diff --git a/.flake8 b/.flake8 index e8aa4485ab56..7c966c4aca93 100644 --- a/.flake8 +++ b/.flake8 @@ -13,7 +13,7 @@ ignore = N801, N802, N803, N806, N812, # pydocstyle D100, D101, D102, D103, D104, D105, D106, D107, - D200, D202, D203, D204, D205, D207, D209, D212, D213, + D200, D202, D203, D204, D205, D207, D212, D213, D301 D400, D401, D402, D403, D413, diff --git a/lib/matplotlib/backends/backend_pdf.py b/lib/matplotlib/backends/backend_pdf.py index f4e254a0e9cb..f0a6620fba06 100644 --- a/lib/matplotlib/backends/backend_pdf.py +++ b/lib/matplotlib/backends/backend_pdf.py @@ -95,9 +95,12 @@ def fill(strings, linelen=75): - """Make one string from sequence of strings, with whitespace - in between. The whitespace is chosen to form lines of at most - linelen characters, if possible.""" + """ + Make one string from sequence of strings, with whitespace in between. + + The whitespace is chosen to form lines of at most *linelen* characters, + if possible. + """ currpos = 0 lasti = 0 result = [] @@ -295,8 +298,7 @@ def pdfRepr(self): class Verbatim: - """Store verbatim PDF command content for later inclusion in the - stream.""" + """Store verbatim PDF command content for later inclusion in the stream.""" def __init__(self, x): self._x = x @@ -322,9 +324,16 @@ def pdfRepr(self): def _paint_path(fill, stroke): - """Return the PDF operator to paint a path in the following way: - fill: fill the path with the fill color - stroke: stroke the outline of the path with the line color""" + """ + Return the PDF operator to paint a path. + + Parameters + ---------- + fill: bool + Fill the path with the fill color. + stroke: bool + Stroke the outline of the path with the line color. + """ if stroke: if fill: return Op.fill_stroke @@ -339,7 +348,8 @@ def _paint_path(fill, stroke): class Stream: - """PDF stream object. + """ + PDF stream object. This has no pdfRepr method. Instead, call begin(), then output the contents of the stream by calling write(), and finally call end(). diff --git a/lib/matplotlib/dviread.py b/lib/matplotlib/dviread.py index ba973c23a77e..37a50194dbb3 100644 --- a/lib/matplotlib/dviread.py +++ b/lib/matplotlib/dviread.py @@ -69,45 +69,55 @@ # argument bytes in this delta. def _arg_raw(dvi, delta): - """Return *delta* without reading anything more from the dvi file""" + """Return *delta* without reading anything more from the dvi file.""" return delta def _arg(bytes, signed, dvi, _): - """Read *bytes* bytes, returning the bytes interpreted as a - signed integer if *signed* is true, unsigned otherwise.""" + """ + Read *bytes* bytes, returning the bytes interpreted as a signed integer + if *signed* is true, unsigned otherwise. + """ return dvi._arg(bytes, signed) def _arg_slen(dvi, delta): - """Signed, length *delta* + """ + Signed, length *delta* - Read *delta* bytes, returning None if *delta* is zero, and - the bytes interpreted as a signed integer otherwise.""" + Read *delta* bytes, returning None if *delta* is zero, and the bytes + interpreted as a signed integer otherwise. + """ if delta == 0: return None return dvi._arg(delta, True) def _arg_slen1(dvi, delta): - """Signed, length *delta*+1 + """ + Signed, length *delta*+1 - Read *delta*+1 bytes, returning the bytes interpreted as signed.""" + Read *delta*+1 bytes, returning the bytes interpreted as signed. + """ return dvi._arg(delta+1, True) def _arg_ulen1(dvi, delta): - """Unsigned length *delta*+1 + """ + Unsigned length *delta*+1 - Read *delta*+1 bytes, returning the bytes interpreted as unsigned.""" + Read *delta*+1 bytes, returning the bytes interpreted as unsigned. + """ return dvi._arg(delta+1, False) def _arg_olen1(dvi, delta): - """Optionally signed, length *delta*+1 + """ + Optionally signed, length *delta*+1 Read *delta*+1 bytes, returning the bytes interpreted as - unsigned integer for 0<=*delta*<3 and signed if *delta*==3.""" + unsigned integer for 0<=*delta*<3 and signed if *delta*==3. + """ return dvi._arg(delta + 1, delta == 3) @@ -122,7 +132,8 @@ def _arg_olen1(dvi, delta): def _dispatch(table, min, max=None, state=None, args=('raw',)): - """Decorator for dispatch by opcode. Sets the values in *table* + """ + Decorator for dispatch by opcode. Sets the values in *table* from *min* to *max* to this method, adds a check that the Dvi state matches *state* if not None, reads arguments from the file according to *args*. diff --git a/lib/matplotlib/tests/test_colors.py b/lib/matplotlib/tests/test_colors.py index b0d6e7f0bda1..c5497ab4d406 100644 --- a/lib/matplotlib/tests/test_colors.py +++ b/lib/matplotlib/tests/test_colors.py @@ -592,8 +592,10 @@ def test_light_source_topo_surface(): def test_light_source_shading_default(): - """Array comparison test for the default "hsv" blend mode. Ensure the - default result doesn't change without warning.""" + """ + Array comparison test for the default "hsv" blend mode. Ensure the + default result doesn't change without warning. + """ y, x = np.mgrid[-1.2:1.2:8j, -1.2:1.2:8j] z = 10 * np.cos(x**2 + y**2) @@ -647,8 +649,10 @@ def test_light_source_shading_default(): # additional elements being masked when calculating the gradient thus # the output is different with earlier numpy versions. def test_light_source_masked_shading(): - """Array comparison test for a surface with a masked portion. Ensures that - we don't wind up with "fringes" of odd colors around masked regions.""" + """ + Array comparison test for a surface with a masked portion. Ensures that + we don't wind up with "fringes" of odd colors around masked regions. + """ y, x = np.mgrid[-1.2:1.2:8j, -1.2:1.2:8j] z = 10 * np.cos(x**2 + y**2) @@ -701,8 +705,10 @@ def test_light_source_masked_shading(): def test_light_source_hillshading(): - """Compare the current hillshading method against one that should be - mathematically equivalent. Illuminates a cone from a range of angles.""" + """ + Compare the current hillshading method against one that should be + mathematically equivalent. Illuminates a cone from a range of angles. + """ def alternative_hillshade(azimuth, elev, z): illum = _sph2cart(*_azimuth2math(azimuth, elev)) @@ -730,20 +736,25 @@ def alternative_hillshade(azimuth, elev, z): def test_light_source_planar_hillshading(): - """Ensure that the illumination intensity is correct for planar - surfaces.""" + """ + Ensure that the illumination intensity is correct for planar surfaces. + """ def plane(azimuth, elevation, x, y): - """Create a plane whose normal vector is at the given azimuth and - elevation.""" + """ + Create a plane whose normal vector is at the given azimuth and + elevation. + """ theta, phi = _azimuth2math(azimuth, elevation) a, b, c = _sph2cart(theta, phi) z = -(a*x + b*y) / c return z def angled_plane(azimuth, elevation, angle, x, y): - """Create a plane whose normal vector is at an angle from the given - azimuth and elevation.""" + """ + Create a plane whose normal vector is at an angle from the given + azimuth and elevation. + """ elevation = elevation + angle if elevation > 90: azimuth = (azimuth + 180) % 360 @@ -775,8 +786,10 @@ def _sph2cart(theta, phi): def _azimuth2math(azimuth, elevation): - """Converts from clockwise-from-north and up-from-horizontal to - mathematical conventions.""" + """ + Convert from clockwise-from-north and up-from-horizontal to mathematical + conventions. + """ theta = np.radians((90 - azimuth) % 360) phi = np.radians(90 - elevation) return theta, phi @@ -795,8 +808,10 @@ def test_pandas_iterable(pd): @pytest.mark.parametrize('name', sorted(cm.cmap_d)) def test_colormap_reversing(name): - """Check the generated _lut data of a colormap and corresponding - reversed colormap if they are almost the same.""" + """ + Check the generated _lut data of a colormap and corresponding reversed + colormap if they are almost the same. + """ cmap = plt.get_cmap(name) cmap_r = cmap.reversed() if not cmap_r._isinit: diff --git a/lib/matplotlib/tests/test_mlab.py b/lib/matplotlib/tests/test_mlab.py index 6d2f204793e2..80389a93c220 100644 --- a/lib/matplotlib/tests/test_mlab.py +++ b/lib/matplotlib/tests/test_mlab.py @@ -1561,44 +1561,38 @@ def test_single_dataset_element(self): mlab.GaussianKDE([42]) def test_silverman_multidim_dataset(self): - """Use a multi-dimensional array as the dataset and test silverman's - output""" + """Test silverman's for a multi-dimensional array.""" x1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) with pytest.raises(np.linalg.LinAlgError): mlab.GaussianKDE(x1, "silverman") def test_silverman_singledim_dataset(self): - """Use a single dimension list as the dataset and test silverman's - output.""" + """Test silverman's output for a single dimension list.""" x1 = np.array([-7, -5, 1, 4, 5]) mygauss = mlab.GaussianKDE(x1, "silverman") y_expected = 0.76770389927475502 assert_almost_equal(mygauss.covariance_factor(), y_expected, 7) def test_scott_multidim_dataset(self): - """Use a multi-dimensional array as the dataset and test scott's output - """ + """Test scott's output for a multi-dimensional array.""" x1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) with pytest.raises(np.linalg.LinAlgError): mlab.GaussianKDE(x1, "scott") def test_scott_singledim_dataset(self): - """Use a single-dimensional array as the dataset and test scott's - output""" + """Test scott's output a single-dimensional array.""" x1 = np.array([-7, -5, 1, 4, 5]) mygauss = mlab.GaussianKDE(x1, "scott") y_expected = 0.72477966367769553 assert_almost_equal(mygauss.covariance_factor(), y_expected, 7) def test_scalar_empty_dataset(self): - """Use an empty array as the dataset and test the scalar's cov factor - """ + """Test the scalar's cov factor for an empty array.""" with pytest.raises(ValueError): mlab.GaussianKDE([], bw_method=5) def test_scalar_covariance_dataset(self): - """Use a dataset and test a scalar's cov factor - """ + """Test a scalar's cov factor.""" np.random.seed(8765678) n_basesample = 50 multidim_data = [np.random.randn(n_basesample) for i in range(5)] @@ -1607,8 +1601,7 @@ def test_scalar_covariance_dataset(self): assert kde.covariance_factor() == 0.5 def test_callable_covariance_dataset(self): - """Use a multi-dimensional array as the dataset and test the callable's - cov factor""" + """Test the callable's cov factor for a multi-dimensional array.""" np.random.seed(8765678) n_basesample = 50 multidim_data = [np.random.randn(n_basesample) for i in range(5)] @@ -1619,8 +1612,7 @@ def callable_fun(x): assert kde.covariance_factor() == 0.55 def test_callable_singledim_dataset(self): - """Use a single-dimensional array as the dataset and test the - callable's cov factor""" + """Test the callable's cov factor for a single-dimensional array.""" np.random.seed(8765678) n_basesample = 50 multidim_data = np.random.randn(n_basesample)
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies: