Skip to content

Commit 6b86d63

Browse files
committed
updates based on feedback from @timhoffm
1 parent aeeba89 commit 6b86d63

File tree

1 file changed

+19
-14
lines changed

1 file changed

+19
-14
lines changed

lib/matplotlib/colors.py

Lines changed: 19 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -3226,16 +3226,16 @@ def inverse(self, value):
32263226

32273227
class MultiNorm(Normalize):
32283228
"""
3229-
A mixin class which contains multiple scalar norms
3229+
A class which contains multiple scalar norms
32303230
"""
32313231

32323232
def __init__(self, norms, vmin=None, vmax=None, clip=False):
32333233
"""
32343234
Parameters
32353235
----------
3236-
norms : List of (str, `Normalize` or None)
3236+
norms : list of (str, `Normalize` or None)
32373237
The constituent norms. The list must have a minimum length of 2.
3238-
vmin, vmax : float, None, or list of float or None
3238+
vmin, vmax : float or None or list of (float or None)
32393239
Limits of the constituent norms.
32403240
If a list, each value is assigned to each of the constituent
32413241
norms. Single values are repeated to form a list of appropriate size.
@@ -3279,14 +3279,17 @@ def __init__(self, norms, vmin=None, vmax=None, clip=False):
32793279

32803280
@property
32813281
def n_variables(self):
3282+
"""Number of norms held by this `MultiNorm`."""
32823283
return len(self._norms)
32833284

32843285
@property
32853286
def norms(self):
3287+
"""The individual norms held but this `MultiNorm`"""
32863288
return self._norms
32873289

32883290
@property
32893291
def vmin(self):
3292+
"""The lower limit of each constituent norm."""
32903293
return tuple(n.vmin for n in self._norms)
32913294

32923295
@vmin.setter
@@ -3300,6 +3303,7 @@ def vmin(self, value):
33003303

33013304
@property
33023305
def vmax(self):
3306+
"""The upper limit of each constituent norm."""
33033307
return tuple(n.vmax for n in self._norms)
33043308

33053309
@vmax.setter
@@ -3313,6 +3317,7 @@ def vmax(self, value):
33133317

33143318
@property
33153319
def clip(self):
3320+
"""The clip behaviour of each constituent norm."""
33163321
return tuple(n.clip for n in self._norms)
33173322

33183323
@clip.setter
@@ -3339,17 +3344,17 @@ def __call__(self, value, clip=None):
33393344
33403345
Parameters
33413346
----------
3342-
value
3343-
Data to normalize. Must be of length `n_variables` or have a data type with
3344-
`n_variables` fields.
3347+
value : array-like
3348+
Data to normalize. Must be of length `n_variables` or be a structured
3349+
array or scalar with `n_variables` fields.
33453350
clip : list of bools or bool, optional
33463351
See the description of the parameter *clip* in Normalize.
33473352
If ``None``, defaults to ``self.clip`` (which defaults to
33483353
``False``).
33493354
33503355
Returns
33513356
-------
3352-
List
3357+
list
33533358
Normalized input values as a list of length `n_variables`
33543359
33553360
Notes
@@ -3373,8 +3378,8 @@ def inverse(self, value):
33733378
Parameters
33743379
----------
33753380
value
3376-
Normalized value. Must be of length `n_variables` or have a data type with
3377-
`n_variables` fields.
3381+
Normalized value. Must be of length `n_variables` or be a structured array
3382+
or scalar with `n_variables` fields.
33783383
"""
33793384
value = self._iterable_variates_in_data(value, self.n_variables)
33803385
result = [n.inverse(v) for n, v in zip(self.norms, value)]
@@ -3401,8 +3406,8 @@ def autoscale_None(self, A):
34013406
Parameters
34023407
----------
34033408
A
3404-
Data, must be of length `n_variables` or have a data type with
3405-
`n_variables` fields.
3409+
Data, must be of length `n_variables` or be a structured array or scalar
3410+
with `n_variables` fields.
34063411
"""
34073412
with self.callbacks.blocked():
34083413
A = self._iterable_variates_in_data(A, self.n_variables)
@@ -3411,7 +3416,7 @@ def autoscale_None(self, A):
34113416
self._changed()
34123417

34133418
def scaled(self):
3414-
"""Return whether both *vmin* and *vmax* are set on all constituent norms"""
3419+
"""Return whether both *vmin* and *vmax* are set on all constituent norms."""
34153420
return all([n.scaled() for n in self.norms])
34163421

34173422
@staticmethod
@@ -3437,8 +3442,8 @@ def _iterable_variates_in_data(data, n_variables):
34373442
data = [data[descriptor[0]] for descriptor in data.dtype.descr]
34383443
if len(data) != n_variables:
34393444
raise ValueError("The input to this `MultiNorm` must be of shape "
3440-
f"({n_variables}, ...), or have a data type with "
3441-
f"{n_variables} fields.")
3445+
f"({n_variables}, ...), or be structured array or scalar "
3446+
f"with {n_variables} fields.")
34423447
return data
34433448

34443449

0 commit comments

Comments
 (0)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy