing, short to write, why Well, there are few reasons. -1. Modern build tools ([webpack](https://webpack.js.org/) and others) bundle modules together and optimize them to speedup loading and remove unused stuff. - - Let's say, we added a 3rd-party library `say.js` to our project with many functions: - ```js - // 📁 say.js - export function sayHi() { ... } - export function sayBye() { ... } - export function becomeSilent() { ... } - ``` +1. Explicitly listing what to import gives shorter names: `sayHi()` instead of `say.sayHi()`. +2. Explicit list of imports gives better overview of the code structure: what is used and where. It makes code support and refactoring easier. - Now if we only use one of `say.js` functions in our project: - ```js - // 📁 main.js - import {sayHi} from './say.js'; - ``` - ...Then the optimizer will see that and remove the other functions from the bundled code, thus making the build smaller. That is called "tree-shaking". +```smart header="Don't be afraid to import too much" +Modern build tools, such as [webpack](https://webpack.js.org/) and others, bundle modules together and optimize them to speedup loading. They also removed unused imports. -2. Explicitly listing what to import gives shorter names: `sayHi()` instead of `say.sayHi()`. -3. Explicit list of imports gives better overview of the code structure: what is used and where. It makes code support and refactoring easier. +For instance, if you `import * as library` from a huge code library, and then use only few methods, then unused ones [will not be included](https://github.com/webpack/webpack/tree/main/examples/harmony-unused#examplejs) into the optimzed bundle. +``` ## Import "as" @@ -224,7 +213,7 @@ Without `default`, such an export would give an error: export class { // Error! (non-default export needs a name) constructor() {} } -``` +``` ### The "default" name @@ -326,7 +315,7 @@ Imagine, we're writing a "package": a folder with a lot of modules, with some of The file structure could be like this: ``` auth/ - index.js + index.js user.js helpers.js tests/ @@ -372,7 +361,7 @@ The syntax `export ... from ...` is just a shorter notation for such import-expo ```js // 📁 auth/index.js -// re-export login/logout +// re-export login/logout export {login, logout} from './helpers.js'; // re-export the default export as User @@ -380,7 +369,7 @@ export {default as User} from './user.js'; ... ``` -The notable difference of `export ... from` compared to `import/export` is that re-exported modules aren't available in the current file. So inside the above example of `auth/index.js` we can't use re-exported `login/logout` functions. +The notable difference of `export ... from` compared to `import/export` is that re-exported modules aren't available in the current file. So inside the above example of `auth/index.js` we can't use re-exported `login/logout` functions. ### Re-exporting the default export @@ -399,7 +388,7 @@ We can come across two problems with it: 1. `export User from './user.js'` won't work. That would lead to a syntax error. - To re-export the default export, we have to write `export {default as User}`, as in the example above. + To re-export the default export, we have to write `export {default as User}`, as in the example above. 2. `export * from './user.js'` re-exports only named exports, but ignores the default one. @@ -430,7 +419,7 @@ Import: - Importing named exports: - `import {x [as y], ...} from "module"` -- Importing the default export: +- Importing the default export: - `import x from "module"` - `import {default as x} from "module"` - Import all: diff --git a/1-js/99-js-misc/01-proxy/proxy.svg b/1-js/99-js-misc/01-proxy/proxy.svg index 157e350f4..6b2224cfd 100644 --- a/1-js/99-js-misc/01-proxy/proxy.svg +++ b/1-js/99-js-misc/01-proxy/proxy.svg @@ -1 +1 @@ -test: 5proxytargetget proxy.test5 \ No newline at end of file +test: 5proxytargetget proxy.test5 \ No newline at end of file diff --git a/1-js/99-js-misc/04-reference-type/article.md b/1-js/99-js-misc/04-reference-type/article.md index 6861837a9..894db8fc6 100644 --- a/1-js/99-js-misc/04-reference-type/article.md +++ b/1-js/99-js-misc/04-reference-type/article.md @@ -87,7 +87,7 @@ The result of a property access `user.hi` is not a function, but a value of Refe (user, "hi", true) ``` -When parentheses `()` are called on the Reference Type, they receive the full information about the object and its method, and can set the right `this` (`=user` in this case). +When parentheses `()` are called on the Reference Type, they receive the full information about the object and its method, and can set the right `this` (`user` in this case). Reference type is a special "intermediary" internal type, with the purpose to pass information from dot `.` to calling parentheses `()`. diff --git a/1-js/99-js-misc/06-unicode/article.md b/1-js/99-js-misc/06-unicode/article.md new file mode 100644 index 000000000..4f144f824 --- /dev/null +++ b/1-js/99-js-misc/06-unicode/article.md @@ -0,0 +1,172 @@ + +# Unicode, String internals + +```warn header="Advanced knowledge" +The section goes deeper into string internals. This knowledge will be useful for you if you plan to deal with emoji, rare mathematical or hieroglyphic characters, or other rare symbols. +``` + +As we already know, JavaScript strings are based on [Unicode](https://en.wikipedia.org/wiki/Unicode): each character is represented by a byte sequence of 1-4 bytes. + +JavaScript allows us to insert a character into a string by specifying its hexadecimal Unicode code with one of these three notations: + +- `\xXX` + + `XX` must be two hexadecimal digits with a value between `00` and `FF`, then `\xXX` is the character whose Unicode code is `XX`. + + Because the `\xXX` notation supports only two hexadecimal digits, it can be used only for the first 256 Unicode characters. + + These first 256 characters include the Latin alphabet, most basic syntax characters, and some others. For example, `"\x7A"` is the same as `"z"` (Unicode `U+007A`). + + ```js run + alert( "\x7A" ); // z + alert( "\xA9" ); // ©, the copyright symbol + ``` + +- `\uXXXX` + `XXXX` must be exactly 4 hex digits with the value between `0000` and `FFFF`, then `\uXXXX` is the character whose Unicode code is `XXXX`. + + Characters with Unicode values greater than `U+FFFF` can also be represented with this notation, but in this case, we will need to use a so called surrogate pair (we will talk about surrogate pairs later in this chapter). + + ```js run + alert( "\u00A9" ); // ©, the same as \xA9, using the 4-digit hex notation + alert( "\u044F" ); // я, the Cyrillic alphabet letter + alert( "\u2191" ); // ↑, the arrow up symbol + ``` + +- `\u{X…XXXXXX}` + + `X…XXXXXX` must be a hexadecimal value of 1 to 6 bytes between `0` and `10FFFF` (the highest code point defined by Unicode). This notation allows us to easily represent all existing Unicode characters. + + ```js run + alert( "\u{20331}" ); // 佫, a rare Chinese character (long Unicode) + alert( "\u{1F60D}" ); // 😍, a smiling face symbol (another long Unicode) + ``` + +## Surrogate pairs + +All frequently used characters have 2-byte codes (4 hex digits). Letters in most European languages, numbers, and the basic unified CJK ideographic sets (CJK -- from Chinese, Japanese, and Korean writing systems), have a 2-byte representation. + +Initially, JavaScript was based on UTF-16 encoding that only allowed 2 bytes per character. But 2 bytes only allow 65536 combinations and that's not enough for every possible symbol of Unicode. + +So rare symbols that require more than 2 bytes are encoded with a pair of 2-byte characters called "a surrogate pair". + +As a side effect, the length of such symbols is `2`: + +```js run +alert( '𝒳'.length ); // 2, MATHEMATICAL SCRIPT CAPITAL X +alert( '😂'.length ); // 2, FACE WITH TEARS OF JOY +alert( '𩷶'.length ); // 2, a rare Chinese character +``` + +That's because surrogate pairs did not exist at the time when JavaScript was created, and thus are not correctly processed by the language! + +We actually have a single symbol in each of the strings above, but the `length` property shows a length of `2`. + +Getting a symbol can also be tricky, because most language features treat surrogate pairs as two characters. + +For example, here we can see two odd characters in the output: + +```js run +alert( '𝒳'[0] ); // shows strange symbols... +alert( '𝒳'[1] ); // ...pieces of the surrogate pair +``` + +Pieces of a surrogate pair have no meaning without each other. So the alerts in the example above actually display garbage. + +Technically, surrogate pairs are also detectable by their codes: if a character has the code in the interval of `0xd800..0xdbff`, then it is the first part of the surrogate pair. The next character (second part) must have the code in interval `0xdc00..0xdfff`. These intervals are reserved exclusively for surrogate pairs by the standard. + +So the methods [String.fromCodePoint](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/fromCodePoint) and [str.codePointAt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/codePointAt) were added in JavaScript to deal with surrogate pairs. + +They are essentially the same as [String.fromCharCode](mdn:js/String/fromCharCode) and [str.charCodeAt](mdn:js/String/charCodeAt), but they treat surrogate pairs correctly. + +One can see the difference here: + +```js run +// charCodeAt is not surrogate-pair aware, so it gives codes for the 1st part of 𝒳: + +alert( '𝒳'.charCodeAt(0).toString(16) ); // d835 + +// codePointAt is surrogate-pair aware +alert( '𝒳'.codePointAt(0).toString(16) ); // 1d4b3, reads both parts of the surrogate pair +``` + +That said, if we take from position 1 (and that's rather incorrect here), then they both return only the 2nd part of the pair: + +```js run +alert( '𝒳'.charCodeAt(1).toString(16) ); // dcb3 +alert( '𝒳'.codePointAt(1).toString(16) ); // dcb3 +// meaningless 2nd half of the pair +``` + +You will find more ways to deal with surrogate pairs later in the chapter . There are probably special libraries for that too, but nothing famous enough to suggest here. + +````warn header="Takeaway: splitting strings at an arbitrary point is dangerous" +We can't just split a string at an arbitrary position, e.g. take `str.slice(0, 4)` and expect it to be a valid string, e.g.: + +```js run +alert( 'hi 😂'.slice(0, 4) ); // hi [?] +``` + +Here we can see a garbage character (first half of the smile surrogate pair) in the output. + +Just be aware of it if you intend to reliably work with surrogate pairs. May not be a big problem, but at least you should understand what happens. +```` + +## Diacritical marks and normalization + +In many languages, there are symbols that are composed of the base character with a mark above/under it. + +For instance, the letter `a` can be the base character for these characters: `àáâäãåā`. + +Most common "composite" characters have their own code in the Unicode table. But not all of them, because there are too many possible combinations. + +To support arbitrary compositions, the Unicode standard allows us to use several Unicode characters: the base character followed by one or many "mark" characters that "decorate" it. + +For instance, if we have `S` followed by the special "dot above" character (code `\u0307`), it is shown as Ṡ. + +```js run +alert( 'S\u0307' ); // Ṡ +``` + +If we need an additional mark above the letter (or below it) -- no problem, just add the necessary mark character. + +For instance, if we append a character "dot below" (code `\u0323`), then we'll have "S with dots above and below": `Ṩ`. + +For example: + +```js run +alert( 'S\u0307\u0323' ); // Ṩ +``` + +This provides great flexibility, but also an interesting problem: two characters may visually look the same, but be represented with different Unicode compositions. + +For instance: + +```js run +let s1 = 'S\u0307\u0323'; // Ṩ, S + dot above + dot below +let s2 = 'S\u0323\u0307'; // Ṩ, S + dot below + dot above + +alert( `s1: ${s1}, s2: ${s2}` ); + +alert( s1 == s2 ); // false though the characters look identical (?!) +``` + +To solve this, there exists a "Unicode normalization" algorithm that brings each string to the single "normal" form. + +It is implemented by [str.normalize()](mdn:js/String/normalize). + +```js run +alert( "S\u0307\u0323".normalize() == "S\u0323\u0307".normalize() ); // true +``` + +It's funny that in our situation `normalize()` actually brings together a sequence of 3 characters to one: `\u1e68` (S with two dots). + +```js run +alert( "S\u0307\u0323".normalize().length ); // 1 + +alert( "S\u0307\u0323".normalize() == "\u1e68" ); // true +``` + +In reality, this is not always the case. The reason is that the symbol `Ṩ` is "common enough", so Unicode creators included it in the main table and gave it the code. + +If you want to learn more about normalization rules and variants -- they are described in the appendix of the Unicode standard: [Unicode Normalization Forms](https://www.unicode.org/reports/tr15/), but for most practical purposes the information from this section is enough. diff --git a/2-ui/1-document/01-browser-environment/article.md b/2-ui/1-document/01-browser-environment/article.md index 43dec976a..eedc28fb3 100644 --- a/2-ui/1-document/01-browser-environment/article.md +++ b/2-ui/1-document/01-browser-environment/article.md @@ -1,10 +1,10 @@ # Browser environment, specs -The JavaScript language was initially created for web browsers. Since then it has evolved and become a language with many uses and platforms. +The JavaScript language was initially created for web browsers. Since then, it has evolved into a language with many uses and platforms. -A platform may be a browser, or a web-server or another *host*, even a "smart" coffee machine, if it can run JavaScript. Each of them provides platform-specific functionality. The JavaScript specification calls that a *host environment*. +A platform may be a browser, or a web-server or another *host*, or even a "smart" coffee machine if it can run JavaScript. Each of these provides platform-specific functionality. The JavaScript specification calls that a *host environment*. -A host environment provides own objects and functions additional to the language core. Web browsers give a means to control web pages. Node.js provides server-side features, and so on. +A host environment provides its own objects and functions in addition to the language core. Web browsers give a means to control web pages. Node.js provides server-side features, and so on. Here's a bird's-eye view of what we have when JavaScript runs in a web browser: @@ -15,7 +15,7 @@ There's a "root" object called `window`. It has two roles: 1. First, it is a global object for JavaScript code, as described in the chapter . 2. Second, it represents the "browser window" and provides methods to control it. -For instance, here we use it as a global object: +For instance, we can use it as a global object: ```js run global function sayHi() { @@ -26,17 +26,17 @@ function sayHi() { window.sayHi(); ``` -And here we use it as a browser window, to see the window height: +And we can use it as a browser window, to show the window height: ```js run alert(window.innerHeight); // inner window height ``` -There are more window-specific methods and properties, we'll cover them later. +There are more window-specific methods and properties, which we'll cover later. ## DOM (Document Object Model) -Document Object Model, or DOM for short, represents all page content as objects that can be modified. +The Document Object Model, or DOM for short, represents all page content as objects that can be modified. The `document` object is the main "entry point" to the page. We can change or create anything on the page using it. @@ -49,18 +49,18 @@ document.body.style.background = "red"; setTimeout(() => document.body.style.background = "", 1000); ``` -Here we used `document.body.style`, but there's much, much more. Properties and methods are described in the specification: [DOM Living Standard](https://dom.spec.whatwg.org). +Here, we used `document.body.style`, but there's much, much more. Properties and methods are described in the specification: [DOM Living Standard](https://dom.spec.whatwg.org). ```smart header="DOM is not only for browsers" The DOM specification explains the structure of a document and provides objects to manipulate it. There are non-browser instruments that use DOM too. -For instance, server-side scripts that download HTML pages and process them can also use DOM. They may support only a part of the specification though. +For instance, server-side scripts that download HTML pages and process them can also use the DOM. They may support only a part of the specification though. ``` ```smart header="CSSOM for styling" There's also a separate specification, [CSS Object Model (CSSOM)](https://www.w3.org/TR/cssom-1/) for CSS rules and stylesheets, that explains how they are represented as objects, and how to read and write them. -CSSOM is used together with DOM when we modify style rules for the document. In practice though, CSSOM is rarely required, because we rarely need to modify CSS rules from JavaScript (usually we just add/remove CSS classes, not modify their CSS rules), but that's also possible. +The CSSOM is used together with the DOM when we modify style rules for the document. In practice though, the CSSOM is rarely required, because we rarely need to modify CSS rules from JavaScript (usually we just add/remove CSS classes, not modify their CSS rules), but that's also possible. ``` ## BOM (Browser Object Model) @@ -69,7 +69,7 @@ The Browser Object Model (BOM) represents additional objects provided by the bro For instance: -- The [navigator](mdn:api/Window/navigator) object provides background information about the browser and the operating system. There are many properties, but the two most widely known are: `navigator.userAgent` -- about the current browser, and `navigator.platform` -- about the platform (can help to differ between Windows/Linux/Mac etc). +- The [navigator](mdn:api/Window/navigator) object provides background information about the browser and the operating system. There are many properties, but the two most widely known are: `navigator.userAgent` -- about the current browser, and `navigator.platform` -- about the platform (can help to differentiate between Windows/Linux/Mac etc). - The [location](mdn:api/Window/location) object allows us to read the current URL and can redirect the browser to a new one. Here's how we can use the `location` object: @@ -81,12 +81,12 @@ if (confirm("Go to Wikipedia?")) { } ``` -Functions `alert/confirm/prompt` are also a part of BOM: they are directly not related to the document, but represent pure browser methods of communicating with the user. +The functions `alert/confirm/prompt` are also a part of the BOM: they are not directly related to the document, but represent pure browser methods for communicating with the user. ```smart header="Specifications" -BOM is the part of the general [HTML specification](https://html.spec.whatwg.org). +The BOM is a part of the general [HTML specification](https://html.spec.whatwg.org). -Yes, you heard that right. The HTML spec at is not only about the "HTML language" (tags, attributes), but also covers a bunch of objects, methods and browser-specific DOM extensions. That's "HTML in broad terms". Also, some parts have additional specs listed at . +Yes, you heard that right. The HTML spec at is not only about the "HTML language" (tags, attributes), but also covers a bunch of objects, methods, and browser-specific DOM extensions. That's "HTML in broad terms". Also, some parts have additional specs listed at . ``` ## Summary @@ -94,20 +94,20 @@ Yes, you heard that right. The HTML spec at is no Talking about standards, we have: DOM specification -: Describes the document structure, manipulations and events, see . +: Describes the document structure, manipulations, and events, see . CSSOM specification -: Describes stylesheets and style rules, manipulations with them and their binding to documents, see . +: Describes stylesheets and style rules, manipulations with them, and their binding to documents, see . HTML specification : Describes the HTML language (e.g. tags) and also the BOM (browser object model) -- various browser functions: `setTimeout`, `alert`, `location` and so on, see . It takes the DOM specification and extends it with many additional properties and methods. Additionally, some classes are described separately at . -Please note these links, as there's so much stuff to learn it's impossible to cover and remember everything. +Please note these links, as there's so much to learn that it's impossible to cover everything and remember it all. -When you'd like to read about a property or a method, the Mozilla manual at is also a nice resource, but the corresponding spec may be better: it's more complex and longer to read, but will make your fundamental knowledge sound and complete. +When you'd like to read about a property or a method, the Mozilla manual at is also a nice resource, but the corresponding spec may be better: it's more complex and longer to read, but will make your fundamental knowledge sound and complete. To find something, it's often convenient to use an internet search "WHATWG [term]" or "MDN [term]", e.g , . -Now we'll get down to learning DOM, because the document plays the central role in the UI. +Now, we'll get down to learning the DOM, because the document plays the central role in the UI. diff --git a/2-ui/1-document/02-dom-nodes/article.md b/2-ui/1-document/02-dom-nodes/article.md index e18335f38..f7f2be91d 100644 --- a/2-ui/1-document/02-dom-nodes/article.md +++ b/2-ui/1-document/02-dom-nodes/article.md @@ -212,7 +212,7 @@ There are [12 node types](https://dom.spec.whatwg.org/#node). In practice we usu ## See it for yourself -To see the DOM structure in real-time, try [Live DOM Viewer](http://software.hixie.ch/utilities/js/live-dom-viewer/). Just type in the document, and it will show up as a DOM at an instant. +To see the DOM structure in real-time, try [Live DOM Viewer](https://software.hixie.ch/utilities/js/live-dom-viewer/). Just type in the document, and it will show up as a DOM at an instant. Another way to explore the DOM is to use the browser developer tools. Actually, that's what we use when developing. diff --git a/2-ui/1-document/02-dom-nodes/domconsole0.svg b/2-ui/1-document/02-dom-nodes/domconsole0.svg index ea0d9141c..eb99f193f 100644 --- a/2-ui/1-document/02-dom-nodes/domconsole0.svg +++ b/2-ui/1-document/02-dom-nodes/domconsole0.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/2-ui/1-document/02-dom-nodes/domconsole1.svg b/2-ui/1-document/02-dom-nodes/domconsole1.svg index d7f32debb..02ef5f0a6 100644 --- a/2-ui/1-document/02-dom-nodes/domconsole1.svg +++ b/2-ui/1-document/02-dom-nodes/domconsole1.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/2-ui/1-document/02-dom-nodes/elk.svg b/2-ui/1-document/02-dom-nodes/elk.svg index 1797a099f..448eea9d1 100644 --- a/2-ui/1-document/02-dom-nodes/elk.svg +++ b/2-ui/1-document/02-dom-nodes/elk.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/2-ui/1-document/02-dom-nodes/inspect.svg b/2-ui/1-document/02-dom-nodes/inspect.svg index a894a5c0e..60696ec0d 100644 --- a/2-ui/1-document/02-dom-nodes/inspect.svg +++ b/2-ui/1-document/02-dom-nodes/inspect.svg @@ -1 +1 @@ - \ No newline at end of file + \ No newline at end of file diff --git a/2-ui/1-document/04-searching-elements-dom/article.md b/2-ui/1-document/04-searching-elements-dom/article.md index 735ae4c8a..405129694 100644 --- a/2-ui/1-document/04-searching-elements-dom/article.md +++ b/2-ui/1-document/04-searching-elements-dom/article.md @@ -55,7 +55,7 @@ Also, there's a global variable named by `id` that references the element: ``` ```warn header="Please don't use id-named global variables to access elements" -This behavior is described [in the specification](http://www.whatwg.org/specs/web-apps/current-work/#dom-window-nameditem), so it's a kind of standard. But it is supported mainly for compatibility. +This behavior is described [in the specification](https://html.spec.whatwg.org/multipage/window-object.html#named-access-on-the-window-object), but it is supported mainly for compatibility. The browser tries to help us by mixing namespaces of JS and DOM. That's fine for simple scripts, inlined into HTML, but generally isn't a good thing. There may be naming conflicts. Also, when one reads JS code and doesn't have HTML in view, it's not obvious where the variable comes from. @@ -116,7 +116,7 @@ In other words, the result is the same as `elem.querySelectorAll(css)[0]`, but t Previous methods were searching the DOM. -The [elem.matches(css)](http://dom.spec.whatwg.org/#dom-element-matches) does not look for anything, it merely checks if `elem` matches the given CSS-selector. It returns `true` or `false`. +The [elem.matches(css)](https://dom.spec.whatwg.org/#dom-element-matches) does not look for anything, it merely checks if `elem` matches the given CSS-selector. It returns `true` or `false`. The method comes in handy when we are iterating over elements (like in an array or something) and trying to filter out those that interest us. diff --git a/2-ui/1-document/05-basic-dom-node-properties/article.md b/2-ui/1-document/05-basic-dom-node-properties/article.md index b1d6486f4..99dde5bcd 100644 --- a/2-ui/1-document/05-basic-dom-node-properties/article.md +++ b/2-ui/1-document/05-basic-dom-node-properties/article.md @@ -10,7 +10,7 @@ Different DOM nodes may have different properties. For instance, an element node Each DOM node belongs to the corresponding built-in class. -The root of the hierarchy is [EventTarget](https://dom.spec.whatwg.org/#eventtarget), that is inherited by [Node](http://dom.spec.whatwg.org/#interface-node), and other DOM nodes inherit from it. +The root of the hierarchy is [EventTarget](https://dom.spec.whatwg.org/#eventtarget), that is inherited by [Node](https://dom.spec.whatwg.org/#interface-node), and other DOM nodes inherit from it. Here's the picture, explanations to follow: @@ -18,10 +18,31 @@ Here's the picture, explanations to follow: The classes are: -- [EventTarget](https://dom.spec.whatwg.org/#eventtarget) -- is the root "abstract" class. Objects of that class are never created. It serves as a base, so that all DOM nodes support so-called "events", we'll study them later. -- [Node](http://dom.spec.whatwg.org/#interface-node) -- is also an "abstract" class, serving as a base for DOM nodes. It provides the core tree functionality: `parentNode`, `nextSibling`, `childNodes` and so on (they are getters). Objects of `Node` class are never created. But there are concrete node classes that inherit from it, namely: `Text` for text nodes, `Element` for element nodes and more exotic ones like `Comment` for comment nodes. -- [Element](http://dom.spec.whatwg.org/#interface-element) -- is a base class for DOM elements. It provides element-level navigation like `nextElementSibling`, `children` and searching methods like `getElementsByTagName`, `querySelector`. A browser supports not only HTML, but also XML and SVG. The `Element` class serves as a base for more specific classes: `SVGElement`, `XMLElement` and `HTMLElement`. -- [HTMLElement](https://html.spec.whatwg.org/multipage/dom.html#htmlelement) -- is finally the basic class for all HTML elements. It is inherited by concrete HTML elements: +- [EventTarget](https://dom.spec.whatwg.org/#eventtarget) -- is the root "abstract" class for everything. + + Objects of that class are never created. It serves as a base, so that all DOM nodes support so-called "events", we'll study them later. + +- [Node](https://dom.spec.whatwg.org/#interface-node) -- is also an "abstract" class, serving as a base for DOM nodes. + + It provides the core tree functionality: `parentNode`, `nextSibling`, `childNodes` and so on (they are getters). Objects of `Node` class are never created. But there are other classes that inherit from it (and so inherit the `Node` functionality). + +- [Document](https://dom.spec.whatwg.org/#interface-document), for historical reasons often inherited by `HTMLDocument` (though the latest spec doesn't dictate it) -- is a document as a whole. + + The `document` global object belongs exactly to this class. It serves as an entry point to the DOM. + +- [CharacterData](https://dom.spec.whatwg.org/#interface-characterdata) -- an "abstract" class, inherited by: + - [Text](https://dom.spec.whatwg.org/#interface-text) -- the class corresponding to a text inside elements, e.g. `Hello` in `

Hello

`. + - [Comment](https://dom.spec.whatwg.org/#interface-comment) -- the class for comments. They are not shown, but each comment becomes a member of DOM. + +- [Element](https://dom.spec.whatwg.org/#interface-element) -- is the base class for DOM elements. + + It provides element-level navigation like `nextElementSibling`, `children` and searching methods like `getElementsByTagName`, `querySelector`. + + A browser supports not only HTML, but also XML and SVG. So the `Element` class serves as a base for more specific classes: `SVGElement`, `XMLElement` (we don't need them here) and `HTMLElement`. + +- Finally, [HTMLElement](https://html.spec.whatwg.org/multipage/dom.html#htmlelement) is the basic class for all HTML elements. We'll work with it most of the time. + + It is inherited by concrete HTML elements: - [HTMLInputElement](https://html.spec.whatwg.org/multipage/forms.html#htmlinputelement) -- the class for `` elements, - [HTMLBodyElement](https://html.spec.whatwg.org/multipage/semantics.html#htmlbodyelement) -- the class for `` elements, - [HTMLAnchorElement](https://html.spec.whatwg.org/multipage/semantics.html#htmlanchorelement) -- the class for `` elements, @@ -29,7 +50,7 @@ The classes are: There are many other tags with their own classes that may have specific properties and methods, while some elements, such as ``, `
`, `
` do not have any specific properties, so they are instances of `HTMLElement` class. -So, the full set of properties and methods of a given node comes as the result of the inheritance. +So, the full set of properties and methods of a given node comes as the result of the chain of inheritance. For example, let's consider the DOM object for an `` element. It belongs to [HTMLInputElement](https://html.spec.whatwg.org/multipage/forms.html#htmlinputelement) class. @@ -133,10 +154,10 @@ For instance: ``` -But there are exclusions, for instance `input.value` synchronizes only from attribute -> to property, but not back: +But there are exclusions, for instance `input.value` synchronizes only from attribute -> property, but not back: ```html run diff --git a/2-ui/1-document/07-modifying-document/5-why-aaa/task.md b/2-ui/1-document/07-modifying-document/5-why-aaa/task.md index f87074dba..861f70503 100644 --- a/2-ui/1-document/07-modifying-document/5-why-aaa/task.md +++ b/2-ui/1-document/07-modifying-document/5-why-aaa/task.md @@ -22,6 +22,6 @@ Why does that happen? alert(table); // the table, as it should be table.remove(); - // why there's still aaa in the document? + // why there's still "aaa" in the document? ``` diff --git a/2-ui/1-document/08-styles-and-classes/article.md b/2-ui/1-document/08-styles-and-classes/article.md index 9154d43d6..46aaa3b00 100644 --- a/2-ui/1-document/08-styles-and-classes/article.md +++ b/2-ui/1-document/08-styles-and-classes/article.md @@ -128,6 +128,14 @@ setTimeout(() => document.body.style.display = "", 1000); // back to normal If we set `style.display` to an empty string, then the browser applies CSS classes and its built-in styles normally, as if there were no such `style.display` property at all. +Also there is a special method for that, `elem.style.removeProperty('style property')`. So, We can remove a property like this: + +```js run +document.body.style.background = 'red'; //set background to red + +setTimeout(() => document.body.style.removeProperty('background'), 1000); // remove background after 1 second +``` + ````smart header="Full rewrite with `style.cssText`" Normally, we use `style.*` to assign individual style properties. We can't set the full style like `div.style="color: red; width: 100px"`, because `div.style` is an object, and it's read-only. @@ -261,20 +269,6 @@ So nowadays `getComputedStyle` actually returns the resolved value of the proper We should always ask for the exact property that we want, like `paddingLeft` or `marginTop` or `borderTopWidth`. Otherwise the correct result is not guaranteed. For instance, if there are properties `paddingLeft/paddingTop`, then what should we get for `getComputedStyle(elem).padding`? Nothing, or maybe a "generated" value from known paddings? There's no standard rule here. - -There are other inconsistencies. As an example, some browsers (Chrome) show `10px` in the document below, and some of them (Firefox) -- do not: - -```html run - - -``` ```` ```smart header="Styles applied to `:visited` links are hidden!" diff --git a/2-ui/1-document/09-size-and-scroll/4-put-ball-in-center/field.svg b/2-ui/1-document/09-size-and-scroll/4-put-ball-in-center/field.svg index 4ae90b1c7..f5bd9f4f9 100644 --- a/2-ui/1-document/09-size-and-scroll/4-put-ball-in-center/field.svg +++ b/2-ui/1-document/09-size-and-scroll/4-put-ball-in-center/field.svg @@ -1 +1 @@ -(0,0)clientWidth \ No newline at end of file +(0,0)clientWidth \ No newline at end of file diff --git a/2-ui/1-document/09-size-and-scroll/metric-all.svg b/2-ui/1-document/09-size-and-scroll/metric-all.svg index a5dadb47f..20a59e18d 100644 --- a/2-ui/1-document/09-size-and-scroll/metric-all.svg +++ b/2-ui/1-document/09-size-and-scroll/metric-all.svg @@ -1 +1 @@ -Introduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0. The development of this Standard started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997. That Ecma Standard was submitted to ISO/ IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.scrollHeightoffsetHeightscrollTopclientHeightoffsetTopclientLeftclientWidthclientTopoffsetLeftoffsetWidth \ No newline at end of file +Introduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0. The development of this Standard started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997. That Ecma Standard was submitted to ISO/ IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.scrollHeightoffsetHeightscrollTopclientHeightoffsetTopclientLeftclientWidthclientTopoffsetLeftoffsetWidth \ No newline at end of file diff --git a/2-ui/1-document/09-size-and-scroll/metric-client-width-height.svg b/2-ui/1-document/09-size-and-scroll/metric-client-width-height.svg index 83864b4c5..2603b05fb 100644 --- a/2-ui/1-document/09-size-and-scroll/metric-client-width-height.svg +++ b/2-ui/1-document/09-size-and-scroll/metric-client-width-height.svg @@ -1 +1 @@ -border 25pxpadding 20pxcontent width: 284pxborder 25pxpadding 20pxscrollbar 16pxclientWidth = 20+284+20 = 324pxclientHeight: 240pxheight: 200pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with \ No newline at end of file +border 25pxpadding 20pxcontent width: 284pxborder 25pxpadding 20pxscrollbar 16pxclientWidth = 20+284+20 = 324pxclientHeight: 240pxheight: 200pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with \ No newline at end of file diff --git a/2-ui/1-document/09-size-and-scroll/metric-css.svg b/2-ui/1-document/09-size-and-scroll/metric-css.svg index 13aa62afd..1f2e5f780 100644 --- a/2-ui/1-document/09-size-and-scroll/metric-css.svg +++ b/2-ui/1-document/09-size-and-scroll/metric-css.svg @@ -1 +1 @@ -padding: 20pxheight: 200pxpadding: 20pxborder 25pxpadding 20pxcontent width: 284pxborder 25pxpadding 20pxscrollbar 16pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with \ No newline at end of file +padding: 20pxheight: 200pxpadding: 20pxborder 25pxpadding 20pxcontent width: 284pxborder 25pxpadding 20pxscrollbar 16pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with \ No newline at end of file diff --git a/2-ui/1-document/09-size-and-scroll/metric-offset-parent.svg b/2-ui/1-document/09-size-and-scroll/metric-offset-parent.svg index 9e247639b..2d108473e 100644 --- a/2-ui/1-document/09-size-and-scroll/metric-offset-parent.svg +++ b/2-ui/1-document/09-size-and-scroll/metric-offset-parent.svg @@ -1 +1 @@ -offsetTop: 180pxoffsetLeft: 180pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoftposition: absolute; left: 180px; top: 180px;offsetParent <MAIN> <DIV> \ No newline at end of file +offsetTop: 180pxoffsetLeft: 180pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoftposition: absolute; left: 180px; top: 180px;offsetParent <MAIN> <DIV> \ No newline at end of file diff --git a/2-ui/1-document/09-size-and-scroll/metric-offset-width-height.svg b/2-ui/1-document/09-size-and-scroll/metric-offset-width-height.svg index 49bdccda7..4d30d90cc 100644 --- a/2-ui/1-document/09-size-and-scroll/metric-offset-width-height.svg +++ b/2-ui/1-document/09-size-and-scroll/metric-offset-width-height.svg @@ -1 +1 @@ -border 25pxpadding 20pxcontent width: 284pxheight: 200pxborder 25pxpadding 20pxscrollbar 16pxoffsetWidth = 25+20+284+20+16+25 = 390pxoffsetHeight: 290pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with \ No newline at end of file +border 25pxpadding 20pxcontent width: 284pxheight: 200pxborder 25pxpadding 20pxscrollbar 16pxoffsetWidth = 25+20+284+20+16+25 = 390pxoffsetHeight: 290pxIntroduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with \ No newline at end of file diff --git a/2-ui/1-document/09-size-and-scroll/metric-scroll-top.svg b/2-ui/1-document/09-size-and-scroll/metric-scroll-top.svg index c6d14d0f3..7f72de422 100644 --- a/2-ui/1-document/09-size-and-scroll/metric-scroll-top.svg +++ b/2-ui/1-document/09-size-and-scroll/metric-scroll-top.svg @@ -1 +1 @@ -Introduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0. The development of this Standard started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997. That Ecma Standard was submitted to ISO/ IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.scrollTopscrollHeight: 723px \ No newline at end of file +Introduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0. The development of this Standard started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997. That Ecma Standard was submitted to ISO/ IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.scrollTopscrollHeight: 723px \ No newline at end of file diff --git a/2-ui/1-document/09-size-and-scroll/metric-scroll-width-height.svg b/2-ui/1-document/09-size-and-scroll/metric-scroll-width-height.svg index 0c3d29952..75a24e3bc 100644 --- a/2-ui/1-document/09-size-and-scroll/metric-scroll-width-height.svg +++ b/2-ui/1-document/09-size-and-scroll/metric-scroll-width-height.svg @@ -1 +1 @@ -Introduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0. The development of this Standard started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997. That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.scrollHeight: 723pxscrollWidth = 324px \ No newline at end of file +Introduction This Ecma Standard is based on several originating technologies, the most well known being JavaScript (Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft starting with Internet Explorer 3.0. The development of this Standard started in November 1996. The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 1997. That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition are editorial in nature.scrollHeight: 723pxscrollWidth = 324px \ No newline at end of file diff --git a/2-ui/1-document/11-coordinates/article.md b/2-ui/1-document/11-coordinates/article.md index 4775ff0eb..fc605c414 100644 --- a/2-ui/1-document/11-coordinates/article.md +++ b/2-ui/1-document/11-coordinates/article.md @@ -36,7 +36,7 @@ Additionally, there are derived properties: ```online For instance click this button to see its window coordinates: -

+

``` @@ -265,7 +265,7 @@ Here's a document with `