diff --git a/lib/matplotlib/patches.py b/lib/matplotlib/patches.py index 42affae91949..abf4b97a6c7d 100644 --- a/lib/matplotlib/patches.py +++ b/lib/matplotlib/patches.py @@ -1592,14 +1592,12 @@ def draw(self, renderer): calculation much easier than doing rotated ellipse intersection directly). - This uses the "line intersecting a circle" algorithm - from: + This uses the "line intersecting a circle" algorithm from: Vince, John. *Geometry for Computer Graphics: Formulae, Examples & Proofs.* London: Springer-Verlag, 2005. - 2. The angles of each of the intersection points are - calculated. + 2. The angles of each of the intersection points are calculated. 3. Proceeding counterclockwise starting in the positive x-direction, each of the visible arc-segments between the @@ -1609,6 +1607,8 @@ def draw(self, renderer): """ if not hasattr(self, 'axes'): raise RuntimeError('Arcs can only be used in Axes instances') + if not self.get_visible(): + return self._recompute_transform() @@ -1621,44 +1621,62 @@ def theta_stretch(theta, scale): theta = np.deg2rad(theta) x = np.cos(theta) y = np.sin(theta) - return np.rad2deg(np.arctan2(scale * y, x)) - theta1 = theta_stretch(self.theta1, width / height) - theta2 = theta_stretch(self.theta2, width / height) - - # Get width and height in pixels - width, height = self.get_transform().transform((width, height)) + stheta = np.rad2deg(np.arctan2(scale * y, x)) + # arctan2 has the range [-pi, pi], we expect [0, 2*pi] + return (stheta + 360) % 360 + + theta1 = self.theta1 + theta2 = self.theta2 + + if ( + # if we need to stretch the angles because we are distorted + width != height + # and we are not doing a full circle. + # + # 0 and 360 do not exactly round-trip through the angle + # stretching (due to both float precision limitations and + # the difference between the range of arctan2 [-pi, pi] and + # this method [0, 360]) so avoid doing it if we don't have to. + and not (theta1 != theta2 and theta1 % 360 == theta2 % 360) + ): + theta1 = theta_stretch(self.theta1, width / height) + theta2 = theta_stretch(self.theta2, width / height) + + # Get width and height in pixels we need to use + # `self.get_data_transform` rather than `self.get_transform` + # because we want the transform from dataspace to the + # screen space to estimate how big the arc will be in physical + # units when rendered (the transform that we get via + # `self.get_transform()` goes from an idealized unit-radius + # space to screen space). + data_to_screen_trans = self.get_data_transform() + pwidth, pheight = (data_to_screen_trans.transform((width, height)) - + data_to_screen_trans.transform((0, 0))) inv_error = (1.0 / 1.89818e-6) * 0.5 - if width < inv_error and height < inv_error: + + if pwidth < inv_error and pheight < inv_error: self._path = Path.arc(theta1, theta2) return Patch.draw(self, renderer) - def iter_circle_intersect_on_line(x0, y0, x1, y1): + def line_circle_intersect(x0, y0, x1, y1): dx = x1 - x0 dy = y1 - y0 dr2 = dx * dx + dy * dy D = x0 * y1 - x1 * y0 D2 = D * D discrim = dr2 - D2 - - # Single (tangential) intersection - if discrim == 0.0: - x = (D * dy) / dr2 - y = (-D * dx) / dr2 - yield x, y - elif discrim > 0.0: - # The definition of "sign" here is different from - # np.sign: we never want to get 0.0 - if dy < 0.0: - sign_dy = -1.0 - else: - sign_dy = 1.0 + if discrim >= 0.0: + sign_dy = np.copysign(1, dy) # +/-1, never 0. sqrt_discrim = np.sqrt(discrim) - for sign in (1., -1.): - x = (D * dy + sign * sign_dy * dx * sqrt_discrim) / dr2 - y = (-D * dx + sign * np.abs(dy) * sqrt_discrim) / dr2 - yield x, y + return np.array( + [[(D * dy + sign_dy * dx * sqrt_discrim) / dr2, + (-D * dx + abs(dy) * sqrt_discrim) / dr2], + [(D * dy - sign_dy * dx * sqrt_discrim) / dr2, + (-D * dx - abs(dy) * sqrt_discrim) / dr2]]) + else: + return np.empty((0, 2)) - def iter_circle_intersect_on_line_seg(x0, y0, x1, y1): + def segment_circle_intersect(x0, y0, x1, y1): epsilon = 1e-9 if x1 < x0: x0e, x1e = x1, x0 @@ -1668,40 +1686,34 @@ def iter_circle_intersect_on_line_seg(x0, y0, x1, y1): y0e, y1e = y1, y0 else: y0e, y1e = y0, y1 - x0e -= epsilon - y0e -= epsilon - x1e += epsilon - y1e += epsilon - for x, y in iter_circle_intersect_on_line(x0, y0, x1, y1): - if x0e <= x <= x1e and y0e <= y <= y1e: - yield x, y + xys = line_circle_intersect(x0, y0, x1, y1) + xs, ys = xys.T + return xys[ + (x0e - epsilon < xs) & (xs < x1e + epsilon) + & (y0e - epsilon < ys) & (ys < y1e + epsilon) + ] # Transforms the axes box_path so that it is relative to the unit # circle in the same way that it is relative to the desired ellipse. - box_path = Path.unit_rectangle() box_path_transform = (transforms.BboxTransformTo(self.axes.bbox) - - self.get_transform()) - box_path = box_path.transformed(box_path_transform) + + self.get_transform().inverted()) + box_path = Path.unit_rectangle().transformed(box_path_transform) thetas = set() # For each of the point pairs, there is a line segment for p0, p1 in zip(box_path.vertices[:-1], box_path.vertices[1:]): - x0, y0 = p0 - x1, y1 = p1 - for x, y in iter_circle_intersect_on_line_seg(x0, y0, x1, y1): - theta = np.arccos(x) - if y < 0: - theta = 2 * np.pi - theta - # Convert radians to angles - theta = np.rad2deg(theta) - if theta1 < theta < theta2: - thetas.add(theta) + xy = segment_circle_intersect(*p0, *p1) + x, y = xy.T + # arctan2 return [-pi, pi), the rest of our angles are in + # [0, 360], adjust as needed. + theta = (np.rad2deg(np.arctan2(y, x)) + 360) % 360 + thetas.update(theta[(theta1 < theta) & (theta < theta2)]) thetas = sorted(thetas) + [theta2] - last_theta = theta1 theta1_rad = np.deg2rad(theta1) - inside = box_path.contains_point((np.cos(theta1_rad), - np.sin(theta1_rad))) + inside = box_path.contains_point( + (np.cos(theta1_rad), np.sin(theta1_rad)) + ) # save original path path_original = self._path diff --git a/lib/matplotlib/tests/baseline_images/test_axes/arc_angles.png b/lib/matplotlib/tests/baseline_images/test_axes/arc_angles.png index 8b81cde703ef..caa050aed900 100644 Binary files a/lib/matplotlib/tests/baseline_images/test_axes/arc_angles.png and b/lib/matplotlib/tests/baseline_images/test_axes/arc_angles.png differ diff --git a/lib/matplotlib/tests/baseline_images/test_patches/all_quadrants_arcs.svg b/lib/matplotlib/tests/baseline_images/test_patches/all_quadrants_arcs.svg new file mode 100644 index 000000000000..a45712972165 --- /dev/null +++ b/lib/matplotlib/tests/baseline_images/test_patches/all_quadrants_arcs.svg @@ -0,0 +1,481 @@ + + + + + + + + + 2020-06-15T18:44:55.456487 + image/svg+xml + + + Matplotlib v3.2.1.post2847.dev0+g36a8896133, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/lib/matplotlib/tests/baseline_images/test_patches/large_arc.svg b/lib/matplotlib/tests/baseline_images/test_patches/large_arc.svg new file mode 100644 index 000000000000..d902870aa7b7 --- /dev/null +++ b/lib/matplotlib/tests/baseline_images/test_patches/large_arc.svg @@ -0,0 +1,79 @@ + + + + + + + + + 2020-06-15T19:03:05.186353 + image/svg+xml + + + Matplotlib v3.2.1.post2849.dev0+ge5dca476ed, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/lib/matplotlib/tests/test_patches.py b/lib/matplotlib/tests/test_patches.py index 32ce5db1cebe..c0eda5542927 100644 --- a/lib/matplotlib/tests/test_patches.py +++ b/lib/matplotlib/tests/test_patches.py @@ -490,3 +490,60 @@ def test_fancyarrow_units(): fig, ax = plt.subplots() arrow = FancyArrowPatch((0, dtime), (0.01, dtime)) ax.add_patch(arrow) + + +@image_comparison(["large_arc.svg"], style="mpl20") +def test_large_arc(): + fig, (ax1, ax2) = plt.subplots(1, 2) + x = 210 + y = -2115 + diameter = 4261 + for ax in [ax1, ax2]: + a = mpatches.Arc((x, y), diameter, diameter, lw=2, color='k') + ax.add_patch(a) + ax.set_axis_off() + ax.set_aspect('equal') + # force the high accuracy case + ax1.set_xlim(7, 8) + ax1.set_ylim(5, 6) + + # force the low accuracy case + ax2.set_xlim(-25000, 18000) + ax2.set_ylim(-20000, 6600) + + +@image_comparison(["all_quadrants_arcs.svg"], style="mpl20") +def test_rotated_arcs(): + fig, ax_arr = plt.subplots(2, 2, squeeze=False, figsize=(10, 10)) + + scale = 10_000_000 + diag_centers = ((-1, -1), (-1, 1), (1, 1), (1, -1)) + on_axis_centers = ((0, 1), (1, 0), (0, -1), (-1, 0)) + skews = ((2, 2), (2, 1/10), (2, 1/100), (2, 1/1000)) + + for ax, (sx, sy) in zip(ax_arr.ravel(), skews): + k = 0 + for prescale, centers in zip((1 - .0001, (1 - .0001) / np.sqrt(2)), + (on_axis_centers, diag_centers)): + for j, (x_sign, y_sign) in enumerate(centers, start=k): + a = mpatches.Arc( + (x_sign * scale * prescale, + y_sign * scale * prescale), + scale * sx, + scale * sy, + lw=4, + color=f"C{j}", + zorder=1 + j, + angle=np.rad2deg(np.arctan2(y_sign, x_sign)) % 360, + label=f'big {j}', + gid=f'big {j}' + ) + ax.add_patch(a) + + k = j+1 + ax.set_xlim(-scale / 4000, scale / 4000) + ax.set_ylim(-scale / 4000, scale / 4000) + ax.axhline(0, color="k") + ax.axvline(0, color="k") + ax.set_axis_off() + ax.set_aspect("equal") pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy